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Preface

In the past decades now a famous class of evolution equations has been
discovered and intensively studied, a class including the nowadays celebrated
Korteweg-de Vries equation, sine-Gordon equation, nonlinear Schrödinger
equation, etc. The equations from this class are known also as the soliton
equations or equations solvable by the so- called Inverse Scattering Trans-
form Method. They possess a number of interesting properties, probably the
most interesting from the geometric point of view of being that most of them
are Liouville integrable Hamiltonian systems. Because of the importance of
the soliton equations, a dozen monographs have been devoted to them. How-
ever, the great variety of approaches to the soliton equations has led to the
paradoxical situation that specialists in the same field sometimes understand
each other with difficulties. We discovered it ourselves several years ago during
a number of discussions the three of us had. Even though by friendship binds
us, we could not collaborate as well as we wanted to, since our individual
approach to the field of integrable systems (finite and infinite dimensional) is
quite different. We have become aware that things natural in one approach
are difficult to understand for people using other approaches, though the ob-
jects are the same, in our case – the Recursion (generating) Operators and
their applications to finite and infinite dimensional (not necessarily integrable)
Hamiltonian systems. Since even between us, in order to overcome our differ-
ences, we needed some serious efforts, we decided that it was time to bring
together the analytic and geometric aspects, if not of the theory of the soli-
ton equations (this would be too ambitious) but at least the analytic and the
geometric aspects of the so-called Recursion Operators, which are among the
powerful tools for the study of soliton equations. We had to do it in such a
way, that a specialist in one of the approaches can read and understand the
value of the other approach. However, the material we started to collect soon
began growing rapidly, and we realized that a book should be written on this
topic. The realization of the book project took longer than we expected –
more than six years. But now we are happy that we are able to present a text
which in our opinion reflects our original ideas.



VI Preface

The book has two parts, the first is dedicated to the analytic approach
to the Recursion operators, the second, to the geometric nature of these op-
erators, that is, to their interpretation as mixed tensor fields with special
geometric properties over the manifold of potentials.

As we mentioned, we expect that the book will be useful to specialists
in the Recursion Operator approach to the soliton equations. However, with
an intent to target a larger audience, we have included some other important
topics, such as the construction of the soliton solutions, for example. We have
tried to develop the material in such a way that the book proves useful for
graduate students who want to enter this interesting field of research.

The present book is based on some material that has become already
classical, as well as on some of our works. The last few have been written in
collaboration with many other friends and colleagues, namely:

Sergio De Filippo, Giuseppe Marmo, Mario Salerno, Giovanni Landi, Yanus
Grabowski, Andrei Borowiz, Giovanni Sparano, Alexandre Vinogradov,
Patrizia Vitale, Fabrizio Canfora, Luca Parisi, Boris Florko, Ljudmila
Bordag, Peter Kulish, Evgenii Khristov, David Kaup, Evgenii Doktorov,
Mikhail Ivanov, Yordan Vaklev, Marco Boiti, Flora Pempinelli, Nikolay
Kostov, Ivan Uzunov, Evstati Evstatiev, Georgi Diankov, Rossen Ivanov,
Rossen Dandoloff, Georgi Grahovski, Assen Kyuldjiev, Viktor Enol’skii,
Bakhtiyor Baizakov, Vladimir Konotop, Jianke Yang, Adrian Constantin,
Tihomir Valchev, Victor Atanasov.

We would like to extend our thanks to all of them.
We are grateful to Evgenii Doktorov, Nikolay Kostov, David Kaup, Georgi

Grahovski, Rossen Ivanov for careful reading of the manuscript and for the
many useful discussions we had with them.

A crucial factor which helped us complete the book was the financial sup-
port of Istituto Nazionale di fisica Nucleare, Gruppo Collegato di Salerno,
and of Dipartimento di Fisica “E.R.Caianiello” at the University of Salerno,
Italy. We would also like to thank the Institute for Nuclear Research and Nu-
clear energy, Sofia and the University of Cape Town for their organizational
and financial support, as well as the National science foundation of Bulgaria
(contract No. 1410).

Sofia, Salerno, Cape Town Vladimir Stefanov Gerdjikov
2000–2007 Gaetano Vilasi

Alexander Yanovski
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Part I

Integrable Hamiltonian Hierarchies:
Spectral Methods



1

Introduction

1.1 Brief Historical overview

Several of the nonlinear evolution equations to which this book is dedicated,
the so-called soliton equations, are so important and so well known that they
have become a paradigm. Three of them are

(i) The Korteweg-de Vries (KdV) equation [1, 2, 3, 4, 5, 6]:

vt + vxxx + 6vxv(x, t) = 0 ; (1.1)

(ii) The sine-Gordon (s-G) equation [7, 8]:

wxt + sinw(x, t) = 0 ; (1.2)

(iii) The nonlinear Schrödinger (NLS) equation [9, 10]:

iut + uxx + 2|u|2u(x, t) = 0 . (1.3)

In fact, the first two were known for more than a century. The sine-Gordon
(s-G) equation has been introduced in the middle of the 19th century in
relation to the study of the surfaces with constant negative curvature [11].
The special properties of s-G, namely, the fact that one can obtain new non-
trivial solutions starting from a trivial one was discovered also long ago by
Bäcklund and Darboux [12, 13]. The transformations doing it are known today
as Bäcklund and Darboux transformations.

The KdV equation was also discovered in the 19th century [14]; it describes
hydrodynamic waves in shallow and narrow channels.

For rather a long time (more than a half century), the importance of
these two equations was not fully realized, though there have been made
some significant steps. For example, in 1971 Lamb Jr. [17] used the Bäcklund
transformation to derive the n-soliton solutions of s-G. Studying them he
predicted a new phenomenon: the self-induced transparency which soon was
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4 1 Introduction

discovered experimentally. A number of other important applications of the
soliton equations to physical problems can be found in [9, 10, 16, 15, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67].

The special properties of the KdV equation started to be unveiled in the
1950s with the Fermi-Pasta-Ulam experiment [68]. These authors studied a
chain of 64 anharmonic oscillators of mass m, whose evolution is described by
the equations:

m

K

d2yi

dt2
= (yi+1 + yi−1 − 2yi) + α

(

(yi+1 − yi)2 − (yi − yi−1)2
)

, (1.4)

i = 1, 2, . . . , N − 1, y0 = yN = 0 ,

N designates the number of the corresponding oscillators and K and α are
constants. As a result, they discovered that the stochastization does not occur;
in other words, there is no energy exchange between the different modes. Later,
Kruskal and Zabusky used this results for the analysis of the KdV equation
[69], which can be considered as the continuous limit of (1.4).

It has been discovered that this property is related to the fact that the
KdV equation has (an infinite number of) higher conservation laws; see [1] and
the references therein. These results helped to reveal that the evolution of the
KdV equation is an isospectral deformation of the Sturm-Liouville equation:

−d
2ψ

dx2
+ (v(x, t)− k2)ψ(x, k) = 0 , (1.5)

and finally lead Lax to the discovery of the inverse scattering method (ISM)
[2, 5, 6].

This was the first case when for a nonlinear partial differential equation
general Cauchy-type theorem of existence and uniqueness of solution was
proved.

The intensive study of KdV continued, and soon another curios fact was
discovered: the purely elastic interactions of the solitons, each preserving its
velocity after the interaction. But for about three years since the Lax paper
was published, the KdV equation was believed to be the only NLEE integrable
by the ISM, possessing an infinite number of integrals of motion and N -soliton
solutions.

However, in 1971, there appeared two pioneer papers [9, 70] that started
the “blow-up instability” in the theory of solitons. They stimulated the interest
of many scientists from various branches of Mathematics and Physics, and the
special properties of KdV equation were fully understood.

In the first of these papers, Zakharov and Shabat [9] discovered a second
nonlinear evolution equation (NLEE) integrable by the ISM: the now famous
NLS equation (1.3). They showed that the NLS, just like the KdV, has an in-
finite number of integrals of motion and possesses N -soliton solutions, whose
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interaction is again purely elastic. Due to the large number of physical appli-
cations of the NLS equation, these results attracted the attention of a number
of physicists working in plasma physics, nonlinear optics, superconductivity,
etc. The soliton solutions available in explicit form allowed to understand a
number of purely nonlinear phenomena that could not be explained by the
old perturbative methods.

The third NLEE integrable by the ISM, the MKdV equation

wt + wxxx + 6κ1wxw
2(x, t) = 0, κ1 = ±1 . (1.6)

was found by Wadati [71] in 1972.
It turned out that both the NLS [9] and the mKdV equations [71] allow

Lax representation:
[L(λ),M(λ)] = 0 , (1.7)

Their Lax representations can be handled more conveniently, if we choose as
a Lax operator L(λ) the so-called Zakharov-Shabat (ZS) system:

L(λ)ψ(x, t, λ) ≡ i
dψ

dx
+ (q(x, t)− λσ3)ψ(x, t, λ) = 0 ,

q(x, t) =
(

0 q+

q− 0

)

, σ3 =
(

1 0
0 −1

)

, (1.8)

where q+(x, t) = u(x, t), and q−(x, t) = u∗(x, t), and the operator M(λ) is
polynomial of second degree in λ.

The above result stimulated both mathematicians and theoretical physi-
cists to look for other, more general, Lax operators and new equations of
soliton type. Such were found soon. In [7], Ablowitz, Kaup, Newell and Se-
gur (AKNS for short) discovered that the Zakharov-Shabat system (1.8) can
be used to solve also the s-G equation, provided one chooses M in the form
M0(x, t) + M−1(x, t)/λ. Nearly at the same time, Faddeev and Takhtadjan
[8] found another Lax representation for the s-G equation, with M being an
integral operator.

The Heisenberg ferromagnet equation (HF):

St = S× Sxx, S · S = 1 , (1.9)

which is gauge equivalent to the NLS equation [22, 73]. Here S is a three-
component vector, and × is the cross product of these vectors. In matrix
form, (1.9) is written as:

iSt =
1
2

[S, Sxx] , S2(x, t) = 1l , (1.10)

where the 2× 2 matrix is obtained from the vector S by:

S(x, t) =
3
∑

k=1

Sk(x, t)σk , (1.11)
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and σk are the Pauli matrices:

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

. (1.12)

As we shall see, the pair of equations NLS and HF provides the first
example of the so-called gauge equivalent NLEE.

The vector NLS equation:

iut + uxx + (u†,u)u(x, t) = 0, u =

⎛

⎜

⎝

u1(x, t)
...

un(x, t)

⎞

⎟

⎠
, (1.13)

known also as the Manakov model [24, 74], and the N -wave system [25]:

i[J,Qt] + i[I,Qx] + [[I,Q], [J,Q(x, t)]] = 0, Qjj = 0 , (1.14)

where Q(x, t) is n× n matrix whose diagonal elements vanish, were shown to
be integrable with the help of a generalized Zakharov–Shabat system of the
form:

i
dψ

dx
+ (q(x, t)− λJ)ψ(x, t, λ) = 0 . (1.15)

For the Manakov, model one can use (n+ 1)× (n+ 1)-component system of
the form (1.15) with

q(x, t) =
(

0 u(x, t)
u†(x, t) 0

)

, J =
(

1 0
0 −11n

)

, (1.16)

where u = (u1, . . . , un)T , while for the N -wave system we must choose an
n× n system of the form (1.15) with

q(x, t) = [J,Q(x, t)], J = diag (a1, . . . , an) . (1.17)

where a1 > a2 > · · · > an are real constants.
Along with the continuous models, soon there appeared also discrete mod-

els, described by systems of ordinary differential equations, which can be
treated in a similar way. The first among them were two versions of the Toda
chain [75, 76, 77, 78, 79, 80, 81, 82]:

d2qk

dt2
= eqk+1−qk − eqk−qk−1 , k = 1, . . . , N , (1.18)

The first version, for which one must put e−q0 ≡ eqN+1 ≡ 0, is known as the
Toda molecule system; the second version assumes qN+1 ≡ q1 and is known
as the affine Toda chain [83, 84].

Due to its success in dealing with nonlinear models, numerous attempts
to apply the new ideas followed, and the list of nonlinear integrable equations
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constantly increased during the last decades; see e.g. the list of integrable
systems in [40, 66, 85].

The second pioneer result was obtained by Zakharov and Faddeev in [70].
It has been proved that the KdV equation is an infinite dimensional com-
pletely integrable Hamiltonian system. The paper [70] started another impor-
tant trend. This was the first case when for an infinite dimensional Hamilto-
nian system the action-angle variables were obtained. It stimulated the study
of the Hamiltonian structures and Hamiltonian hierarchies of the soliton equa-
tions, which is one of the main aims of this book. Doing this in the first part
we apply the spectral methods.

The geometric methods treating the recursion operators will be introduced
in the second part. It turns out, however, that the mathematical ideas and
techniques are so different from those introduced in the first part that they
cannot be treated simultaneously. Because of that, we preferred to separate
the ideas and to put in the first part, essentially, the “spectral” ideas and in
the second one – the geometric ones. From one side, the reader who has read
the first part will easily compare the results, and from the other, both parts
are relatively independent and can be read separately.

1.2 Fundamental Properties of the Soliton Equations

Let us outline the main idea of the ISM and the fundamental properties of
the relevant soliton equations. A beginner can use also one of the numerous
review papers and monographs on ISM [18, 31, 37, 38, 40, 42, 47, 49, 53, 56,
66, 86, 87, 88, 89, 90, 91, 92, 93].

1.2.1 Solving Nonlinear Cauchy Problems

The basic idea underlying the ISM consists in “changing the variables” passing
from q(x, t) to the scattering matrix T (λ) of L, which is defined in Chap. 2.
Let us outline it in the example of the nonlinear Cauchy problem for the NLS
equation with the initial condition:

i
∂u

∂t
+
∂2u

∂x2
+ 2|u|2u(x, t) = 0 , (1.19a)

u(x, t)|t=0 = u0(x) . (1.19b)

Consider the operator L0 be of the form (1.8) with the potential q0(x) =
q(x, t = 0) defined by

q0(x) =
(

0 u0(x)
u∗0(x) 0

)

.

The first step toward the solution of (1.19) consists in solving the direct
scattering problem for L0 and constructing the scattering matrix T (0, λ).



8 1 Introduction

The next step is to find T (t, λ) for any moment t > 0. Rather surprisingly,
one gets a linear evolution equation for T (t, λ) of the form

i
dT

dt
+ [f(λ)σ3, T (t, λ)] = 0 , (1.20)

where the function f(λ) is known as the dispersion law of the corresponding
NLEE. For the NLS equation f(λ) = −2λ2. The equation (1.20) is trivially
solved:

T (t, λ) = exp(if(λ)σ3t)T (0, λ) exp(−if(λ)σ3t) , (1.21)

i.e. one can easily find the scattering matrix T (t, λ) for any time t > 0.
The last step consists in recovering the potential q(x, t) from the scattering

matrix T (t, λ). Thus, the solution of the nonlinear Cauchy problem (1.19) can
be done along the scheme:

q0(x) −→ L0 L|t>0 −→ q(x, t)

I

⏐

⏐

�

�

⏐

⏐III

T (0, λ) II−→ T (t, λ)

(1.22)

We shall explain how to perform the transitions along arrows I and III
in (1.22) in Chaps. 3 and 4. We shall show that both steps I and III are
reduced to solving linear integral equations, for which one can prove theorems
of existence and uniqueness. Solving the problem corresponding to step III is
known as the inverse scattering problem for L which has given the method its
name.

Even at this stage, we see that along with the NLS equation we can solve
a number of other more complicated NLEE, which have different dispersion
laws f(λ). This shows that we should look at the NLS equation as just one
member of an infinite set (a hierarchy) of NLEE, which can be integrated
quite analogously.

Returning to the scheme (1.22), the ISM allows one to reduce the Cauchy
problem for a nonlinear equation to a sequence of three linear problems, each
having unique solution. Therefore, for each of the NLEE in the hierarchy, we
can prove the analog of Cauchy theorem of existence and uniqueness. We also
conclude that the solutions of the soliton equations are parametrized by the
scattering data of the Lax operator L. Since generically L may have both con-
tinuous and discrete spectrum, we can expect two qualitatively different types
of solutions: (a) solutions parametrized by data on the continuous spectrum
only and (b) solutions parametrized by the data on the discrete spectrum of
L. While type (a) solutions are rather close to the usual linear waves, type (b)
solutions are known as soliton solutions and possess a number of exceptional
properties, which are outlined below. Of course, one may have also “mixed”
solutions, parametrized by data on both the continuous and discrete spectra.
For those, one can prove that their properties are mostly characterized by
their “solitonic” ingredient.



1.2 Fundamental Properties of the Soliton Equations 9

1.2.2 Hierarchies of Soliton Equations

As mentioned in the previous subsection, to each dispersion law f(λ) there
corresponds an NLEE. In fact, applying the ISM to the Zakharov–Shabat
system (1.8), one can solve each of the systems of NLEE of the form:

iσ3
dq

dt
+ 2f(Λ)q(x, t) = 0 , (1.23)

where f(λ) is the dispersion law, and Λ is one of the so-called recursion oper-
ators Λ+, Λ− or Λ = (Λ+ + Λ−)/2:

Λ±X =
i

4

[

σ3,
dX

dx

]

+
i

2
q(x, t)

∫ x

±∞
tr (q(y, t)[σ3,X(y, t)]) dy , (1.24)

Choosing in (1.23) the dispersion law f(λ) = −2λ2 and q+ = (q−)∗, we get
the NLS equation (1.3). Taking f(λ) = −8λ3 and q+ = κ1(q−) and real we
get the mKdV equation (1.6).

The class of polynomial dispersion laws has a special property where the
corresponding systems (1.23) are local in q(x, t), i.e. depend only on q and its
x-derivatives: qx, qxx etc. In addition, the explicit form of the NLEE does not
depend on the choice of the recursion operator (Λ+, Λ− or Λ) we have used.
One of our aims in Chap. 4 will be to prove that the NLEE (1.23) is equivalent
to the set of linear equation (1.20) for the scattering matrix T (λ, t).

1.2.3 Linearized NLEE and Fourier Transform

The equivalence between (1.23) and (1.20) stimulated the development of the
important idea proposed in [94], to interpret the ISM as a generalized Fourier
transform. An indication showing that this indeed may be so is the fact that
in the limit of small potentials:

q(x, t) = εq(0)(x, t) +O(ε2) , (1.25)

the NLEE (1.23) becomes linear and the ISM reduces to the usual Fourier
transform.

Indeed, let us consider ε � 1 and keep only the first-order terms with
respect to ε. The scattering matrix of the Zakharov–Shabat system in this
approximation (known as the Born approximation) takes the form:

T (λ, t) = 11 + iεR(0)(λ, t) +O(ε2) , (1.26)

where

R(0)(λ, t) ≡
(

0 ρ
(0)
+ (λ, t)

ρ
(0)
− (λ, t) 0

)

=
∫ ∞

−∞
dy eiλσ3yq(0)(y, t)e−iλσ3y . (1.27)
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Thus q(0)(λ, t) and R(0)(λ, t) are related by the Fourier transform:

q(0)(λ, t) ≡
(

0 q+(0)(x, t)
q−(0)(x, t) 0

)

=
1
2π

∫ ∞

−∞
dy e−iλσ3yR(0)(y, t)eiλσ3y .

(1.28)
In this limit the recursion operators go into:

Λ±X →
ε→0

D0X +O(ε2), D0X =
i

4

[

σ3,
dX

dx

]

. (1.29)

and the NLEE (1.23) takes the form:

iσ3
dq(0)

dt
+ 2f(D0)q(0)(x, t) = 0 , (1.30)

which is a linear partial differential equation with constant coefficients. From
(1.28) and (1.29) we get:

D0q
(0)(x, t) =

1
2π

∫ ∞

−∞
dλλe−iλσ3xR(0)(λ, t)eiλσ3x . (1.31)

Therefore the left-hand side of (1.30) goes into:

1
2π

∫ ∞

−∞
dλ e−iλσ3x

(

i

2

[

σ3,
dR(0)

dt

]

+ 2f(λ)R(0)(λ, t)eiλσ3x

)

(1.32)

=
[

σ3,
1
2π

∫ ∞

−∞
dλ e−iλσ3x

(

i

2
dR(0)

dt
+ f(λ)[σ3, R

(0)(λ, t)]
)

eiλσ3x

]

and vanishes if and only if R(0)(λ, t) satisfies the linear evolution equation:

i
dR(0)

dt
+ f(λ)[σ3, R

(0)(λ, t)] = 0 . (1.33)

It is easy to check that if we insert (1.26) into (1.20) and keep only the terms
linear in ε we get again (1.33).

The conclusion here is that in the limit of small potentials (Born approxi-
mation) the NLEE (1.23) becomes linear, and the ISM simplifies to a standard
Fourier transform, which is closely related to the spectral decomposition of
the linear operator D0. Of course, D0 has no discrete eigenvalues, so all soliton
solutions in this limit disappear.

The deep and important idea proposed in [94], and extended in [95, 96,
97, 98] is that this analogy survives also for potentials that are not small.
Instead of the usual Fourier transform one has to use its generalization, which
is related to the expansions over the “squared solutions” of L and to the
spectral decompositions of Λ± and Λ. The proofs outlined in Chap. 5 allow
one to conclude that L and Λ have the same set of discrete eigenvalues, which
are responsible for the soliton solutions.
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1.2.4 Integrals of Motion

If we denote the matrix elements of T (λ, t) by:

T (λ, t) =
(

a+(λ) −b−(λ, t)
b+(λ, t) a−(λ)

)

(1.34)

from (1.20) we get:

da±(λ)
dt

= 0, i
db±(λ)
dt

∓ 2f(λ)b±(λ) = 0 . (1.35)

The first two equations mean that the functions a±(λ) are t-independent. One
can prove that they are analytic functions of λ for λ ∈ C±. Expanding them,
or rather ln a±(λ) in Taylor series, e.g.:

± ln a±(λ) =
∞
∑

k=1

Ckλ
−k , (1.36)

one can generate an infinite number of integrals of motion Ck. Thus, the
functions ± ln a±(λ) can be viewed as generating functionals of the integrals
of motion for the hierarchy of NLEE.

The Ck can be expressed as functionals of the potential q(x, t); the special
choice of the Taylor series in (1.36) has the advantage of the densities of Ck

being local in q, i.e. they depend only on q and their x-derivatives.

1.2.5 Soliton Solutions and Soliton Interactions

Though some of the soliton solutions of the sine-Gordon and KdV equations
were already known in 19th century, the real value of their important proper-
ties was discovered after the ISM was developed. Indeed, after the discovery
of the ISM, it was realized that the GLM equation [99, 100, 101] can be solved
in closed form in the reflectionless case, i.e. if ρ+(λ) = ρ−(λ) = 0 for all real
values of λ. The corresponding solutions are parametrized only by the data re-
lated to the discrete spectrum of the Lax operator and are known as N -soliton
solutions. For the N -soliton solution of the NLS equation, the corresponding
ZS system has N pairs of discrete eigenvalues λ+

j = (λ−j )∗ ∈ C±, j = 1, . . . , N .
So, in the reflectionless case, the GLM has a degenerate kernel, and as

a result solving it leads to a set of algebraic equations, which is solvable in
closed form. Thus, for the N -soliton solution of the NLS equation, we have [9]:

uNs(x, t) =
detM1(x, t)
detM0(x, t)

, (1.37)

where

Mij(x, t) =
1 + γ∗j (x, t)γk(x, t)

λ−j − λ+
k

M1(x, t) =
(

M(x, t) γ(x, t)
cT
0 0

)

, (1.38)
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γ(x, t) = (γ1, . . . , γN )T , cT
0 = (1, 1, . . . , 1), γk(x, t) = eiλ+

k (x−ξ0,k+λ+
k t) .
(1.39)

Taking the limits t → ∞ and t → −∞ in these formulas, one is able to
analyze the N -soliton interaction in the case when the solitons have different
velocities.

The soliton solutions of the NLEE turned out to be very important due
to their exceptional stability properties and due to their special type of inter-
action. Indeed, let for t → −∞ the solution of the NLEE is represented as a
sum of N one-soliton solutions, which move with different velocities. In this
limit, they are well separated between themselves so that they practically do
not interact. We will write this in the form:

u(x, t) −→
t→−∞

N
∑

k=1

u1s(x, t;μk, νk, ξ
−
k , δ

−
k ) (1.40)

where the parameters ξ−k , μk, νk and δ−k characterize the asymptotic values
of the “center” of mass position, the velocity, the amplitude, and the phase of
the soliton. We also assume that the solitons are ordered in such a way that
the leftmost one is the fastest, while the rightmost one is the slowest.

For t→∞ the asymptotics of the solution u(x, t) becomes:

u(x, t) −→
t→∞

N
∑

k=1

u1s(x, t;μk, νk, ξ
+
k , δ

+
k ) (1.41)

This means that again u(x, t) reduces to a sum of one-soliton solutions, which
have the same velocities and amplitudes but are ordered in inverse order: i.e.
now the leftmost soliton is the slowest while the rightmost one is the fastest.
The other difference between (1.40) and (1.41) consists in the change of the
relative center of mass positions, ξ−k to ξ+k , and the relative phases from δ−k to
δ+k . The pure elastic nature of the N -soliton interactions is due to the infinite
set of integrals of motion.

Thus, the soliton interaction provides us with examples of nonlinear in-
teractions, in which the nonlinearity exactly compensates for the linear dissi-
pation. In fact, this is the fundamental physical property of these equations.
Mathematically, it is reflected in the fact that the corresponding NLEE is
solvable by the ISM. The other properties discussed below are all consequence
of it.

1.2.6 Hamiltonian Hierarchies

The importance of the Hamiltonian properties of the soliton equations, along
with the fact that the KdV equation is an infinite dimensional completely
integrable Hamiltonian system, was realized by Zakharov and Faddeev [70].
This paper stimulated the studies of the Hamiltonian properties for the other
soliton equations. Soon, it was proved the NLS and the s-G equations also are
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infinite dimensional completely integrable Hamiltonian system [102, 103]. It
is easy to check that the NLS equation can be cast naturally into Hamiltonian
form:

i
dq±

dt
= {H(0), q

±}(0) , (1.42)

Ω(0)(XH(0) , ·) = δH(0), (1.43)

where XH(0) is the vector field related to the Hamiltonian H(0). The Poisson
bracket {·, ·}(0), the symplectic 2-form Ω(0) and H(0) are given by:

H(0) = −8iC3 ,

{F,G}(0) =
∫ ∞

−∞
dx

(

δF

δq+(x)
δG

δq−(x)
− δF

δq−(x)
δG

δq+(x)

)

, (1.44)

Ω(0) =
∫ ∞

−∞
dx δq+(x) ∧ δq−(x) . (1.45)

In fact, all NLS type equations allow such Hamiltonian formulation with the
same canonical symplectic form and with Hamiltonian being linear combina-
tions of the integrals of motion Ck.

The next important step in the theory of NLEEs considered as Hamilto-
nian systems has been made by Magri [104], who discovered that the KdV
equation allows a second Hamiltonian formulation. Soon after that it was re-
alized that in fact each soliton equation possesses a hierarchy of Hamiltonian
structures, namely, there exist an infinite sequence of choices for the Hamil-
tonian H(m) and symplectic forms Ω(m) and Poisson brackets {·, ·}(m) such
that the corresponding equations of motion

i
dq±

dt
= {H(m), q

±}(m) , (1.46)

Ω(m)(XH(m) , ·) = δH(m)(·), (1.47)

provide the same soliton equation for all values of m = 1, 2, . . . . It was also
shown that these hierarchies, i.e. both H(m) and Ω(m), are generated again by
the recursion operator Λ. In particular, one has the so-called Lenard relation
stating that the gradients of the integrals of motion are related by Λ [105, 106]:

δCm+1

δqT (x)
= Λ

δCm

δqT (x)
. (1.48)

In a number of important cases, the study of the spectral properties of the
operator L leads to the explicit construction of the action–angle variables. In
other words, there is an explicit procedure that allows to prove that generi-
cally the soliton equations describe infinite–dimensional completely integrable
Hamiltonian systems. Naturally, each such system possesses an infinite num-
ber of integrals of motion.
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1.2.7 Exact Integrability and “Action-Angle” Variables

We have already mentioned that the NLEE (1.23) are equivalent to the linear
equations (1.20) for the scattering matrix. If one introduces the variables on
the continuous spectrum,

η(λ) = − 1
π

ln(a+a−(λ)), κ(λ) =
1
2

ln
(

b+(λ)
b−(λ)

)

, (1.49)

then one can prove that

dη(λ)
dt

= 0, i
dκ(λ)
dt

− 2f(λ) = 0 , (1.50)

that is, they satisfy equations generalizing the ones for the action-angle vari-
ables for the finite-dimensional case.

In Chap. 5, we introduce a special set of “squared solutions” – the so-called
symplectic basis, which relate the potential q(x, t) directly to the correspond-
ing “action-angle” variables. Next, in Chap. 7, we prove the equivalence of the
NLEE (1.23) and the set of the (1.49) augmented with a set of similar equa-
tions for the discrete spectrum. These results generalize the Liouville theorem
for complete integrability [107, 108] to the infinite-dimensional Hamiltonian
systems.

1.2.8 The Hierarchy of Bäcklund and Darboux Transformations

The Bäcklund transformations [12], along with the closely related Darboux
transformations [13], were discovered in the 19th century in studying surfaces
with constant negative curvature. When in the 70s it was realized that these
surfaces are described by NLEE, integrable by the ISM, the interest toward
these transformations was revived. Here we refer to only some of the numerous
monographs and reviews from that time[17, 15, 42, 97, 98, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137].

The Bäcklund transformation allows starting from a given solution of the
NLEE u(x, t) to construct a new solution ũ(x, t), which depends on additional
parameters. For example, if we choose u(x, t) to be the trivial solution u = 0
and apply to it the Bäcklund transformation, we shall get the one-soliton
solution of the corresponding NLEE. The additional parameters on which it
depends characterize the location x1 of the soliton mass center and its velocity
v1. If we again apply the Bäcklund transformation to the one-soliton solution,
we obtain the two-soliton solution etc.

Since the equations we are dealing with are nonlinear, it is clear that they
do not allow a superposition principle, namely the sum of two solutions is not
a solution of the NLEE. The Bäcklund transformation, however, allows us to
construct solutions that satisfy a generalized superposition principle, which is
expressed by the following commutative diagram:
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u1(x, t)
x2,v2−→ u12(x, t) = u21(x, t)

x1

�

⏐

⏐v1 x1

�

⏐

⏐v1

u(x, t)
x2,v2−→ u2(x, t)

(1.51)

where each arrow means a Bäcklund transformation (BT) with fixed values
of the additional parameters. The final result of two subsequent applications
of Bäcklund transformations does not depend on the order in which they are
applied.

Equation (1.51) provides the scheme of the BT for those soliton equations,
whose soliton solutions are parametrized only by their velocities vj and the
centers of the masses xj ; such are the KdV and mKdV equations, the s-G
equation. The BT can be understood also as a mapping of the Lax operator
L with potential u(x, t) to a Lax operator Lj of the same form but with
different potential equal to uj(x, t). Comparing the spectra of the operators L
and Lj , one finds that Lj has an additional pair of discrete eigenvalues ±iζj
determined by the velocities vj .

The same scheme applies also to more complicated cases. The solitons of
the NLS equation are parametrized by four parameters μk, νk, ξk, δk, but
their BT again can be represented by the diagram (1.51), adding of course
some additional parameters. Again, one concludes that the BT maps the Lax
operator L into Lj , having an additional pair of discrete eigenvalues ζ±j =
μj ± iνj .

Repeating the BT two or more times allows one to get multisolution solu-
tions. Then the commutativity of the diagram (1.51) means that the spectrum
of the Lax operator L12 with potential u12(x, t) is independent of the order
in which we have added the two additional pairs of discrete eigenvalues.

The BT also forms hierarchies which can be described in a way analo-
gous to the hierarchy of soliton equations. Using the generalized Wronskian
relations [111, 112], one can derive the equivalence between the class of BT:

ig(Λ+)Q−(x, t) + f(Λ+)Q+(x, t) = 0 , (1.52)
Q+(x, t) = q(2)(x, t) + q(1)(x, t), Q−(x, t) = σ3(q(2)(x, t)− q(1)(x, t)),

and the following linear relations between the reflection coefficients of the two
Lax operators:

ig(λ)(ρ±2 (λ)− ρ±1 (λ))∓ f(λ)(ρ±2 (λ) + ρ±1 (λ)) = 0 , (1.53)

and similar set of relations for the discrete spectra of L1 and L2. Here Λ is a
generalization of the recursion operators Λ±:

Λ±X =
i

4

[

σ3,
dX

dx

]

+
i

8
Q−(x, t)

∫ x

±∞
dy tr (Q−(y, t), [σ3,X(y, t)])

+
i

8
Q+(x, t)

∫ x

±∞
dy tr (Q+(y, t), [σ3,X(y, t)]) , (1.54)
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and f(λ) and g(λ) are some polynomials. It is easy to check that for q(1)(x, t) =
q(2)(x, t) one finds Q− = 0, Q+(x, t) = 2q(x, t), and the operators Λ± go into
the recursion operators Λ± (1.24). The spectral properties of the operators Λ±
are directly related to the completeness relations of the “products of solutions”
of the two Lax operators Lj with potentials q(j)(x, t), j = 1, 2, respectively.
These relations can be derived in complete analogy to the “squared solutions”
[97, 98, 138].

1.2.9 Gauge Equivalent Hierarchies

The Lax representation (1.7) is invariant under the action of the so–called
group of gauge transformations:

L→ ˜L = g−1Lg(x, t), M → ˜M = g−1Mg(x, t) , (1.55)

where g = g(x, t) is a smooth function of x and t taking values in the group
SL(2).

This freedom may be used in two ways. First, it can be used to remove
some additional degrees of freedom by fixing the gauge of the Lax operator
L. As a bonus, after fixing the gauge, one gets a nondegenerate Hamiltonian
formulation for the remaining degrees of freedom.

Generically, there exist more than one natural way of fixing the gauge of
a given Lax pair. This can be used in order to find gauge equivalence between
different soliton equations. The famous example which we mention here is the
one between the NLS equation (1.3) and the HF equation (1.10). According
to [49]:

S(x, t) = g−1σ3g(x, t) . (1.56)

and the function g(x, t) is fixed uniquely by the condition:

i
dg

dx
+ q(x, t)g(x, t) = 0, lim

x→∞
g(x, t) = 11 , (1.57)

i.e. g(x, t) = ψ(x, t, λ = 0) is the Jost solution of the Zakharov–Shabat system
at λ = 0. The relevant Lax operator for the HF equation is given by:

˜L ˜ψ ≡ i
d ˜ψ

dx
− λS(x, t) ˜ψ(x, t, λ) = 0, (1.58)

The gauge equivalence can be used to analyze the HF hierarchy much in
the same way as that of NLS hierarchy. It is also possible to reformulate all
fundamental properties of the soliton equations from one gauge to another;
see Chap. 8.

The HF equation can be put into canonical Hamiltonian form with

˜H(0) =
∫ ∞

−∞
dx trS2(x, t) ,
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{Sa(x, t), Sb(x, t)} = iεabcSc(x)δ(x− y) , (1.59)

˜Ω(0) =
∫ ∞

−∞
dx tr

(

δS ∧
′
[S(x, t), δS]

)

,

and, of course, we have a Hamiltonian hierarchy generated by the recursion
operator ˜Λ = g−1Λg(x, t) gauge equivalent to Λ [139, 140, 141].

We shall mention also the nontrivial relation between the Hamiltonian
hierarchies of NLS and HF [142]:

Ω(0) = ˜Ω(2) + δC2 ∧ δC1 , (1.60)

where C1 and C2 are the first two integrals of motion; see (1.36). From this
relation it follows that the two hierarchies are dynamically equivalent.

We intend to present the theory of the generating (recursion) operators in
a form that can easily be reformulated from one gauge into another. This has
been achieved in the works [139, 140, 143] but has never been presented in a
full form as we shall do in the present monograph.

1.3 The ISM as the Generalized Fourier Transform

Let us outline the main ideas developed in the first part of this book. They
are based on the famous AKNS method [94], which naturally introduces the
main objects in this book – the recursion operators and the expansions over
their eigenfunctions: the squared solutions. We introduce also some related
topics, which shall be treated in the first part of the book.

In Chap. 2, we outline the AKNS approach [94]. More precisely, we write
down the Lax representation (1.7) with L(λ) being the Zakharov–Shabat sys-
tem (1.8) and take M(λ) to be polynomial of order N in λ:

Mχ ≡
(

i
d

dt
+

N
∑

k=0

λN−kVk(x, t)

)

χ(x, t, λ) . (1.61)

Of course, since the Lax representation must hold identically with respect to
λ, we obtain a set of N + 1 equations relating Vk(x, t) and q(x, t). These are
treated as recursion relations that have to be solved. In doing so, we need to
split each matrix Vk(x, t) = V d

k (x, t) + V f
k (x, t) into diagonal V d

k (x, t) and off-
diagonal V f

k (x, t) parts and treat them separately. Thus, we naturally obtain
that V f

k+1(x, t) is obtained from V f
k (x, t) by acting with the recursion operators

Λ±; see (2.38).
As a result, we find an explicit description of the hierarchy of M -operators

in terms of the recursion operators Λ±. We stress that the splitting of a 2× 2
matrix into diagonal and off-diagonal parts is a grading of the algebra sl(2). So
we slightly modify the AKNS approach by keeping V f

k (x, t) as 2× 2 matrices
with zeroes on the diagonal, rather taking the zeroes out and “squashing”
V f

k (x, t) into two-component columns:
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V f
k (x, t) =

(

0 V +,f
k

V −,f
k 0

)

→
(

V +,f
k

V −,f
k

)

. (1.62)

Doing such an operation at the time looked like a simplification; in fact,
using it nothing is lost, and one obtains the correct expressions for the com-
ponents V ±,f

k . However, keeping the matrix structure along with the grading
property allows one to transfer AKNS results from one gauge into another;
we demonstrate this later in Chap. 8.

Next, in Sect. 2.3, we derive the time evolution of the scattering matrix
T (t, λ) in terms of the dispersion law f(λ) of the NLEE. Thus, it becomes
clear that given the dispersion law f(λ) one can determine not only the time
dependence of T (t, λ) but also the corresponding M operator in the Lax repre-
sentation and the relevant NLEE; see (1.23). Here, we also give several specific
choices for f(λ) and the corresponding important examples of NLEE, such as
NLS, mKdV, and sine-Gordon.

In the last two Sects. 2.4 and 2.5, we outline two of the natural gener-
alization of the AKNS approach. The first one is treating the block-matrix
Zakharov–Shabat system, thus allowing to construct the Lax representations
for the vector and matrix NLS equations (1.13). The second one deals with the
generalized Zakharov–Shabat system relevant for solving the N -wave equa-
tions (1.14). Both cases are dealing with more complicated algebraic struc-
tures, but the idea of using particular gradings of these algebras for solving the
corresponding more complex recursion relations goes through. Thus, we are
able to construct the corresponding generalizations of the recursion operators
and to express with them the hierarchies of M -operators and multicomponent
NLEE. These results are also given in explicit gauge covariant form, so they
can be used to treat also the gauge equivalent NLEE.

Chapter 3 is devoted to the direct scattering problem for the Zakharov–
Shabat system. In order to avoid unnecessary mathematical difficulties, we do
our considerations under two simplifying conditions C1 and C2. The first one
requires that the potential be a Schwartz type function. Condition C2 is an
unexplicit restriction on q(x) requesting that the discrete spectrum of L(λ)
is finite and simple. In Sect. 3.1, we introduce the Jost solutions and derive
the analyticity properties of their columns. Next, we introduce the important
notion of fundamental analytic solutions (FAS) χ±(x, λ). The next Sect. 3.2
uses the FAS to construct the kernel R±(x, y, λ) of the resolvent of L(λ):

R(x, y, λ) = R±(x, y, λ), for λ ∈ C± ,

R±(x, y, λ) =
1
i
χ±(x, λ)Θ±(x− y)χ̂±(y, λ) , (1.63)

Θ+(x) = diag (−θ(−x), θ(x)), Θ−(x) = diag (θ(x),−θ(−x)) .

Equation (1.63) provides a kernel of bounded integral operator, analytic in
λ for Imλ 	= 0, which has poles at the zeroes of a±(λ) = detχ±(x, λ). This
determines the spectrum of L: Its continuous part fills in the real axis and the
discrete one consists of the sets of zeroes of a±(λ) = detχ±(x, λ).
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In Sect. 3.3, we derive the asymptotic of FAS for λ→∞, which is used in
Sect. 3.4 to derive the dispersion relations for ln a±(λ). This relation makes it
obvious that the analyticity properties of a±(λ) allow one to determine them
using just one of the two minimal sets of scattering data Ti, i = 1, 2 introduced
in Sect. 3.5. On the continuous spectrum, Ti are determined by the reflection
coefficients

T1 ≡ {ρ+(λ), ρ−(λ)}, T2 ≡ {τ+(λ), τ−(λ)} , (1.64)

where ρ±(λ) = b±(λ)/a±(λ), and τ±(λ) = b∓(λ)a±(λ).
In Sect. 3.6, using the analyticity properties of the Jost solution, we derive

their spectral representations. Section 3.7, the last in this chapter, is devoted
to the completeness property of the Jost solutions. It is derived applying the
contour integration method to the kernel of the resolvent R±(x, y, λ) and is
directly related to the spectral decomposition of L(λ).

In Chap. 4 we outline several approaches to the solution of the inverse
scattering problem (ISP) for the ZS system. In the first two sections, we
explain the classical approach to the problem based on the Gelfand–Levitan-
Marchenko (GLM) equation. There, we explain two different ways of deriving
this equation.

In Sect. 4.3, we show that the ISP for the ZS system is equivalent to a
(possibly singular) Riemann–Hilbert problem. Sections 4.4 and 4.5 are devoted
to two different versions of the Zakharov–Shabat dressing method, which is
the most effective method for deriving the reflectionless potentials and the
soliton solutions of the corresponding NLEE.

The main idea in Chap. 5 is to show that the mapping of the potential
q(x) of L(λ) onto the minimal sets of scattering data Ti, i = 1, 2 is one-to-one.
Similarly, we analyze the mappings from the variations δq(x) onto δTi:

ρ±(λ) =
i

(a±)2
[[

q,Φ±(x, λ)
]]

, δρ±(λ) =
∓i

(a±)2
[[

σ3δq,Φ
±(x, λ)

]]

,

(1.65)

τ±(λ) =
i

(a±)2
[[

q,Ψ±(x, λ)
]]

, δτ±(λ) =
±i

(a±)2
[[

σ3δq,Ψ
±(x, λ)

]]

.

(1.66)
Here by

[[

· , ·
]]

we denote the following skew-scalar product on the phase
space M:

[[

X(x), Y (x)
]]

= −
[[

Y (x),X(x)
]]

=
1
2

∫ ∞

−∞
dy tr (X(y)[σ3, Y (y)]) , (1.67)

The “squared solutions” Ψ±(x, λ) and Φ±(x, λ) are defined by the FAS as
follows:

Ψ±(x, λ) = (χ±σ∓χ̂
±)f(x, λ), Φ±(x, λ) = (χ±σ∓χ̂

±)f(x, λ) , (1.68)

where σ± = σ1 ± iσ2.
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The basic tools for deriving (1.65) and (1.66) are the Wronskian rela-
tions introduced in Sect. 5.1. Thus, we see that the elements of Ti and δTi

can be viewed as Fourier-like integrals, whose integrands are products of
q(x) (or δq(x)) with the squared solutions. In Sect. 5.2, we introduce three
sets of squared solutions: {Ψ±(x, λ)}, {Φ±(x, λ)}, and the symplectic basis
{P(x, λ),Q(x, λ)}. Equation (1.68) shows that the squared solutions are con-
structed explicitly through the FAS χ±(x, λ) which ensures their analyticity
properties.

Next, we introduce the Green function G(x, y, λ) = G±(x, y, λ) for λ ∈ C±:

G±(x, y, λ) = G±
1 (x, y, λ)θ(x− y)−G±

2 (x, y, λ)θ(y − x) , (1.69a)

G±
1 (x, y, λ) =

1
(a±(λ))2

Ψ±(x, λ)⊗Φ±(y, λ) , (1.69b)

G±
2 (x, y, λ) =

1
(a±(λ))2

(

Φ±(x, λ)⊗ Ψ±(y, λ) +
1
2
Θ±(x, λ)⊗Θ±(y, λ)

)

,

(1.69c)
where Θ±(x, λ) = (χ±σ3χ̂

±)f(x, λ). This makes it possible, applying the con-
tour integration method to G(x, y, λ), to prove the completeness of the sets
of “squared solutions” in M.

Thus, we can expand any function in M, including q(x) and σ3δq(x) over
each of the sets {Ψ±(x, λ)}, {Φ±(x, λ)} and {P(x, λ),Q(x, λ)}. Doing this in
Sect. 5.3, we find that the elements of Ti and δTi can be viewed as expansion
coefficients of these expansions. In addition, the completeness relation allows
one to prove Proposition 5.3, stating that there is one-to-one correspondence
between the function X(x) and its expansion coefficients. As a consequence,
it follows that there is one-to-one correspondence between q(x) (resp. δq(x))
and each of the minimal sets of scattering data Ti (resp. δTi).

In fact, the completeness relations can be viewed as spectral decom-
positions of the operators Λ±, Λ, for which {Ψ±(x, λ)}, {Φ±(x, λ)} and
{P(x, λ),Q(x, λ)} are sets of eigenfunctions. In Sects. 5.4 and 5.5, we show
that Λ± in fact coincide with the recursion operators Λ derived by the AKNS
approach, while the elements of the symplectic basis are eigenfunctions of
Λ = 1/2(Λ+ + Λ−).

Note that the Green functions G±(x, y, λ) (1.69) have as denominators
(a±(λ))2. Therefore, if we assume that the discrete eigenvalues λ±j of L are
simple thenG±(x, y, λ) will have poles of second order. As a result, the discrete
spectrum of Λ± will contain the same eigenvalues λ±j but will be doubly
degenerated.

In Sect. 5.5, we also derive the biorthogonality relations between the
squared solutions. As a result, we prove that the elements of the set {Ψ±(x, λ)}
are biorthogonal to those of {Φ±(x, λ)} with respect to the skew-scalar prod-
uct (1.67). As to the symplectic basis, it is an orthogonal one with respect to
[[

·, ·
]]

. These relations allow us also to obtain an integral representation for
the Green functions of the recursion operators.
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In the last section of this Chapter, 5.6, we derive the generalized Wronskian
relations that interrelate the sets of scattering data of two ZS systems Lj with
two different potentials q(j)(x), j = 1, 2 as follows [144, 145]:

ρ±2 (λ) + ρ±1 (λ) =
i

a±2 a
±
1

[[

Q+(x),Φ′,±(x, λ)
]]

, (1.70)

ρ±2 (λ)− ρ±1 (λ) =
∓i

a±2 a
±
1

[[

Q−(x),Φ′,±(x, λ)
]]

, (1.71)

where Q+(x) = q(1)(x) + q(2)(x) and Q−(x) = σ3(q(1)(x) − q(2)(x)). The
“products of solutions” Ψ ′,±(x, λ) and Φ′,±(x, λ) of L2 and L1 are defined by:

Ψ ′,±(x, λ) = (χ(1),±σ∓χ̂
(2),±)f(x, λ), ′Φ±(x, λ) = (χ(2),±σ±χ̂

(1),±)f(x, λ) .
(1.72)

Here, χ(j),±(x, λ) are the FAS of Lj , j = 1, 2. These generalized Wronskian
relations are fundamental in analyzing the hierarchy of BT. Crucial in this
analysis is to prove the completeness of the “products of solutions” rigorously
done in [97, 98] and to derive the recursion operatorss Λ± (1.54) for which
the “products of solutions” are eigenfunctions.

Thus, we find two sets {Ψ ′,±(x, λ)} and {′Φ±(x, λ)} of “products of so-
lutions” of the two ZS system. Using a natural generalization of the Green
function G(x, y, λ) (1.69), we prove that they are also complete sets of func-
tions in M. The expansions of Q+(x) and Q−(x) are derived. At the end, we
derive the explicit form of the operators Λ± for which the “products of so-
lutions” are eigenfunctions are constructed. They coincide with the operators
(1.54) generating the class of BT.

In Chap. 6, we shall show how the expansions over the “squared solutions,”
derived in Chap. 5, can be used for the analysis of the solvable NLEEs related
to the ZS system. Thus, we shall demonstrate the important role the recursion
operators Λ± and Λ± play in deriving all fundamental properties of the soliton
equations. We specially underlie the importance of the expansions over the
symplectic basis, which allow one an easy proof of the complete integrability
of the NLEEs and explicit derivation of their action-angle variables.

In Sect. 6.1, we prove a theorem that shows the equivalence between the
NLEE (1.23) and the corresponding set of linear evolution equations for the
elements of Ti, i = 1, 2. Sect. 6.2 contains several important examples of
NLEE, which are two-component generalizations of NLS and mKdV, as well
as the mixed GNLS-GmKdV equation. Special attention is focused on the
NLEE with singular dispersion laws, such as the generalized Maxwell-Bloch.

Most of the physically important NLEE such as NLS, mKdV, sine-Gordon
etc., require special involutions to be imposed on the ZS system. One of them is

q(x, t) = ε0q
†(x, t), ε0 = ±1 , (1.73)

and the other one is

q−(x, t) = η0q
+(x, t), η0 = ±1 . (1.74)
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These involutions result in corresponding symmetries on the spectral proper-
ties and on sets Ti of the ZS system. For example, the involution (1.73) with
ε0 = 1 results in symmetry of the discrete eigenvalues, namely, they must
come in mutually complex conjugated pairs λ+

j = (λ−j )∗. For ε0 = −1, the
corresponding ZS system becomes equivalent to a self-adjoint eigenvalue prob-
lem, whose continuous spectrum fills in the real axis. As a result, no discrete
eigenvalues are possible, and the relevant NLEE can have no soliton solutions.

The other involution (1.74) with η0 = 1 results in different symmetry
of the discrete eigenvalues, namely, they must come in mutually opposite
pairs λ+

j = −λ−j . It is also possible to impose both involutions at the same
time. Then, of course, both symmetries should be applied, which means that
we may have two types of eigenvalues: (i) purely imaginary ones, coming
in pairs and (ii) quadruplets ±λ+

j and ±(λ+
j )∗. As a result, all equations

enjoying both symmetries such as sine-Gordon, mKdV etc. have two types of
solitons: topological and breathers. The consequences of all these involutions
are derived in Sect. 6.3.

Section 6.4 is devoted to the derivation of the general properties of the
NLEE using the spectral theory of the recursion operators. Here, we display
the hierarchy of the M -operators and the hierarchy of integrals of motion Ck.
We derive the recurrent relations for the densities of Ck and show how they
can be expressed in terms of the recursion operators Λ±. The section ends by
deriving the Lenard relation (1.48).

Section 6.5, the text in Chap. 6, uses the expansions over the products
of solutions of two ZS systems to describe the hierarchy of BT of the NLEE.
We prove a theorem, which establishes the equivalence between the BT and
a certain interrelation between the spectral properties of the two ZS systems.
The section ends with two explicit examples of BT for the NLS and the sine-
Gordon equations.

In Chap. 7, we explain how the NLEEs analyzed above can be viewed as in-
finite dimensional Hamiltonian systems. We start with several basic examples.
Next, we go to the generic NLEE, whose phase space MC is equivalent to the
space of pairs of smooth complex-valued functions {q+(x), q−(x)}. This phase
space and the Hamiltonian dynamics on it can be viewed as a complexifica-
tion of the standard Hamiltonian dynamics and the well-known Hamiltonian
systems come up as different real forms of them. In Sect. 7.3, we show how
the generic NLEE, related to the ZS system, can be cast in Hamiltonian form.
We show that the expansion coefficients of σ3δq(x) over the symplectic basis
can be viewed as action-angle variables of the NLEE. It is shown that the or-
thogonality properties of the symplectic basis with respect to the skew-scalar
product is equivalent to the fact that the action-angle variables satisfy canon-
ical Poisson brackets. A simple consequence of this fact is the involution of
the integrals of motion Ck.

In Sect. 7.4, we show that the complete integrability of the generic NLEE
allows one to introduce, for each of these equations, a hierarchy of Hamiltonian
structures. This means that there exist a sequence of Hamiltonians HC

(m) and
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symplectic formsΩC

(m),m = 1, 2, . . . , such that the corresponding Hamiltonian
equations of motion generate the same NLEE. This hierarchy is generated by
the recursion operator Λ in a natural way. Using the fact that its spectral
decompositions use the symplectic basis, we prove that each of the symplectic
forms ΩC

(m) is closed, and any two of symplectic forms ΩC

(m) and ΩC

(p) are
compatible. Likewise, we prove that the corresponding hierarchy of Poisson
brackets { ·, ·}C

(m) satisfy Jacobi identity.
In Sect. 7.5, we analyze the effects of involutions (1.73) and (1.74) on

the hierarchies of Hamiltonian structures and on the action-angle variables.
Special attention is paid to the fact that involution (1.74) results in the degen-
eracy of all symplectic forms with even index Ω2p; also “half” of the integrals
of motion vanish, C2p = 0.

Chapter 8 explains how all the results obtained up to now for the NLEEs
(6.7) can be reformulated in a natural way for the gauge-equivalent NLEEs.
In fact, this was the reason for what we called explicitly gauge-covariant for-
mulation of the results in the Chaps. 5, 6, and 7. Here, we mention the most
famous examples of gauge-equivalent NLEEs. The first one is the equivalence
between the KdV and the mKdV equations; the corresponding relation is
provided by the so-called Miura transformation. The second such example,
relates the NLS equation with the Heisenberg ferromagnet (HF) equation in
the semiclassical approximation. In terms of the 2× 2 matrix-valued function
S(x, t) this equation reads:

i
∂S

∂t
+
[

S(x, t),
∂2S

∂x2

]

= 0 . (1.75)

where S(x, t) satisfies: trS(x, t) = 0, S2(x, t) = 11, and limx→±∞ S(x, t) = σ3.
It is also solvable by the ISM applied to the gauge-transformed Lax pair.

In Sect. 8.1, we introduce the group of gauge transformations of the Lax
representations. We also explain how one can take out the auxiliary gauge
degrees of freedom by properly fixing up the gauge. Thus the ZS system
provides us a good example of such fixing. Another important example is
known as the pole gauge; the corresponding Lax operator is

L̃ ˜ψ(x, t, λ) ≡ i
d ˜ψ

dx
− λS(x, t) ˜ψ(x, t, λ) = 0 . (1.76)

In Sect. 8.2, we outline how the AKNS approach should be modified in order to
handle the gauge-equivalent systems. To this end, one should apply a different
grading of the corresponding algebra, which is compatible with the gauge
transformation. As a result, we derive the gauge-equivalent recursion operator
in terms of the new potential S(x):

˜Λ± ˜X =
i

4

([

S(x, t),
d ˜X

dx
+

1
2
Sx

∫ x

±∞
dytr

(

Sy
˜X(y, t)

)

])

. (1.77)
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In fact, due to our explicitly gauge-covariant approach, the operators Λ± and
˜Λ± are also gauge equivalent, i.e. ˜Λ± = g−1(x)Λ±g(x).

In Sect. 8.3, we analyze the direct and the inverse scattering problems for
˜L. They are closely related to the direct and inverse scattering problems for
L, analyzed in Chaps. 3 and 4. We construct the FAS χ̃±(x, λ) of ˜L and use
them to construct the kernel of the resolvent for ˜L. As a result, we derive the
completeness relation for the Jost solutions, which can be viewed also as the
spectral decomposition of ˜L. The Zakharov–Shabat dressing method can also
be adjusted in order to treat gauge-equivalent equations. This is explained in
Sect. 8.4, where we also outline the derivation of the soliton solutions.

Section 8.5 contains reformulation of the Wronskian relations for the
gauge-equivalent system ˜L. Thus we are able to analyze the mapping be-
tween S(x) (resp. δS(x)) and the minimal sets of scattering data ˜Ti, i = 1, 2
of ˜L. Denoting their elements on the continuous spectrum in analogy with
(1.64) by ρ̃±(λ) and τ̃±(λ) we establish that

ρ̃±(λ) =
iλ

(ã± (λ))2
[[

πSσ3, ˜Φ
±

(x, λ)
]]

˜

, τ̃±(λ) =
iλ

(ã±(λ))2
[[

πSσ3, ˜Ψ
±

(x, λ)
]]

˜

,

(1.78)

δρ̃±(λ) = ∓ iλ

2(ã±(λ))2
[[

[S, δS(x)], ˜Φ
±

(x, λ)
]]

˜

,

δτ̃±(λ) = ± iλ

2(ã±(λ))2
[[

[S(x), δS(x)], ˜Ψ
±

(x, λ)
]]

,

(1.79)

where πSσ3 = 1/4[S(x), [S(x), σ3]]. Here use a gauge-modified skew-scalar
product

[[

· , ·
]]

˜

:

[[

˜X, ˜Y
]]

˜

=
∫ ∞

−∞
〈 ˜X(x), [S(x), ˜Y (x)]〉 . (1.80)

The “squared solutions” entering in the right-hand sides of (1.78) and (1.79)
are related to the “squared solutions” of L by the gauge transformation:

˜Ψ
±

(x, λ) = g−1(x)Ψ±(x, λ)g(x), ˜Φ
±

(x, λ) = (a±0 )2g−1(x)Φ±(x, λ)g(x) ,
(1.81)

where a±0 = a±(0). Note the additional factor λ in the right-hand side of
(1.78) compared to (1.65) and (1.66).

In view of (1.81), it is only natural to expect that the sets of gauge-
equivalent “squared solutions” will also satisfy the completeness relation in
˜M, whose elements ˜X have the form ˜X(x) = g−1(x)X(x)g(x), X(x) ∈ M.
Therefore, one is able to reformulate all results relevant for the NLS hierarchy
into the corresponding ones for the HF hierarchy. This is done consistently in
Sects. 8.7, 8.8, 8.9 and 8.10.

In particular, we prove that a generic NLEE from the HF hierarchy of the
form
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iS(x)
∂S

∂t
− i

4
˜f( ˜Λ+)

[

S(x, t),
∂S

∂x

]

= 0 , (1.82)

where λ ˜f(˜λ) = f(λ). The result can be obtained applying the gauge transfor-
mation to (1.23) and using the fact that (see Lemma 8.5)
[

S(x, t),
˜∂q

∂t

]

= ˜Λ+

[

S(x, t),
∂S

∂t

]

, q̃(x, t) = −1
4

[

S(x, t),
∂S

∂x

]

. (1.83)

Next, using the expansions over the sets of “squared solutions” ˜Ψ
±

(x, λ)
and ˜Φ

±
(x, λ), we prove that the ISM applied to ˜L can also be viewed as a

generalized Fourier transform (GFT). It is natural to treat these expansions as
spectral decompositions over the eigenfunctions of the recursion operators ˜Λ±.
This allows us also to derive all fundamental properties of the HF hierarchy
in a uniform way in terms of ˜Λ±.

The HF type equations also allow a hierarchy of Hamiltonian structures
˜ΩC

(m),
˜H(m), m = 1, 2, . . . , where the Hamiltonians ˜H(m) are also linear combi-

nations of the integrals of motion Ck. In Sect. 8.9, we analyze the interrelations
between the two Hamiltonian hierarchies. Here, it is very effective to use the
symplectic basis {˜P(x, λ), ˜Q(x, λ)}, which maps directly [S(x, t), δS] into the
action-angle variables of the corresponding HF type NLEE. The important
and nontrivial result consists in the relation:

˜ΩC

(m) = ΩC

(m−2) − δ ln a+
0 ∧ δCm−1 . (1.84)

Note that the additional term in the right-hand side of (1.84) is a wedge
product of the variations of two of the integrals of motion: ln a+

0 and Cm−2,
which are common for all the NLEE. Therefore, one can conclude that both
Hamiltonian hierarchies are dynamically equivalent.

Chapter 9 deals with the modern approach to the Hamiltonian systems
based on the method of the classical r-matrix. In Sect. 9.1, we introduce the
notion of the classical r-matrix and show how it can be applied to the hierarchy
of NLS type equations. In Sect. 9.2, we apply similar considerations for the
NLEE from the HF hierarchy. In both cases, the classical r-matrix provides
an effective way to establish the involutivity of the integrals of motion Ck.

In Sect. 9.3, following [146, 147, 148], we derive the classical Yang-Baxter
equation. It ensures that the Poisson brackets introduced via r satisfy Jacobi
identity. We also show that applying appropriate averaging procedure to a
given solution of the classical Yang-Baxter equation, one is able to obtain
another solution of the same equation. In this way, we derive [49] the so-called
trigonometric and the elliptic classical r-matrices.

Section 9.4 explains a “trick” of how it is possible to relate to each r-matrix
a compatible Lax operator. Applied to the simplest classical r-matrix, this
“trick” produces the Lax operator ˜L relevant for the HF hierarchy. Applied
to the elliptic classical r-matrices, we obtain the Lax operator relevant for the
Landau-Lifshitz eq.
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In Sect. 9.5, we show that proper use of the classical r-matrix approach
allows one to prove the involutivity of the integrals of motion also for the
generalized ZS systems, related to any simple Lie algebra. Section 9.6, the
last, is a brief review on the possibility of extending the classical r-matrix
approach for other types of Lax operators.

1.4 Related Developments, Bibliography and Comments

The ISM and its development have generated a number of fruitful ideas both
in physics and mathematics.

It is impossible, in a single monograph, to embrace all the variety of meth-
ods and beautiful properties that are inherent in the soliton theory. Therefore,
we try to list the important references, where these methods and properties
can be found.

This monograph can be used also as an introduction to the inverse scat-
tering method. Though there are a number of monographs on the topic which
we refer to [37, 40, 49, 87, 149], the way we cover the material and the com-
bination with the geometric aspects seem to be absent.

1. Important results were obtained also in analyzing integrable NLEE in 2+1
dimensions. Most effective here are the methods based on the nonlocal
Riemann-Halbert problem and on the ∂ and the nonlocal ∂ problems
[39, 87, 150, 151, 152, 153, 154, 155, 156].

2. The soliton equations can be considered important in differential geometry
[13, 110, 117, 121, 123, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194]. More details of
these aspects are contained in the second part of the monograph.

3. Here, we list just several of the reviews and monographs, which the inter-
ested reader may find useful [87, 149, 155, 195, 196, 197, 198, 199, 200,
201].
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12. A. V. Bäcklund. Zür Theorie der partiellen Differential gleichungen erster Ord-
nung. Math. Ann., 27:285–328, 1880.
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in the formalism of the inverse scattering problem. Theoreticheskaya i Mathe-
maticheskaya Fizika, 39(1):69–74, 1979.

135. J. Harnad, Y. Saint-Aubin, and S. Shnider. Bäcklund transformations for non-
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2

The Lax Representation
and the AKNS Approach

In the present Chapter, we outline the famous AKNS approach [1] to the
integrable equations. This approach soon became popular, because it provided
a simple and effective tool for deriving NLEE allowing Lax representation.

In the first three sections of this Chapter, we show how the AKNS method
allows one to derive the family of integrable NLEE related to the Zakharov-
Shabat system L(λ) and their Lax representations [L(λ),M(λ)] = 0. As-
suming M(λ) to be polynomial in λ, we derive the recursion procedure for
calculating the coefficients of M(λ) in terms of q(x) and its derivatives. These
relations are solved in compact form using the recursion (generating) operator
Λ, which plays a fundamental role in the theory of NLEE. Our derivation is
slightly different from that of AKNS in the sense that it is gauge covariant.
The advantage of such formulation will become clear in Chap. 8, where we
treat the gauge-equivalent NLEE. In the last two sections of this Chapter, we
outline two of the natural generalizations of the AKNS approach.

2.1 The Lax Representation in the AKNS Approach

By definition, one can apply the ISM to a given NLEE only if it allows the
so-called Lax representation:

iLt = [L,A] . (2.1)

In his original paper [2] Lax has chosen L to be the Sturm-Liouville operator:

−d
2ψ

dx2
+ (v(x, t)− k2)ψ(x, t, k) = 0 . (2.2)

Taking A as the third-order ordinary differential operator:

Aψ ≡ 4
d3ψ

dx3
− 6v(x, t)

dψ

dx
− 3

d(v(x, t))
dx

ψ(x, t, k) (2.3)
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38 2 The Lax Representation and the AKNS Approach

Lax proved that (2.1) is satisfied if and only if v(x, t) satisfies the KdV
equation:

vt + vxxx + 6vxv(x, t) = 0 . (2.4)

Zakharov and Shabat were the first to realize that it is useful to consider
Lax representations (2.1) with L-operators more general than (2.2). In [3],
they considered as Lax operator the system:

Lχ ≡
(

i
d

dx
+ U(x, t, λ)

)

χ(x, t, λ) = 0 , (2.5a)

U(x, t, λ) = q(x, t)− λσ3 , (2.5b)

q(x, t) =
(

0 q+

q− 0

)

(2.5c)

with q+ = (q−)∗ = u(x, t) which is the ZS system. Then they constructed
explicitly a 2 × 2 matrix operator A such that the Lax representation (2.1)
became equivalent to the NLS equation for u(x, t).

Below, we shall use the AKNS approach [1, 4], which is technically more
convenient. In it, we rewrite (2.1) as the compatibility condition:

[L(λ),M(λ)] = 0 . (2.6)

of two linear operators, whose potentials depend nontrivially on the spectral
parameter λ. The λ-dependence is chosen explicitly, and as a rule it is taken
to be polynomial or rational in λ. Then the M–operator takes the form:

M ≡ i
d

dt
+ V (x, t, λ) , (2.7)

where V (x, t, λ) has a prescribed dependence on λ (say, a polynomial one).
We also require that the condition (2.6) holds identically with respect to λ. As
we shall explain below, this gives us the possibility to express the coefficients
of V (x, t, λ) in terms of the potential q(x, t) of L.

The compatibility condition (2.6) can be understood also as the zero cur-
vature condition for some connection defined on a conveniently chosen fiber
bundle.

Let χ(x, t, λ) be a fundamental solution of L, i.e. this is a matrix-valued
function whose determinant does not vanish:

L(λ)χ(x, t, λ) = 0, detχ(x, t, λ) 	= 0 . (2.8)

From the compatibility condition (2.6) there follows:

[L(λ),M(λ)]χ(x, t, λ) ≡ L(λ)M(λ)χ(x, t, λ)−M(λ)L(λ)χ(x, t, λ)
= L(λ)M(λ)χ(x, t, λ) = 0 . (2.9)

i.e. if χ(x, t, λ) is a fundamental solution of L(λ), then M(λ)χ(x, t, λ) is also
a fundamental solution of L(λ). From the general theory of ordinary differ-
ential operators, it is known that every two fundamental solutions of a given
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ODE must be linearly related. Therefore, there exist an x-independent matrix
C(λ, t) such that

M(λ)χ(x, t, λ) = χ(x, t, λ)C(λ, t) . (2.10)

In Sect. 2.3 below, we shall analyze in greater detail the convenient choices
for C(λ, t); as a rule we shall assume it is t-independent. Here, we just remark
that the compatibility condition (2.6) holds true for any C(λ, t).

Thus, as M operator we choose in agreement with (2.7) and (2.10):

Mχ ≡
(

i
d

dt
+ V (x, t, λ)

)

χ(x, t, λ) = χ(x, t, λ)C(λ) (2.11)

where V (x, t, λ) is a polynomial of order N in λ

V (x, t, λ) =
N
∑

k=0

λN−kVk(x, t) . (2.12)

Let us outline the AKNS approach. To this end, we insert the expression (2.11)
into (2.6) and equate to zero the coefficients in front of the positive powers of
λ. This gives:

[V0(x, t), σ3] = 0 , (2.13a)

i
dVk

dx
+ [q, Vk(x, t)]− [σ3, Vk+1(x, t)] = 0 , (2.13b)

for k = 0, 1, . . . , N − 1 and the λ–independent term gives:

− i
∂q

∂t
+ i

∂VN

∂x
+ [q(x, t), VN (x, t)] = 0 . (2.13c)

The (2.13) with k = 1 will be treated as the initial condition for the recurrent
relations, which allow one to express subsequently the coefficients Vk(x, t) in
(2.12) through q(x, t) and its x–derivatives. Thus, (2.13c) finally turns into
an NLEE for the off–diagonal matrix q(x, t) or into a system of NLEE for the
coefficient functions q±(x, t).

Let us list some of the specific choices for the M -operator, which lead to
integrable equations.

If we choose:

V (x, t, λ) = −iσ3qx − q+q−σ3 − 2λq(x, t) + 2λ2σ3 , (2.14)

we easily find that

(1) The coefficients in front of the positive powers of λ in the compatibility
condition (2.6) vanish identically;

(2) The term independent of λ in (2.6) leads to:

− iqt + σ3qxx + 2q+q−σ3q(x, t) = 0 . (2.15)

Thus, it becomes obvious that the choice of L (2.5) and M (2.11), (2.14)
in the Lax representation (2.6) is equivalent to the system (2.15), which
generalizes the NLS equation.
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The next example is related to the KdV and mKdV equations. In both
cases V (x, t, λ) is a cubic polynomial of λ:

V0 = −4σ3, V1 = 4q(x, t), V2 = 2q+q−σ3 + 2iσ3qx ,

V3 = −i(q+q−x − q−q+x )σ3 − qxx − 2q+q−q(x, t) , (2.16)

The compatibility condition (2.6) in this case leads to the following system of
NLEE for q±(x, t):

∂q+

∂t
+
∂3q+

∂x3
+ 6q+q−(x, t)

∂q+

∂x
= 0 ,

∂q−

∂t
+
∂3q−

∂x3
+ 6q−q+(x, t)

∂q−

∂x
= 0 , (2.17)

One can obtain two important soliton equations by imposing proper con-
straints (involutions) on q±(x, t). Indeed, choosing q+ = v(x, t), q− = 1, we
see that the system (2.17) reduces to the KdV equation:

∂v

∂t
+
∂3v

∂x3
+ 6

∂v

∂x
v(x, t) = 0 , (2.18)

Similarly, imposing the involution q+ = κq− = p(x, t), where p(x, t) can be
viewed also as a real-valued function, we obtain the modified KdV (mKdV)
equation

∂p

∂t
+
∂3p

∂x3
+ 6

∂p

∂x
p2(x, t) = 0 . (2.19)

The last example is connected with the s-G equation:

wxt + γ sin 2w(x, t) = 0 . (2.20)

In this case V (x, t, λ) has the form:

V (x, t, λ) =
γ

2λ
(cos 2w(x, t)σ3 − sin 2w(x, t)σ1) , (2.21)

where q± are expressed through the real valued-function w(x, t) as follows:

q+(x, t) = −q−(x, t) = −iwx(x, t) . (2.22)

If instead of (2.21) we use:

V (x, t, λ) =
γ

2λ
(cosh 2w(x, t)σ3 + sinh 2w(x, t)σ2) , (2.23)

the compatibility condition (2.6) leads to the so-called sinh–Gordon equation:

∂2w

∂x∂t
+ γ sinh 2w(x, t) = 0 . (2.24)
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2.2 The Recursion Operators and the NLEE

Following the ideas of AKNS, we shall solve the recursion relations (2.13b)
with generic initial conditions, i.e. for arbitrary choice of N and

V0 = c0σ3, c0 = const . (2.25)

The analysis of these relations involves the splitting off of each Vk(x, t) into
diagonal and off-diagonal parts. This corresponds to splitting of the algebra
g = sl(2) into a direct sum g = g(0)⊕g(1) of linear subspaces, corresponding to
the kernel and the image of ad σ3 considered as operator on sl(2). Therefore,
g(0) consists of all diagonal 2 × 2 matrices with vanishing trace, while g(1)

contains all off-diagonal matrices. Such splitting has the grading property:

[X(0), Y (0)] = 0, [X(0), Y (1)] ∈ g(1), [X(1), Y (1)] ∈ g(0) , (2.26)

where X(0), Y (0) and X(1), Y (1) are arbitrary elements of g(0) and g(1), re-
spectively. We shall make use of the projectors onto g(1) defined by the above
splitting:

π0· ≡
1
4
[σ3, [σ3, · ]] . (2.27)

Applied to any traceless 2× 2 matrix X, π0 projects out its diagonal part:

π0X ≡ X −Xd =
(

0 X12

X21 0

)

∈ g(1) , (2.28)

and

(1l− π0)X = Xd = X11σ3 , (2.29)

Each Vk(x, t) can be split into:

Vk(x, t) = wk(x, t)σ3 + V f
k (x, t) , (2.30)

where

V f
k (x, t) = π0Vk(x, t) , (2.31a)

wk(x, t) =
1
2
tr (Vk(x, t)σ3) . (2.31b)

We start by the relation (2.13b) with k = 0:

i
dc0
dx

σ3 + [q(x, t), σ3]− [σ3, V1(x, t)] = 0 . (2.32)

The diagonal term here is the one proportional to dc0/dx. It vanishes with c0
as a constant. The two off-diagonal terms in (2.32) give us:
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V f
1 (x, t) = −c0q(x, t) . (2.33)

For generic k, we extract first the diagonal part by multiplying (2.13b) by
σ3 and taking the trace. Using (2.31) we find:

i
dwk

dx
+

1
2
tr (σ3[q(x, t), Vk(x, t)]) = 0 . (2.34)

Note that in the second term of (2.34) only the off-diagonal part of Vk con-
tributes. Thus (2.34) relates wk and V f

k . Integrating it we get:

wk(x, t) = ck +
i

2

∫ x

±∞
dy tr (σ3[q(y, t), V f

k (y, t)]) , (2.35)

where ck is an integration constant. Next the off-diagonal part of (2.13b) gives:

i
dV f

k

dx
+ [q(x, t), σ3]wk(x, t) = [σ3, V

f
k+1(x, t)] . (2.36)

It remains to apply 1
4 [σ3, ·] to both sides of (2.36) and to make use of (2.27)

and (2.35) to find:

V f
k+1(x, t) =

i

4

[

σ3,
dV f

k

dx

]

− 1
4

[σ3, [σ3, q(x, t)]]wk(x, t)

=
i

4

[

σ3,
dV f

k

dx

]

− i

2
q(x, t)

∫ x

±∞
dy tr (σ3[q(y, t), V f

k (y, t)])

− ckq(x, t) . (2.37)

Therefore the recurrent relation (2.13) now can be rewritten in the following
compact form:

V f
k+1(x, t) = Λ±V

f
k (x, t)− ckq(x, t) , (2.38a)

V1(x, t) = −c0q(x, t) , (2.38b)

where by Λ± we have denoted the recursion operators:

Λ±X ≡ i

4

[

σ3,
dX

dx

]

− i

2
q(x, t)

∫ x

±∞
dy tr (σ3[q(y, t),X(y, t)]) . (2.39)

As we shall see in the next chapters, these operators play an important role in
the theory of the NLEE. Here, we shall use them to write down the solution
of the recurrent relations in the following compact form:

V f
k (x, t) = −

k−1
∑

p=0

cpΛ
k−p−1
± q(x, t) , (2.40a)
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wk(x, t) = ck −
i

2

k−1
∑

p=0

cp

×
∫ x

±∞
dy tr

(

σ3

[

q(y, t), Λk−p−1
± q(y, t)

])

. (2.40b)

We shall show below that, although the operators Λ± are integro-differential
applying their positive powers to q(x, t), we always get expressions, which are
local in q(x, t), i.e. depend only on q and its x-derivatives.

The explicit solution of the recursion relation (2.13b) allows us now to
describe the class of all NLEE, which can be solved applying the ISM to the
ZS system. To do this, we have to insert the expression for VN (x, t) from (2.40)
into (2.13) and to separate again the diagonal and the off-diagonal parts in it.
The diagonal part gives us the necessary expression for wN (x, t) as an integral
containing q(x, t) and V f

N (x, t), i.e. we get (2.35) with k = N . The off-diagonal
part leads to the following NLEE:

− i
∂q

∂t
+ i

∂VN

∂x
+ [q(x, t), σ3]wN (x, t) = 0 . (2.41)

Now, we apply to both sides − 1
4 [σ3, ·] and using (2.35) find:

i

4

[

σ3,
∂q

∂t

]

− Λ±V
f
N (x, t) + cNq(x, t) = 0 , (2.42)

or

i

4

[

σ3,
∂q

∂t

]

+ f(Λ±)q(x, t) = 0 , (2.43)

where f(λ) is the polynomial:

f(λ) =
N
∑

p=0

cpλ
N−p . (2.44)

In the form (2.43), the NLEE is quite analogous to the generic partial
differential equation with constant coefficients (1.30) in Chap. 1. Indeed, since
q(x, t) is an off-diagonal matrix, then [σ3, qt] = 2σ3qt and that makes the (1.30)
and (2.43) quite analogous; one just has instead of f(D0), f(Λ±).

Our main aim will be to prove that this analogy is not coincidental, and
its roots are in the spectral decompositions of the recursion operators.

2.3 Evolution of the Scattering Data

We introduced already some NLEE having Lax representation. In this sub-
section, we shall explain the idea of what earlier was called a type of “change
of variables”, which linearizes the NLEE. To this end, we shall use the ZS
system (2.5) with a complex-valued potential q(x, t).
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We shall suppose also that the potential q(x, t) depends on the additional
parameter t in such a way that its coefficients q±(x, t) satisfy one of the above
mentioned NLEE. Another important choice consists in fixing up the class
of functions, to which the potential belongs. Here, and in what follows, we
assume that q(x, t) belongs to the space M of off-diagonal 2 × 2 matrix-
valued complex functions of Schwartz-type; i.e. it is an infinitely differentiable
function tending to 0 for |x| → ∞ faster than any negative power of x. We
also assume that these properties are fulfilled for all values of t.

Note that the ZS system can be viewed formally as a quantum mechan-
ical problem for the scattering of a “plane wave” on the “potential” q(x, t).
This “scattering” will be used, however, as a technical tool and will not be
assigned any real physical meaning. Nevertheless, we shall make use of the
well-developed theory for solving the direct and inverse scattering problems
in quantum mechanics, which can easily be generalized to complex-valued
“potentials.” Thus, we shall omit the quotation marks as we use the standard
terminology.

We recall some well-known facts from the theory of the linear differential
equations. By χ(x, t, λ), we shall denote a matrix-valued solution of (2.5).
Since trU(x, t, λ) = 0, then detχ(x, t, λ) does not depend on x. χ(x, t, λ)
is called a fundamental solution if its determinant does not vanish, i.e.
detχ(x, t, λ) 	= 0.

Any fundamental solution of (2.5) can be fixed up uniquely by specify-
ing its value at a given point x = x0. Another important property of the
linear systems in general and of the ZS system in particular is that any two
fundamental solutions must be linearly related; see (2.47) below.

A special role in the direct and inverse scattering theory for the ZS system
is played by the so-called Jost solutions ψ(x, t, λ) and φ(x, t, λ). They are spe-
cial fundamental solutions of (2.5) introduced by fixing up their asymptotics
for x→∞ (or to x→ −∞) to be plane waves:

lim
x→∞

exp(iλσ3x)ψ(x, t, λ) = 1l, λ ∈ R (2.45a)

lim
x→−∞

exp(iλσ3x)φ(x, t, λ) = 1l, λ ∈ R . (2.45b)

By plane wave above, we mean the matrix-valued function exp(−iλxσ3) for
real values of the spectral parameter λ; obviously it is a solution of (2.5) for
the asymptotic value of the potential q(x, t) = 0.

In the special cases in (2.45), x0 is taken to be∞ and −∞ correspondingly.
Both solutions have determinants equal to 1:

detψ(x, t, λ) = detφ(x, t, λ) = 1, λ ∈ R . (2.46)

so they are fundamental, and they must be linearly related. This means that
there exist the so-called scattering matrix T (t, λ) such that

φ(x, t, λ) = ψ(x, t, λ)T (t, λ), λ ∈ R . (2.47)
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Let us denote the entries of the scattering matrix T (t, λ) by:

T (t, λ) =
(

a+(λ) −b−(t, λ)
b+(t, λ) a−(λ)

)

. (2.48)

From (2.46) and (2.47) it follows that

detT (t, λ) ≡ a+(λ)a−(λ) + b+(t, λ)b−(t, λ) = 1, λ ∈ R . (2.49)

This is known as the “unitarity” condition for the scattering matrix T (t, λ).
Next, we derive the corresponding evolution of the scattering matrix

T (t, λ). To this end, we make use of the explicit form of the M -operator (2.11)
derived in the previous section with conveniently chosen C(λ). Consider (2.11)
with χ = φ(x, t, λ):

Mφ ≡
(

i
d

dt
+ VN (x, t, λ)

)

φ(x, t, λ) = φ(x, t, λ)C(λ) , (2.50)

multiply it on the left by exp(iλσ3x) and take the limit x→ −∞. Assuming
that the asymptotics of the Jost solution φ(x, t, λ) for x → −∞ in (2.45a) is
valid for all t, we get:

lim
x→−∞

eiλσ3xV−(x, t, λ)φ(x, t, λ) ≡ lim
x→−∞

VN (x, t, λ)

= f(λ)σ3

= C(λ) (2.51)

Thus, we find that C(λ) can be directly related to the dispersion law of the
NLEE:

C(λ) = f(λ)σ3 . (2.52)

In the limit x→∞, in view of (2.47) we get:
(

i
dT

dt
+ lim

x→∞
VN (x, t, λ)T (t, λ)

)

= T (t, λ)C(λ) . (2.53)

With (2.52), (2.56), we find that the scattering matrix T (t, λ) satisfies the
following linear evolution equation:

i
dT

dt
+ f(λ)[σ3, T (t, λ)] = 0 . (2.54)

Written in terms of the entries of T (λ) (2.54), the evolution takes the form of
linear equations:

i
da±

dt
= 0, i

db±

dt
∓ 2f(λ)b±(t, λ) = 0 (2.55)

that can be easily solved for any choice of the dispersion law f(λ).



46 2 The Lax Representation and the AKNS Approach

The same results can be derived by taking χ = ψ(x, t, λ) and considering
the limits x± →∞. Thus we established that

V+(λ) = V−(λ) = C(λ) = f(λ)σ3, V±(λ) = lim
x→±∞

VN (x, t, λ) (2.56)

But (2.6) means also that q(x, t) satisfies the NLEE (2.43). Therefore, we
outlined the proof of the following

Theorem 2.1 ([1]). If q(x, t) ∈ M and satisfies the NLEE (2.43), then the
scattering matrix T (t, λ) satisfies the linear evolution equation (2.54).

Thus the dispersion law f(λ) of the corresponding NLEE determines both
the NLEE itself through (2.43) and the evolution of the scattering data
through (2.54) or (2.55).

Calculating the limits V±(λ) from the explicit expressions for V (x, t, λ)
corresponding to the NLS, KdV and s-G equations we get:

fNLS(λ) = −2λ2, fKdV(λ) = −4λ3, fs-G(λ) =
γ

2λ
. (2.57)

The two functions a±(λ) are in fact t–independent. This means that if we
expand them in asymptotic series in λ their expansion coefficients also will
be t–independent, i.e. they will be integrals of motion for the correspond-
ing NLEE. In what follows, we treat a±(λ) as generating functionals of the
integrals of motion of the NLEE.

2.4 Generalizations of the AKNS Method I

The AKNS method can be applied also to special multicomponent general-
izations of the NLS type equations. One way to do this is to apply it to the
block-matrix generalization of the Zakharov-Shabat system.

Lχ ≡
(

i
d

dx
+ U(x, t, λ)

)

χ(x, t, λ) = 0 , (2.58a)

U(x, t, λ) = q(x, t)− λσ , (2.58b)

q(x, t) =

(

0 q+

q− 0

)

, σ =
2

s+ p

(

p11s 0
0 −s11p

)

, (2.58c)

where q+(x, t) and (q−)T (x, t) are rectangular s× p matrix-valued functions,
11s and 11p are the unit matrices of dimension s and p, s+ p = n.

As M operator we choose:

Mχ ≡
(

i
d

dt
+ V (x, t, λ)

)

χ(x, t, λ) = χ(x, t, λ)C(λ) (2.59)
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where V (x, t, λ) is a polynomial of order N in λ

V (x, t, λ) =
N
∑

k=0

λN−kV k(x, t) , (2.60)

C(λ) = lim
x→∞

V (x, t, λ) = lim
x→−∞

V (x, t, λ) . (2.61)

The compatibility condition [L,M ] = 0 holds true for any choice of the
matrix C(λ). Now U(x, t, λ) and V (x, t, λ) are elements (of special form) of
the algebra sl(n). Since this condition must hold identically with respect to
λ, we equate to zero the coefficients in front of all powers of λ with the result:

[V 0(x, t),σ] = 0 , (2.62a)

i
dV k

dx
+ [q(x, t),V k(x, t)]− [σ,V k+1(x, t)] = 0 , (2.62b)

for k = 0, 1, . . . , N − 1. The λ–independent term provides the corresponding
multicomponent NLEE:

− i
∂q

∂t
+ i

∂V N

∂x
+ [q(x, t),V N (x, t)] = 0 . (2.62c)

These relations again can be viewed as recursion relations, allowing to deter-
mine V k(x, t) in terms of q(x, t) and its derivatives. Generalizing the AKNS
approach, we split each V k(x, t) into block-diagonal and block-off-diagonal
parts. This corresponds to splitting of the algebra g = sl(n) into a direct sum
g = g(0) ⊕ g(1) of linear subspaces, corresponding to the kernel and the image
of the operator ad σ on sl(n). Since the nonvanishing eigenvalues of ad σ are
equal to ±2, the projector π0 onto g(1) takes the form:

π0· ≡
1
4
[σ, [σ, · ]] . (2.63)

Applied to any n× n matrix X it projects out its block-diagonal part:

π0X = X −X(0) =
(

0 X12

X21 0

)

, (2.64)

The projector onto g(0) is given by:

(1l− π0)X = X(0) =
(

X11 0
0 X22

)

, trX(0) = 0 . (2.65)

Therefore, g(0) consists of all block-diagonal matrices (2.65) with vanishing
trace tr X11 + trX22 = 0, while g(1) contains all block-off-diagonal matrices.
Such splitting also has the grading property:

[X(0),Y (0)] = 0, [X(0),Y (1)] ∈ g(1), [X(1),Y (1)] ∈ g(0) , (2.66)
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where X(i), Y (i) are arbitrary elements of g(i), i = 1, 2. Each V k(x, t) can be
split into:

V k(x, t) = wk(x, t) + V f
k(x, t) , (2.67)

where

V f
k(x, t) = π0V k(x, t) , (2.68a)

wk(x, t) = (11n − π0)V k(x, t) . (2.68b)

Then (2.62a) means that V f
0(x, t) = 0, i.e. V 0(x, t) = w0(x, t). From the

block-diagonal part of (2.62b) with k = 1 we conclude that

dw0

dx
= 0 , (2.69)

i.e. we assume that w0 = const ∈ g(0). The block-off-diagonal part of (2.62b)
with k = 1 is equivalent to:

V f
1(x, t) = ad−1

σ [q(x, t),w0] . (2.70)

For k > 1, we again use the same splitting with the results:

i
dwk

dx
+ [q(x, t),V f

k(x, t)] = 0 . (2.71)

Thus, (2.71) establishes a relation between wk and V f
k. Integrating it we get:

wk(x, t) = w0
k + i

∫ x

±∞
dy [q(y, t),V f

k(y, t)] , (2.72)

where w0
k ∈ g(0) is a matrix-valued integration constant.

Next, the block-off-diagonal part of (2.62b) gives:

i
dV f

k

dx
+ [q(x, t),wk(x, t)] = [σ,V f

k+1(x, t)] . (2.73)

It remains to apply [σ, ·] to both sides of (2.73) and to make use of (2.63) and
(2.72) to find:

V f
k+1(x, t) =

i

4

[

σ,
dV f

k

dx

]

− 1
4

[σ, [wk(x, t), q(x, t)]] ,

=
i

4

[

σ,
dV f

k

dx

]

+
i

4

[

σ,

[

q(x, t)
∫ x

±∞
dy [q(y, t),V f

k(y, t)]
]]

− 1
4
[

σ, [w0
k, q(x, t)]

]

. (2.74)
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Thus, the recurrent relation (2.62) acquires the following compact form:

V f
k+1(x, t) = Λ±V f

k(x, t)− 1
4
[

σ, [w0
k, q(x, t)]

]

, (2.75a)

V 1(x, t) = −ad−1
σ [w0

k, q(x, t)] , (2.75b)

where by Λ± we have denoted the recursion operators:

Λ±X ≡ i

4

[

σ,
dX

dx

]

+
i

4

[

σ,

[

q(x, t),
∫ x

±∞
dy [q(y, t),X(y, t)]

]]

. (2.76)

The formal solution to this recurrent relations is given by:

V f
k+1(x, t) = −1

4

k
∑

p=0

Λk−p
±

[

σ,
[

w0
p, q(x, t)

]]

. (2.77)

Applying the same reasoning to the λ-independent term in the compati-
bility condition, we get the explicit form for the multicomponent NLS-type
(MNLS-type) equations:

i

4

[

σ,
∂q

∂t

]

−Λ±V f
N (x, t) +

1
4
[

σ,
[

w0
N , q(x, t)

]]

= 0 . (2.78)

It remains to insert the solution (2.77) for V f
N (x, t) into (2.78) to get these

NLEE in terms of the recursion operators Λ±:

i

4

[

σ,
∂q

∂t

]

+
1
4

N
∑

p=0

ΛN−p
±

[

σ,
[

w0
p, q(x, t)

]]

= 0 . (2.79)

Obviously the multicomponent analog of the dispersion law for the NLEE
(2.79) is provided by the matrix-valued polynomial f(λ):

f(λ) =
N
∑

p=0

λN−pw0
p ∈ g(0) . (2.80)

Let us list several important examples of MNLS-type equations.

The Manakov model [5] originally was obtained by takingN = 2, fMan(λ)
= −2λ2σ with s = 1, p = 2; then q+ = (q−)† is a two-component vector
u(x, t) satisfying:

iut + uxx + (u†,u)u(x, t) = 0, u =
(

u1(x, t)
u2(x, t)

)

. (2.81)

It became famous due to its numerous applications in nonlinear optics
[6, 7, 8, 9, 10].
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Of course, one can consider a generalization of the Manakov model with
p-component vectors, p > 2. Also the use of an involution of the form
q+ = B0(q−)†, where B0 = diag (ε1, . . . , εp) with εj = ±1 leads to another
version of the Manakov model:

iut + uxx + (u†, B0u)u(x, t) = 0, u =

⎛

⎜

⎝

u1(x, t)
...

up(x, t)

⎞

⎟

⎠
. (2.82)

Matrix NLS models. The above two models and all other multicomponent
generalizations of the MNLS equation are particular cases of the system:

i
∂q+

∂t
+
∂2q+

∂x2
+ 2q+q−q+(x, t) = 0 , (2.83a)

−i∂q−

∂t
+
∂2q−

∂x2
+ 2q−q+q−(x, t) = 0 , (2.83b)

or in matrix form:

i

2

[

σ,
∂q

∂t

]

+
∂2q

∂x2
+ 2q3(x, t) = 0 . (2.84)

The dispersion law of this equation is

fMNLS(λ) = −2λ2σ . (2.85)

Let us impose on q(x, t) the condition:

q(x, t) = Bq†(x, t)B−1, B =
(

B0 0
0 B1

)

∈ g(0) , (2.86)

B0 = diag (ε1, . . . , εs), B1 = diag (η1, . . . , ηp) ,

where εj = ±1 and ηs = ±1. Each specific choice of the sets of εj and ηs

provides an allowed involution of the system (2.83). The involution (2.86)
means that the block matrices q±(x, t) are related by:

q+(x, t) = r(x, t), q−(x, t) = B0r
†(x, t)B1 (2.87)

Inserting (2.87) into (2.83), we easily find that the second equation (2.83b)
can be obtained from the first one (2.83a) with hermitian conjugation. As
a result, we get the following matrix NLS equation:

i
∂r

∂t
+
∂2r

∂x2
+ 2rB0r

†r(x, t) = 0 . (2.88)

Vector and matrix mKdV models. The well-known mKdV equation
(2.18) is characterized by dispersion law, which is cubic in λ; see (2.16).
We also choose here s = p, i.e. n = 2p.
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Choosing in (2.79) fmKdV = −4λ3σ, we obtain the following multicom-
ponent generalization of the system (2.17):

∂q+

∂t
+
∂3q+

∂x3
+ 3q+q−(x, t)

∂q+

∂x
+ 3

∂q+

∂x
q−q+(x, t) = 0 , (2.89a)

∂q−

∂t
+
∂3q−

∂x3
+ 3q−q+(x, t)

∂q−

∂x
+ 3

∂q−

∂x
q+q−(x, t) = 0 , (2.89b)

The multicomponent mKdV equation is obtained from the system (2.89)
imposing the involution:

Bq∗(x, t)B−1 = −q(x, t), B =
(

0 B2

B−1
2 0

)

, (2.90)

This choice of B satisfies B2 = 11, i.e. the constraint (2.90) is an involution.
If we denote q+(x, t) = r(x, t) then we have:

q+(x, t) = r(x, t), q−(x, t) = −B−1
2 r∗(x, t)B−1

2 . (2.91)

Then the system (2.89) becomes equivalent to:

∂r

∂t
+
∂3r

∂x3
− 3rB2r

∗B2
∂r

∂x
− 3

∂r

∂x
B2r

∗B2r(x, t) = 0 , (2.92)

for the complex-valued p×p-matrix function r(x, t). If we choose B2 = 11p,
we get another version of the multicomponent mKdV equation:

∂r

∂t
+
∂3r

∂x3
− 3

∂r

∂x
r∗r(x, t)− 3rr∗(x, t)

∂r

∂x
= 0 . (2.93)

Imposing additional involution, we can make r(x, t) either real-valued p×p
matrix or purely imaginary one.

In order to solve these multicomponent generalizations of the NLS and
mKdV equations, we need to develop the direct and inverse scattering theory
for the block-matrix Zakharov-Shabat system (2.58a). Its Jost solutions are
also introduced by fixing up their asymptotics for x→∞ (or to x→ −∞) to
be plane waves, that is, we require that ψ(x, t, λ) and φ(x, t, λ) be fundamental
solution of L satisfying:

lim
x→∞

exp(iλσx)ψ(x, t, λ) = 1l, λ ∈ R (2.94a)

lim
x→−∞

exp(iλσx)φ(x, t, λ) = 1l, λ ∈ R . (2.94b)

Note that these definitions of the Jost solutions are compatible with the M -
operator in the form (2.59) with the special choice (2.58a) for C(λ).

One can check that

detψ(x, t, λ) = detφ(x, t, λ) = 1, λ ∈ R . (2.95)
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so they are fundamental, and they must be linearly related by the scattering
matrix T (t, λ):

φ(x, t, λ) = ψ(x, t, λ)T (t, λ), λ ∈ R . (2.96)

It is natural that the scattering matrix T (t, λ) will have the same type of
block-matrix structure as U(x, t, λ):

T (t, λ) =
(

a+(t, λ) −b−(t, λ)
b+(t, λ) a−(t, λ)

)

. (2.97)

From (2.95) and (2.96), it follows that the generalization of the “unitarity”
condition (2.49) is:

det T (t, λ) = 1, λ ∈ R . (2.98)

Next we conclude that

V +(λ) = V −(λ) = C(λ) = f(λ), V±(λ) = lim
x→±∞

V (x, t, λ) (2.99)

so T (t, λ) must satisfy the following linear evolution equation:

i
dT

dt
+ [f(λ),T (t, λ)] = 0 . (2.100)

In the special case, when f(λ) = f(λ)σ from (2.97) and (2.100) we find:

i
da±

dt
= 0, i

db±

dt
∓ 2f(λ)b±(t, λ) = 0 (2.101)

that can be easily solved for any f(λ).
Thus, we outlined the proof of the following generalization of Theorem 2.1:

Theorem 2.2 ([11, 12]). If q(x, t) satisfies the NLEE (2.78), then the scat-
tering matrix T (t, λ) satisfies the linear evolution equation (2.100).

Remark 2.3. Not all MNLS equations are local. Only equations, whose Hamil-
tonians are from the principal series, i.e. ones whose dispersion laws are of the
form f(λ) = f(λ)σ are local. Such equations are superintegrable: They have
more generating functionals of integrals of motion than are necessary for inte-
grability. These functionals are not all in involutions. Due to this, boomerons
and trappons are possible [13, 14].

2.5 Generalizations of the AKNS Method II

The AKNS method can be applied also to Lax operators generalizing the
Zakharov-Shabat system to the following first-order n× n system:
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Lgχg ≡
(

i
d

dx
+ Ug(x, t, λ)

)

χg(x, t, λ) = 0 , (2.102a)

Ug(x, t, λ) = q(x, t)− λJ , (2.102b)

q(x, t) =

⎛

⎜

⎜

⎜

⎝

0 q12 . . . q1n−1 q1n

q12 0 . . . q2n−1 q2n

...
...

. . .
...

...
qn1 qn2 . . . qn−1n 0

⎞

⎟

⎟

⎟

⎠

, (2.102c)

J = diag (a1, a2, . . . , an−1, an), tr J = 0 . (2.102d)

The second operator in the Lax representation is also a first-order n × n
matrix-valued operator:

Mgχg ≡
(

i
d

dt
+ Vg(x, t, λ)

)

χg(x, t, λ) = χg(x, t, λ)Cg(λ) (2.103)

where Vg(x, t, λ) is a polynomial of order N in λ

Vg(x, t, λ) =
N
∑

k=0

λN−kVk(x, t) . (2.104)

Here and below, we shall use the same letter for the potential q(x, t) and for
the coefficients Vk(x, t), remembering that now they are n× n matrices.

The recurrent relations (2.13) now are modified into:

[V0(x, t), J ] = 0 , (2.105a)

i
dVk

dx
+ [q, Vk(x, t)]− [J, Vk+1(x, t)] = 0 , (2.105b)

for k = 0, 1, . . . , N − 1 and the λ–independent term gives the corresponding
NLEEs:

− i
∂q

∂t
+ i

∂VN

∂x
+ [q(x, t), VN (x, t)] = 0 . (2.105c)

Before proceeding with solving the recurrent relations (2.105), we shall
fix up the gauge of the Lax operator Lg, taking J to be a constant diagonal
matrix. We assume that J has n different real eigenvalues. Without loss of
generality we can consider them ordered:

J = diag (a1, a2, . . . , an), a1 > a2 > · · · > an , (2.106)

and trJ = 0. Applying a convenient gauge transformation commuting with J
we can always achieve that

q(x, t) = [J, q̃(x, t)], i.e. qjj = 0 . (2.107)
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In analogy with the analysis of the previous sections, we again will need
to split off each Vk(x, t) into diagonal and off-diagonal parts. Now the corre-
sponding algebra g = sl(n) is split into a direct sum g = g(0) ⊕ g(f) of linear
subspaces, corresponding to the kernel and the image of ad J .

Obviously, if the eigenvalues of J are all different then the kernel g(0) of
ad J will consist of the diagonal matrices, or more precisely, of the Cartan
subalgebra of sl(n). In contrast, with the sl(2)-case such splitting satisfies
only two of the properties in (2.26), namely,

[X(0), Y (0)] = 0, [X(0), Y (1)] ∈ g(1) , (2.108)

whereas [X(1), Y (1)] 	∈ g(0); such commutators contain both diagonal and off-
diagonal parts. The operator ad J is well defined on the whole algebra g, while
its inverse is well defined only on g(1). In components we have:

([J,X])jk = (aj − ak)Xjk,
(

ad−1
J Y (f)

)

jk
=

Y
(f)
jk

aj − ak
, (2.109)

where by definition Y (f) is off-diagonal, Y (f)
jj = 0. The analog of the projector

πJ is given by:

πJ · ≡ ad−1
J [J, · ] . (2.110)

Applied to any n× n matrix X, it projects it out onto its off-diagonal part:

πJX = X −X(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 X12 . . . X1n−1 X1n

X21 0 . . . X2n−1 X2n

...
...

. . .
...

...
Xn−1,1 Xn−1,2 . . . 0 Xn−1,n

Xn,1 Xn,2 . . . Xn,n−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (2.111)

Then the projector onto g(0) is:

(1l− πJ)X = X(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

X11 0 . . . 0 0
0 X22 . . . 0 0
...

...
. . .

...
...

0 0 . . . Xn−1,n−1 0
0 0 . . . 0 Xn,n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (2.112)

Below, in this and the next subsections, we shall use the following gen-
eralization of the Condition C1 (see page 71 below): q(x, t) belongs to the
space MJ of n× n if q(x, t) ≡ πJq(x, t), and its matrix elements are complex
Schwartz–type functions. Each Vk(x, t) can be split into:

Vk(x, t) = V
(0)
k (x, t) + V f

k (x, t) , (2.113)
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where

V
(0)
k (x, t, ≡ (11− πJ)Vk(x, t) = wk(x, t) ∈ g(0) , (2.114a)

V f
k (x, t) = πJVk(x, t) . (2.114b)

From (2.105a), we immediately get that V f
0 = 0, i.e.:

V0(x, t) = w0(x, t) ∈ g(0) . (2.115a)

Next, we consider (2.105b) with k = 0. Projecting it onto g(0) we obtain:

∂w0

∂x
= 0 . (2.115b)

Therefore, in what follows we can assume that

V0(x, t) ≡ w0
0 ∈ g(0) (2.115c)

is a constant diagonal matrix. The off-diagonal part of (2.105b) with k = 0

[q(x, t), w0
0]− [J, V1(x, t)] = 0 , (2.116a)

allows one to determine only the off-diagonal part of V1(x, t):

V f
1 (x, t) = −ad−1

J

[

w0
0, q(x, t)

]

. (2.116b)

Analogously, for k = 1 (2.105b) gives:

i
∂w1

∂x
+ (11− πJ)[q(x, t), V f

1 (x, t)] = 0 , (2.117a)

i
∂V f

1

∂x
+ πJ

(

[q(x, t), V f
1 (x, t)]

)

= [J, V f
2 (x, t)] . (2.117b)

Inserting (2.116b) into (2.117a), we find

∂w1

∂x
= 0 , (2.118)

i.e. we can assume that w1 = w0
1 = const. Equation (2.117b) leads to:

V f
2 (x, t) = ad−1

J

(

i
∂vf

1

∂x
+ πJ

(

[q(x, t), V f
1 ]
)

)

. (2.119)

For k > 1 we get in a similar way:

i
∂wk

∂x
+ (11− πJ)[q(x, t), V f

k (x, t)] = 0 , (2.120a)

i
∂V f

k

∂x
+ πJ

(

[q(x, t), V f
k (x, t)]

)

+ [q(x, t), wk(x, t)] = [J, V f
k+1(x, t)] . (2.120b)
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Formally integrating (2.120a), we can express wk(x, t) through V f
k (x, t) by:

wk(x, t) = w0
k + i

∫ x

±∞
dy (11− πJ)[q(y, t), V f

k (y, t)] , (2.121)

where w0
k ∈ g(0) are constant diagonal matrices. We insert it into (2.120b)

with the result:

i
∂V f

k

∂x
+ πJ [q(x, t), V f

k ] + [q(x, t), w0
k] (2.122)

+ iπJ

[

q(x, t),
∫ x

±∞
dy (11− πJ)[q(y, t), V f

k (y, t)]
]

= [J, V f
k+1].

Here, and below, we shall use the fact that πJ [q(x, t), w0
k] ≡ [q(x, t), w0

k].
Applying to both sides of (2.122) ad−1

J we get:

V f
k+1 = Λ±V

f
k + ad−1

J [q(x, t), w0
k] , (2.123)

where the recursion operators Λ± are defined by:

Λ±X ≡ ad−1
J

{

i
∂X

∂x
+ πJ [q(x),X(x)]

+iπJ

[

q(x),
∫ x

±∞
dy (11− πJ)[q(y),X(y)]

]}

. (2.124)

Note that the structure of Λ± ensures that if X ∈ g(1) then also Λ±X ∈ g(1).
Thus, we have cast the recursion relations (2.105) in the form (2.123);

(2.116b) must be viewed as the initial condition for them. Its formal solution
can be written down in compact form as:

V f
k+1 = −

k
∑

s=0

Λs
±ad−1

J [w0
k−s, q(x)] . (2.125)

It remains to repeat the “splitting” procedure also to the NLEEs (2.105c):

i
∂wN

∂x
+ (11− πJ)[q(x, t), V f

N (x, t)] = 0 , (2.126a)

−i∂q
∂t

+ i
∂V f

N

∂x
+ πJ

(

[q(x, t), V f
N (x, t)]

)

+ [q(x, t), wN (x, t)] = 0 , (2.126b)

with the result

wN (x, t) = w0
N + i

∫ x

±∞
dy (11− πJ)[q(y, t), V f

N (y, t)] , (2.127)

and applying the operator ad−1
J to both sides of (2.127) we get:
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−iad−1
J

∂q

∂t
+ Λ±V

f
N − ad−1

J [w0
N , q(x, t)] = 0 . (2.128)

This is the generic form of the NLEE solvable by the ISM applied to Lg

(2.102). Using (2.125), we can write it down in compact form:

iad−1
J

∂q

∂t
+

N
∑

s=0

Λs
±ad−1

J [w0
N−s, q(x, t)] = 0 . (2.129)

Note that in solving the recurrent relations we obtained N + 1 in-
tegration constants w0

k. These constant diagonal matrices determine the
function:

fg(λ) =
N
∑

s=0

w0
N−sλ

s , (2.130)

which is the proper generalization of the dispersion law f(λ). Indeed, one can
check that fg(λ) determine the evolution of the scattering matrix of Lg.

The simplest of these NLEE is obtained already for N = 1. This is the
famous N -wave equation:

i

[

J,
∂Q

∂t

]

− i

[

I,
∂Q

∂x

]

+ [[I,Q(x, t)], [J,Q(x, t)]] = 0 , (2.131)

Q(x, t) = ad−1
J q(x, t) ∈ g(1),

where I = w0
0 ∈ g(0). Its dispersion law is linear in λ:

fNw(λ) = λI . (2.132)

The scattering matrix Tg(λ, t) and the Jost solutions of Lg are natu-
ral generalizations of the ones for the Zakharov-Shabat system L. They are
defined by:

lim
x→∞

ψg(x, t, λ)eiλJx = 11, lim
x→−∞

φg(x, t, λ)eiλJx = 11 , (2.133a)

Tg(λ, t) = ψ̂g(x, t, λ)φg(x, t, λ) . (2.133b)

The detailed investigation of the direct and inverse scattering problems for
Lg comes out of the scope of the present Chapter. Here, we shall just derive
the t-dependence of Tg(λ, t) using the Lax representation (2.102). We fix up
Cg(λ) in the right hand-side of (2.103) in such a way that the definitions of
the Jost solutions (2.133a) are valid for all time t, i.e.:

Cg(λ) ≡ lim
x→±∞

Vg(x, t, λ)

=
N
∑

s=0

w0
N−sλ

s = fg(λ) . (2.134)
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Then, we recall that the Jost solution φg(x, tλ) must satisfy (2.103) and con-
sider its limits for x → −∞ and x → ∞. In view of our choice for Cg(λ)
(2.134), the first limit becomes the identity 0 = 0. Doing the second limit, we
make use of (2.133b): φg(x, tλ) = ψg(x, tλ)Tg(t, λ) and get:

i
dTg

dt
+ [fg(λ), Tg(t, λ)] = 0 . (2.135)

This result can be formulated as the following generalization of theorem

Theorem 2.3 ([15]). Let q(x, t) ∈ MJ and satisfies the NLEE (2.129) then
the scattering matrix Tg(t, λ) satisfies the linear evolution equation (2.135).

Thus, we demonstrated the analogy between the NLEE related to the ZS
system (2.43), and their generalizations (2.79) and (2.129), and the generic
partial differential equation with constant coefficients (1.30) in Chap. 1.
The polynomials f(λ) determine the dispersion laws of these equations.
In the case of the NLEE, the derivative operator 1

i
∂
∂x has been replaced

by the corresponding recursion operator Λ±. This analogy is not coinci-
dental, and its roots are in the spectral decompositions of the recursion
operators.

2.6 Comments and Bibliographical Review

1. The KdV, NLS, MKdV, s-G, N -wave equations are only several of the
NLEE that are integrable and have a wide range of applications in physics.
In fact, they describe different regimes of wave-wave interactions, which
do not depend on the physical origin of the waves. This explains their
universality [16, 17]. Here, we give a short list of monographs and review
papers [4, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37] in which these problems are analyzed and which contain the
necessary references.

2. The fact that to each Lax operator L, one can relate a hierarchy of solvable
NLEE became obvious in 1974 after the AKNS Chapter [1]. In it, they
proposed a modification of the Lax approach, which simplified substan-
tially the derivation of the relevant NLEE. The AKNS scheme, formulated
initially for the ZS system, substantially simplified finding new “higher”
NLEE related to a given Lax operator L and reduced it to the solving of
a set of recurrent relations. They constructed also the recursion operators
Λ±, which solves the recurrent relations and plays fundamental role in de-
riving the properties of the NLEE. Another important fact discovered by
AKNS [1] was the importance of the Wronskian relations and the squared
solutions of L in studying the mapping between the potential q(x, t) of
L and the scattering data of L. They revealed that the squared solutions
are eigenfunctions of the recursion operators Λ± and may be viewed as
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natural generalizations of the usual exponentials. As a consequence, the
ISM can be viewed as a generalized Fourier transform. In order to es-
tablish this fact rigorously, one needs to prove that the squared solutions
are complete sets of functions in the space of allowed potentials M of L.
In 1976, Kaup [38] formulated the completeness relation for the squared
solutions of the ZS system. Later in 1979, Kaup and Newell [39] derived
the fundamental properties of the NLS hierarchy through the recursion
operators Λ± using the completeness property of its eigenfunctions – the
squared solutions.
At about the same time, Khristov and one of the authors of the present
monograph (VSG) [40, 41], independently of Kaup and Newell, proposed
a rigorous proof of Kaup’s compeleteness relation and applied it to the
theory of the NLS-type equations. It was shown also that the completeness
relation of the squared solutions can be viewed as the spectral decompo-
sition of the recursion operator Λ.
Besides, in [40, 41] it was proved that the “products” of solutions of two
different ZS systems also satisfy a completeness relation. These products
of solutions are eigenfunctions of the operators Λ± generalizing Λ± and
generating the Bäcklund transformations of the NLEE. These results ex-
tend the results of Calogero and Degasperis [11, 12, 42]. The same type of
results have been derived also for the Sturm-Liouville problem [43, 44, 45],
for the ZS system with periodic boundary conditions [45, 46, 47, 48] and
for the Sturm-Liouville problem on the semiaxis [49, 50].

3. The AKNS paper stimulated a number of other scientists [11, 12, 13, 14,
27, 39, 40, 41, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118]. In
1976, Calogero and Degasperis [11, 12] proposed generalized Wronskian
identities to describe the class of Bäcklund transformations for the NLS-
type NLEE.

4. The necessity to consider Lax operators generalizing the ZS system natu-
rally called for generalizations of the AKNS approach and for the explicit
derivation of the corresponding recursion operators Λ. Here, we list some
of the best known ones:
• the ZS system in the pole gauge [71, 81, 82, 118];
• n× n ZS system [27, 119, 120, 121];
• ZS system related to symmetric spaces [7, 9, 72, 122, 123];
• The natural generalizations of the Zakharov-Shabat system to simple

Lie algebras of rank higher than one:

i
dψ

dx
+ (Q(x, t)− λJ)ψ(x, t, λ) = 0, Q(x, t) = [J,Q′(x, t)] ,

(2.136)
where Q′(x, t) takes values in the simple Lie algebra g, and J is a con-
stant element of some fixed Cartan subalgebra h ⊂ g see [9, 124, 125]



60 2 The Lax Representation and the AKNS Approach

and [51, 74, 75, 84, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151];

• Polynomial generalizations of the Zakharov-Shabat system to simple
Lie algebras of higher rank:

i
dψ

dx
+

(

n
∑

k=1

λn−kQk(x, t)− λnJ

)

ψ(x, t, λ) = 0 , (2.137)

where Qn−1(x, t) = [J,Q′(x, t)] and Qk(x, t) take values in the simple
Lie algebra g, and J is a constant element of some fixed Cartan subal-
gebra h ⊂ g. The best known examples of this form are related to the
sl(2) algebra [70, 78, 114, 115, 121, 152, 153, 154, 155, 156, 157, 158];
for the bundles (pencils) with qubic and higher powers in λ see
[70, 152, 156, 157, 159, 160]). They can be extended also to alge-
bras of higher ranks, as well as to nonvanishing boundary conditions
case [161];

• Gelfand–Dickey–Zakharov–Shabat problem [162];
• to the difference version of ZS system known as the Ablowitz-Ladik

system [79, 163, 164, 165], their gauge equivalent ones [166], and their
multicomponent generalizations [37, 76];

• for ZS system with periodic boundary conditions, see [47, 167, 168, 169,
170] and the numerous references therein. Another important class of
boundary conditions, whose treatment requires a number of additional
constructions are the constant boundary conditions; see [161, 171, 172].

• for ZS system with elliptic dependence on λ see [107, 173].
5. For a number of important choices of L(λ), to the best of our knowledge,

the derivation of the AKNS scheme has not yet been done, and the cor-
responding recursion operators Λ are not yet known. This refers to the
cases in which L(λ) is rational function of λ [174, 175].

6. The formal approach to the recursion operators and NLEE is outlined in
a series of papers [127, 176]; see also [177];

7. The so-called U -V -systems were introduced by Zakharov and Mikhailov
[174, 175] where

L(λ) = i
d

dx
+ U(x, t, λ), M(λ) = i

d

dt
+ V (x, t, λ) , (2.138)

and U(x, t, λ) and V (x, t, λ) are rational functions of λ taking values
in g. Such Lax pairs allow to solve the principal chiral field equation
in 1 + 1 dimensions, as well as a number of fermionic models in field
theory;

8. U -V -systems with elliptic λ-dependence were used to solve the Landau-
Lifshitz equations and its generalizations related to the sl(n)-algebras
[173, 178].
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For the last two items, the recursion operator is known only for the sim-
plest case of rational U -V -system relevant for the principal chiral field [61]
and for the sl(2)-Landau-Lifshitz equation [179, 180].

9. Quite different from the operators in [179, 180] is the recursion operator
found for the Landau-Lifshitz equation with Lax pairs using some defor-
mations of the algebra so(4), see [181].

10. Discrete systems such as the Ablowitz-Ladik system [182] and its mul-
ticomponent generalizations have been treated along the same lines in
[76, 79, 183, 166].
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3

The Direct Scattering Problem
for the Zakharov–Shabat System

In the first section of this chapter, we derive the analyticity properties of the
Jost solutions of L(λ) and construct its fundamental analytic solutions (FAS)
χ±(x, λ). In Chap. 2, the FAS are used to construct the kernel of the resolvent
R±(x, y, λ) of L(λ), whose properties determine the spectrum of L(λ).

The analyticity properties of χ±(x, λ) ensure also the analyticity of a±(λ) =
detχ±(x, λ), whose zeroes determine the poles of R±(x, y, λ) and the discrete
eigenvalues of L(λ). In Sects. 3.3, 3.4, 3.5 and 3.6, we derive the asymptotic
behavior of a±(λ) and χ±(x, λ) for λ→∞.

The contour integration method and the analyticity properties of χ±(x, λ)
allow one to derive integral representations for the Jost solutions and a±(λ),
thus extracting two minimal sets of scattering data Ti, i = 1, 2 for L(λ). Each
of these two sets determines uniquely χ±(x, λ) and a±(λ) in their whole re-
gions of analyticity. In Sect. 3.7, we apply the contour integration method and
derive the completeness relation for the Jost solutions of L(λ). This relation
can be viewed as the spectral decomposition of L(λ).

In this, and in the next chapters, t plays the role of an auxiliary parameter
but for the sake of brevity we shall omit it.

3.1 Analytic Properties of the Jost Solutions

We begin by a detailed study of the direct scattering problem for the ZS
system:

Lχ ≡
(

i
d

dx
+ q(x)− λσ3

)

χ(x, λ) = 0 , (3.1)

where the potential q(x) satisfies two conditions, C1 and C2:
Condition C1: q(x) belongs to the space M of off-diagonal 2×2 matrix-

valued functions, whose matrix elements are complex Schwartz-type functions.
This condition is made for simplification. It can be weakened substantially,

but this would require deeper mathematical analysis, which is out of the scope
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72 3 The Direct Scattering Problem

of the present monograph. We use C1 in order to outline better the main
ideas of the ISM. For reasons that will become clear, condition C2 will be
formulated at the end of this section.

We recall the definitions of the Jost solutions (2.45) and the scattering
matrix (2.48):

lim
x→∞

exp(iλσ3x)ψ(x, λ) = 1l, (3.2a)

lim
x→−∞

exp(iλσ3x)φ(x, λ) = 1l , (3.2b)

T (λ) = ψ−1(x, λ)φ(x, λ) =
(

a+(λ), −b−(λ)
b+(λ), a−(λ)

)

. (3.2c)

for λ ∈ R. Together with (3.1), we consider the associated systems, whose
solutions are related to ψ(x, λ) and φ(x, λ) by:

ξ(x, λ) = ψ(x, λ) exp(iλσ3x), (3.3a)

ψ̂(x, λ) ≡ ψ−1(x, λ) (3.3b)
ϕ(x, λ) = φ(x, λ) exp(iλσ3x) . (3.3c)

Obviously, ξ(x, λ) and ϕ(x, λ) satisfy the associated to (3.1) linear systems:

i
dξ

dx
+ q(x)ξ(x, λ)− λ[σ3, ξ(x, λ)] = 0 , (3.4)

but with different boundary conditions, which according to (3.2) are:

lim
x→∞

ξ(x, λ) = 1l, lim
x→−∞

ϕ(x, λ) = 1l . (3.5)

As regards ψ̂(x, λ), it satisfies another associated to (3.1) system:

i
dψ̂

dx
− ψ̂(x, λ)(q(x)− λσ3) = 0 . (3.6)

Each of the above systems of differential equations, together with the cor-
responding boundary conditions, can be rewritten as a system of integral
equations. More specifically, for ξ(x, λ) and ϕ(x, λ) these equations are:

ξ(x, λ) = 1l + i

∫ x

∞
dy e−iλσ3(x−y)q(y)ξ(y, λ)eiλσ3(x−y) , (3.7)

and

ϕ(x, λ) = 1l + i

∫ x

−∞
dy e−iλσ3(x−y)q(y)ϕ(y, λ)eiλσ3(x−y) , (3.8)

More explicitly, the equation for ξ(x, λ) is:

ξ(x, λ) = 1l (3.9)
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+ i

∫ x

∞
dy

(

q+(y)ξ21(y, λ), q+(y)ξ22(y, λ)e−2iλ(x−y)

q−(y)ξ11(y, λ)e2iλ(x−y), q−(y)ξ12(y, λ)

)

,

and we have an analogous one for ϕ(x, λ); obviously the lower limit in the
integral for ϕ(x, λ) will be −∞.

For later convenience, we shall split the matrix-valued solutions ξ(x, λ)
and φ(x, λ) into pairs of columns:

ξ(x, λ) =
(

ξ−, ξ+
)

(x, λ), ϕ(x, λ) =
(

ϕ+ , ϕ−)(x, λ) , (3.10)

where, as we shall show below, the superscript + (resp. −) means that the
corresponding column is analytic for λ ∈ C+ (resp. for λ ∈ C−), where by
C+ (resp. by C−) we denote the upper (resp., the lower) half-plane . These
columns satisfy the integrals equations:

ξ−(x, λ) =
(

1
0

)

+ i

∫ x

∞
dy G2(x− y, λ)q(y)ξ−(y, λ) , (3.11)

ξ+(x, λ) =
(

0
1

)

+ i

∫ x

∞
dy G1(x− y, λ)q(y)ξ−(y, λ) , (3.12)

φ+(x, λ) =
(

1
0

)

+ i

∫ x

−∞
dy G2(x− y, λ)q(y)φ−(y, λ) , (3.13)

φ−(x, λ) =
(

0
1

)

+ i

∫ x

−∞
dy G1(x− y, λ)q(y)φ−(y, λ) , (3.14)

where the Green functions Ga(x− y, λ), a = 1, 2, are given by:

G1(x− y, λ) =
(

e−2iλ(x−y) 0
0 1

)

, (3.15)

G2(x− y, λ) =
(

1 0
0 e2iλ(x−y)

)

. (3.16)

The equations (3.11), (3.12), (3.13) and (3.14) are integral equations of
Volterra type. Their solutions are given by Neumann series which for (3.11)
has the form:

ξ−(x, λ) =
∞
∑

j=0

ξ−j (x, λ), ξ−0 (x, λ) =
(

1
0

)

, (3.17)

ξ−j+1(x, λ) = i

∫ x

∞
dy G2(x− y, λ)q(y)ξ−j (y, λ) .

The existence of the solution ξ−(x, λ) depends on the convergence of
the series (3.17), and one needs estimates for the components of ξ−j (x, λ) =
(

ξ
(1),−
j

ξ
(2),−
j

)

(x, λ). Such estimates have the form (see [1, 2, 3, 4]):
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|ξ(1),−2j (x, λ)| ≤ 1
(j!)2

(∫ x

∞
dx′ |q+(x′)|

)j (∫ x

∞
dx′ |e2iλ(x−x′)q−(x′)|

)j

, (3.18)

|ξ(2),−2j+1 (x, λ)| ≤ 1
j!(j + 1)!

(∫ x

∞
dx′ |q+(x′)|

)j (∫ x

∞
dx′ |e2iλ(x−x′)q−(x′)|

)j+1

.

Thus one gets:

|ξ(1),−(x, λ)| ≤ I0(2
√

s(x)), |ξ(2),−(x, λ)| ≤ I1(2
√

s(x)) , (3.19)

s(x) =
∫ x

∞
dx′ |q+(x′)|

∫ x

∞
dx′ |e2iλ(x−x′)q−(x′)| , (3.20)

where I0(s) and I1(s) are the Bessel functions of the first kind.
Similar estimates hold true also for the other columns of the Jost solutions.

If λ is real, then the exponentials in the Green functions will be bounded for
all x and y, and the only condition for the existence of the Jost solutions will
be the integrability of the potential, i.e. the existence of s(x) for x → ±∞.
This class of potentials is very general, which means that the elements of the
scattering matrix T (λ) for real-valued λ may not be smooth.

Lemma 3.1. The solutions φ+(x, λ), ξ+(x, λ) (resp. φ+(x, λ), ξ−(x, λ)) are
analytic functions of λ for λ ∈ C+ (resp. λ ∈ C−).

Proof. The idea of the proof is based on the fact that for potentials of C1
type one can prove the existence not only of the Jost solutions ξ±(x, λ) and
φ±(x, λ) but also of their derivatives

dpξ±(x, λ)
dλp

,
dpφ±(x, λ)

dλp
, (3.21)

for all integer p = 1, 2, . . . . Indeed, the terms in the corresponding Neumann
series for dpξ±(x,λ)

dλp will contain integrals of the form:
∫ x

∞
dx′ |(x− x′)mq±(x′)|

∫ x

∞
dx′ |e2iλ(x−x′)q−(x′)|, 0 ≤ m ≤ p , (3.22)

which are convergent if q±(x) are Schwartz-type functions (condition C1).

If λ becomes complex, then the exponential factors in (3.18) have to be
taken into account. If for some values of λ they happen to be decreasing, one
again will be able to prove the existence of the corresponding Jost solutions.
For example, in the equation for ξ−(x, λ), the factor in the integrand for
s(x) is e2iλ(x−x′) which is decreasing for Imλ < 0, since we integrate over
x < x′ < ∞. Thus, the Neumann series for ξ−(x, λ) is convergent for all
Imλ ≤ 0. Besides each of the terms in the series is an analytic function of λ,
which means that ξ−(x, λ) is analytic function for λ ∈ C−.

Lemma 3.2. Let the potential q(x) satisfy the condition C1. Then the scat-
tering matrix elements T (λ) are Schwartz-type functions on the real λ-axis.
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Proof. The idea of the proof is based on evaluating the limits of eiλxσ3ξ±(x, λ)
and their derivatives eiλxσ3(dpξ±/dxp)(x, λ) for x→ ±∞ and for real λ.

Remark 3.3. As we mentioned in the beginning of this chapter, the condition
C1 can be substantially weakened. For example, if we require that q±(y) are
smooth functions such that

lim
y→±∞

|ypq±(y)| <∞ , (3.23)

then dnξ−/dλn will allow continuation onto the real λ-axis only for n < p.

As a basic tool in what follows, we shall use the fundamental analytic
solutions (FAS) of the ZS system (3.1), which are obtained by combining the
pairs of columns of the Jost solutions with the same analyticity properties:

χ+(x, λ) =
(

ϕ+, ξ+
)

exp(−iλσ3x) =
(

φ+, ψ+
)

χ−(x, λ) =
(

ξ−, ϕ−) exp(−iλσ3x) =
(

ψ−, φ−).
(3.24)

We mentioned already that any two fundamental solutions of (3.1) are
linearly related. Comparing (3.24) with (3.2) we obtain:

χ+(x, λ) = ψ(x, λ)
(

a+, 0
b+, 1

)

= φ(x, λ)
(

1, b−

0, a+

)

, (3.25a)

χ−(x, λ) = ψ(x, λ)
(

1, −b−
0, a−

)

= φ(x, λ)
(

a−, 0
−b+, 1

)

. (3.25b)

Since detψ = detφ = 1 from (3.2) we find:

detT (λ) = 1, i.e., a+a− + b+b− = 1, λ ∈ R . (3.26)

and from (3.25) we get:

detχ+(x, λ) = a+(λ), detχ−(x, λ) = a−(λ) . (3.27)

From (3.27), it follows that a+(λ) and a−(λ) are analytic functions of λ for
Imλ > 0 and Imλ < 0, respectively.

Let us make now analogous considerations for the system (3.6) associated
to (3.1). We can do this in two different ways. The first one is to write down
the corresponding set of integral equations and to analyze them as above. The
second, more “economic” approach, consists in using (3.3b) and the already
known results about the solutions of the ZS system. It is not difficult to
evaluate ψ̂(x, λ) – the inverse of the Jost solution ψ(x, λ) with the result:

ψ̂(x, λ) =
(

ψ+
2 −ψ+

1

−ψ−
2 ψ−

1

)

(x, λ) =
(

ψ̃+(x, λ)
−ψ̃−(x, λ)

)

, (3.28)
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where by “hat” we denote the inverse matrix: ψ̂ ≡ ψ−1. We have also in-
troduced the “tilde”-operation, which transforms any two-component vector

X =
(

X1

X2

)

into:

X̃ = (X2,−X1) = XT (−iσ2) . (3.29)

If we insert (3.28) into (3.3c) we have:
(

a+(λ), −b−(λ)
b+(λ), a−(λ)

)

=
(

ψ̃+(x, λ)
−ψ̃−(x, λ)

)

(

φ+, φ−) (x, λ) , (3.30)

where we must use the standard rules for multiplying block matrices. For
example, for the (1, 1)-element in the right-hand side of (3.30), we get:

a+(λ) = ψ̃+(x, λ)φ+(x, λ)
= (ψ+

2 φ
+
1 − ψ+

1 φ
+
2 )(x, λ) = W (ψ+, φ+) , (3.31)

i.e. we reproduce the well-known expression for a+(λ) as the Wronskian of
the two Jost solutions ψ+(x, λ) and φ+(x, λ).

Analogously, we can evaluate the inverses of χ̃+(x, λ) and χ̃−(x, λ) to find:

χ̂+(x, λ) =
1

a+(λ)

(

ψ̃+(x, λ)
−φ̃+(x, λ)

)

, (3.32a)

χ̂−(x, λ) =
1

a−(λ)

(

φ̃−(x, λ)
−ψ̃−(x, λ)

)

. (3.32b)

In particular, for the ratio of these two solutions on the real λ-axis, we get:

a+(λ)χ̂+(x, λ)χ−(x, λ) =
(

1 −b−(λ)
−b+(λ) 1

)

. (3.33)

In the next two chapters, we shall see that this relation plays an important
role.

We conclude that χ̂±(x, λ) ≡
(

χ±(x, λ)
)−1 are fundamental analytic solu-

tions of (3.6).
It should be noted that χ±(x, λ) and χ̂±(x, λ) are fundamental solutions

of (3.1) and (3.6), respectively, only if their determinants do not vanish, i.e.
if a±(λ) 	= 0. This cannot be ensured apriory for all λ with Im >< 0. However,
the number of zeroes of a±(λ) and their location is of crucial importance
for future constructions. In order to reasonably simplify our considerations,
we shall impose one more implicit condition on the potential q(x) of (3.1),
imposing requirements for the zeroes of a±(λ):

Condition C2. The potential q(x) of the system (3.1) is such that the
corresponding transition coefficients a+(λ) and a−(λ) have a finite number of
simple zeroes in their regions of analyticity located at λ±k :

{

λ±k : a±(λ±k ) = 0, Imλ±k
>< 0, k = 1, 2, . . . , N

}

. (3.34)
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Remark 3.4. It can be shown that the set of potentials satisfying conditions
C1 and C2 is dense in the manifold of all potentials.

3.2 The Spectrum of L

In order to find out what is the spectrum of the operator L, we shall use
the fundamental analytic solutions (3.25) and construct with their help the
resolvent of L. Let us introduce the functions:

R+(x, y, λ) =
1
i
χ+(x, λ)

(

−θ(y − x), 0
0, θ(x− y)

)

χ̂+(y, λ) , (3.35a)

R−(x, y, λ) =
1
i
χ−(x, λ)

(

θ(x− y), 0
0, −θ(y − x)

)

χ̂−(y, λ) , (3.35b)

where θ(x) is the step function

θ(x) =

⎧

⎨

⎩

1 for x > 0 ,
1/2 for x = 0 ,
0 for x < 0.

(3.36)

As known, dθ/dx = δ(x). Then:

1. R±(x, y, λ) satisfy the equation:

i
dR±

dx
+ (q(x)− λσ3)R±(x, y, λ) = δ(x− y)1l ; (3.37)

2. R±(x, y, λ) are analytic functions of λ for Imλ >< 0, respectively, at all
the points λ 	= λ±k . At the points λ±k R±(x, y, λ) have poles.

These are usual conditions, which the kernel of the resolvent of the operator
L (3.1) must satisfy. Now we define the resolvent by:

Rλf ≡
∫ ∞

−∞
dy R(x, y, λ)f(y) (3.38)

where the kernel is defined by:

R(x, y, λ) =

{

R+(x, y, λ), Imλ > 0 ,
R−(x, y, λ), Imλ < 0.

(3.39)

In order to ensure that the integral operator Rλ is well defined, we must
verify that R±(x, y, λ) fall off fast enough for x, y → ±∞. But for x, y →∞
we have:

χ+(x, λ) −→
x→∞

exp(−iλσ3x)
(

a+, 0
b+, 1

)

,

χ̂+(y, λ) −→
y→∞

(

1/a+, 0
−b+/a+, 1

)

exp(iλσ3y),
(3.40)
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and inserting this into (3.35) we get:

R+(x, y, λ) −→
x,y,→∞

1
i

(

−e−iλ(x−y)θ(y − x), 0
−eiλ(x+y)b+/a+, eiλ(x−y)θ(x− y)

)

. (3.41)

So, we conclude that for Imλ > 0 all the matrix elements of R+ fall off
exponentially when x and y tend independently to ∞. Analogously, we can
check for all the other combinations, e.g. for x→∞, y → −∞ etc. Thus, we
find that the kernel of the integral operator (3.38) falls off exponentially when
|x| and |y| tend to ∞ and Imλ 	= 0.

Defining the spectrum of L as usual as the complement to the set of the
points where Rλ is bounded, we see that all points λ 	= λ±k with Imλ 	= 0
are regular, i.e. do not belong to the spectrum of L. The points λ from the
real axis are not regular. Indeed for Imλ = 0 R±(x, y, λ) are only bounded
functions for |x| and |y| tending to ∞. Since in this case

R(x, y, λ) =
1
2
(

R+(x, y, λ) +R−(x, y, λ)
)

, Imλ = 0 , (3.42)

the corresponding integral operator (3.38) is not bounded. In other words, the
continuous spectrum of L fills up the whole real axis.

The resolvent Rλ has also other types of singularities in λ, which are
localized at the zeroes of a±(λ). Indeed from (3.27), it follows that χ̂±(y, λ)
have pole singularities at λ±k (3.34), whose locations do not depend on y. In
view of condition C2 and (3.35), we conclude that Rλ has simple poles at λ±k .
This means that λ±k are simple discrete eigenvalues of the operator L.

Conclusion 3.5 The continuous spectrum of L fills up the real axis R in
the complex λ-plane; since for each value of λ ∈ R (3.1) has two linearly
independent solutions (e.g. ψ+ and ψ− then the continuous spectrum of L is
doubly degenerate. The discrete spectrum of L is located at the zeroes of a+(λ)
in the upper half-plane and at the zeroes of a−(λ) in the lower half-plane.

Remark 3.6. Note that there are cases when the functions a±(λ) do not have
zeroes, and then the operator L has no discrete eigenvalues. As an example,
we give here the case when q− = −q+∗. Then the linear system (3.1) reduces
to the eigenvalue problem for a self-adjoint operator, whose spectrum can be
located only on the real axis; at the same time the continuous spectrum fills
up the whole axis.

Condition C2 we have imposed states that a+(λ) and a−(λ) have the
same number of zeroes. Although we do not know of a theorem stating this
fact for generic potentials q(x) (i.e. potentials without additional involutions),
we also do not know counterexamples. All explicit procedures for adding new
discrete eigenvalues to the spectrum of L (such as the Bäcklund transforma-
tion method, the dressing method etc., the Gel’fand–Levitan equation) always
add pairs of eigenvalues λ+

k and λ−k , Imλ±k
>< 0.



3.2 The Spectrum of L 79

Let us now consider the behavior of the solutions χ± in the neighborhood
of the points λ±k . Since detχ±(x, λ±k ) = a±(λ±k ) = 0, the columns of these
solutions must be linearly dependent. Therefore:

φ+(x, λ+
k ) = b+k ψ

+(x, λ+
k ), φ−(x, λ−k ) = −b−k ψ−(x, λ−k ) , (3.43)

or briefly:

φ±
k (x) = ±b±k ψ

±
k (x), (3.44)

where

φ±
k (x) = φ±(x, λ±k ), ψ±

k (x) = ψ±(x, λ±k ) . (3.45)

At the points λ±k , the system (3.1) has just one solution. We remind that χ±

for x→ ±∞ have the following asymptotic behavior (see (3.25)):

χ+(x, λ) −→
x→∞

exp(−iλσ3x)
(

a+ 0
b+ 1

)

,

Imλ � 0
χ+(x, λ) −→

x→−∞
exp(−iλσ3x)

(

1 b−

0 a+

)

,

(3.46)

χ−(x, λ) −→
x→∞

exp(−iλσ3x)
(

1 −b−
0 a−

)

,

Imλ � 0
χ−(x, λ) −→

x→−∞
exp(−iλσ3x)

(

a− 0
−b+ 1

)

,

(3.47)

Strictly speaking, these limits hold true for all λ ∈ C± only in the case of
potentials on compact support. If the potential q(x) falls off exponentially
with |x| → ∞, then (3.46), (3.47) hold only in a strip around the real axis.
For generic potentials these limits hold only on the real axis.

Remark 3.7. In the study of the properties of the ZS system we use the follow-
ing tactics: (i) first, we derive the given property for potentials on compact
support; (ii) next, we consider the limit when the support of q(x) expands to
cover the whole x-axis. The last step in most cases will be skipped; to per-
form it rigorously, a study of the corresponding system of integral equations
(3.7), (3.8) and (3.9) is required. In detail, the methods for investigating the
asymptotic behavior of χ± both for |x| → ∞ and |λ| → ∞ are explained in
[5, 3].

The above approach can be generalized in order to include the case of
discrete eigenvalues with multiplicities greater than 1. This does not cause
any additional difficulties, but the corresponding formulae become much more
involved. Besides, this case can be obtained as the limit when two simple
eigenvalues approach each other. Another reason to limit ourselves with the
potentials satisfying C2 is that the manifold of C2-potentials is dense in the
manifold of all potentials (smooth and tending fast enough to 0 for |x| →
∞) of L.
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3.3 Asymptotic Behavior for λ → ∞

One of the basic methods used in this part is the so-called contour integration
method. To do this, we shall need not only the analytic properties of the
solutions χ±(x, λ), but also their behavior for λ→∞.

Let us denote by η±(x, λ) = χ±(x, λ) exp(iλσ3x); obviously the functions
satisfy (3.4):

i
dη±

dx
+ q(x)η± − λ[σ3, η

±(x, λ)] = 0 . (3.48)

In the simplest case, when q(x) ≡ 0 the Jost solutions of this equation are
η±(x, λ) = 1l. In the generic case, η±(x, λ) are analytic functions of λ for
λ ∈ C±. For λ = ∞, they allow asymptotic expansions over the inverse powers
of λ of the form:

η±(x, λ) = 1l +
∞
∑

k=1

η±k (x)λ−k, λ ∈ C± . (3.49)

If we insert (3.49) into (3.48), we get the following relations:

q(x)− [σ3, η
±
1 (x)] = 0 , (3.50a)

for η±1 , which can be considered as the initial condition, and

i
dη±k
dx

+ q(x)η±k (x)− [σ3, η
±
k+1(x)] = 0 . (3.50b)

The form of these recurrent relations is close to the one for Vk(x, t); see (3.7).
So, they are solved in an analogous way by splitting η±k (x):

η±k (x) =
(

η±k (x)
)d +

(

η±k (x)
)f (3.51)

into diagonal and off-diagonal part. There is, however, an important difference:
η±(x, λ) are elements of the Lie group SL(2), not of the Lie algebra sl(2), so
(η±)d are not proportional to σ3. The initial condition (3.50) gives:

(

η+
1 (x)

)f =
(

η−1 (x)
)f =

1
4
[σ3, q(x)] (3.52)

and the diagonal part of (3.50b) with k = 1 gives:

i
d

dx

(

η±1 (x)
)d + q(x)

(

η±1 (x)
)f = 0 , (3.53)

which can easily be integrated, since
(

η±1 (x)
)f is already known from (3.52).

In the integration, we have to take into account the behavior of η±(x, λ) for
x→ ±∞, see (3.46) and (3.47). Thus we obtain:
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η+
1 (x) =

1
2

(

−i
∫ x

−∞ dy q+q−(y), q+(x)
−q−(x), i

∫ x

∞ dy q−q+(y)

)

, (3.54)

and

η−1 (x) =
1
2

(

−i
∫ x

∞ dy q+q−(y), q+(x)
−q−(x), i

∫ x

−∞ dy q+q−(y)

)

. (3.55)

Continuing this procedure, we subsequently find η±2 (x), η±3 (x), . . . etc. As a
bonus, knowing η±1 (x) from (3.46), (3.47) and (3.54), and (3.55), we can find
the first nontrivial coefficients in the expansions of a±(λ) and b±(λ) over the
inverse powers of λ:

a+(λ) = lim
x→∞

(

η+(x, λ)
)

11
= 1− i

2λ

∫ ∞

−∞
dy q+q−(y) +O

(

λ−2
)

,

a−(λ) = lim
x→∞

(

η−(x, λ)
)

22
= 1 +

i

2λ

∫ ∞

−∞
dy q+q−(y) +O

(

λ−2
)

,
(3.56)

and

b+(λ) = lim
x→∞

(

η+(x, λ)
)

21
e2iλx = O

(

1
λ

)

,

b−(λ) = − lim
x→∞

(

η−(x, λ)
)

12
e−2iλx = O

(

1
λ

)

,
(3.57)

3.4 The Dispersion Relation for a±(λ)

Here, we shall apply the contour integration method to the diagonal elements
of T (λ). As a result, we shall show that a±(λ) are not independent but can be
determined by the locations of their zeroes λ±k and by the reflection coefficients
ρ±(λ) = b±/a±(λ), λ ∈ R of the system (3.1).

We already required that a±(λ) have only simple zeroes (condition C2)
in their regions of analyticity. From (3.56), we see that a±(λ) tend to 1 for
λ→∞. Then we can introduce the functions:

f+(λ) =
N
∏

k=1

λ− λ−k
λ− λ+

k

a+(λ), f−(λ) =
N
∏

k=1

λ− λ+
k

λ− λ−k
a−(λ) , (3.58)

which have the same asymptotic behavior for λ → ∞ as a±(λ), i.e. f±(λ) =
1 +O(1/λ) and have no zeroes in their regions of analyticity. Then the func-
tions ln f±(λ), where ln is the principal branch of the logarithm, are well
defined and analytic for Imλ >< 0, respectively, and tend to 0 for λ → ∞
fast enough. Let us now apply the Cauchy theorem to the integrals of these
functions along the contours C±; see Fig. 3.1.

The contours C±,R are defined as follows: (a) C+,R consists of the segment
[−R+ i0, R+ i0] and the semicircle D+

R of radius R and centered at the origin
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λ

C+,∞

C–,∞

Fig. 3.1. The contours C± = R ∪ C±,∞ of integrations

oriented anti-clockwise. (b) C−,R consists of the segment [−R− i0, R− i0] and
the semicircle D−

R of radius R and centered at the origin oriented clockwise.
When R tends to ∞ the segments fill in the real axis and the semicircles D±

R

go to the infinite arcs C±,∞. Then C± = R ∪ C±,∞ and

1
2πi

∮

C+

dμ

μ− λ
ln f+(μ) = ln f+(λ), for Imλ > 0 (3.59a)

1
2πi

∮

C−

dμ

μ− λ
ln f−(μ) = 0, for Imλ > 0 . (3.59b)

The integrals in the left-hand sides can be calculated directly by integrating
along the contours. Note that the integration along the infinite semiarcs gives
no contribution, since ln f±(λ) tends to zero fast enough for λ→∞. Summing
up the two integrals we get for λ ∈ C+:

ln f+(λ) =
1

2πi

∫ ∞

−∞

dμ

μ− λ

(

ln f+(μ) + ln f−(μ)
)

. (3.60)

It remains to replace f±(λ) by their definitions (3.58) to obtain:

ln a+(λ) =
1

2πi

∫ ∞

−∞

dμ ln
(

a+(μ)a−(μ)
)

μ− λ
+

N
∑

k=1

ln
λ− λ+

k

λ− λ−k
. (3.61)

Analogous calculations can be done also for λ ∈ C−. Taking into account
that the contour C− is negatively orientated, we have:

− ln a−(λ) =
1

2πi

∫ ∞

−∞

dμ ln
(

a+(μ)a−(μ)
)

μ− λ
+

N
∑

k=1

ln
λ− λ+

k

λ− λ−k
. (3.62)
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λ

Cε,+

Cε,–

λ

C+,∞

C–,∞

Fig. 3.2. The contours C± = R ∪ Cε,± ∪ C±,∞ of integrations in the case when λ
is on the real axis

The case when λ ∈ R requires a bit more attention. The contours C+ and
C− now have to be chosen slightly deformed in the neighborhood of λ, as
shown in Fig. 3.2. Then both integrals:

∮

C±

dμ

μ− λ
ln f±(μ) = 0 , (3.63)

vanish, since the integrands have no singularities lying inside the contours.
The integration along the real axis, however, gives additional contributions
coming from the integrations along the small semi-circles surrounding λ:

0 =
1

2πi

∮

C+

dμ ln f+(μ)
μ− λ

=
1

2πi
−
∫ ∞

−∞

dμ ln f+(μ)
μ− λ

− 1
2

ln f+(λ) , (3.64a)

0 =
1

2πi

∮

C−

dμ ln f−(μ)
μ− λ

=
1

2πi
−
∫ ∞

−∞

dμ ln f−(μ)
μ− λ

+
1
2

ln f−(λ), (3.64b)

where by −
∫∞
−∞ we denote the principal value integral. Summing up (3.64a)

and (3.64b) and replacing f±(λ) by the right-hand sides of (3.58) we get:

1
2

ln
a+(λ)
a−(λ)

=
1

2πi
−
∫ ∞

−∞

dμ ln(a+(μ)a−(μ))
μ− λ

+
N
∑

k=1

ln
λ− λ+

k

λ− λ−k
. (3.65)

In short, (3.61), (3.62), and (3.65) can be written as:

A(λ) =
1

2πi
−
∫ ∞

−∞

dμ ln(a+(μ)a−(μ))
μ− λ

+
N
∑

k=1

ln
λ− λ+

k

λ− λ−k
, (3.66)



84 3 The Direct Scattering Problem

where A(λ) is a piecewise analytic function of λ defined by:

A(λ) =

⎧

⎨

⎩

ln a+(λ), Imλ > 0 ,
1
2 ln

(

a+(λ)/a−(λ)
)

, Imλ = 0 ,
− ln a−(λ), Imλ < 0.

(3.67)

These formulae which allow one to recover the functions a±(λ) in their whole
regions of analyticity are known as the dispersion relations.1

3.5 Minimal Sets of Scattering Data

The derivation of the dispersion relations for a±(λ) demonstrates the advan-
tage of the analytic functions – the possibility to reconstruct them in their
whole domain of analyticity knowing just their values on the boundaries of
this domain and the residues at their pole singularities. In this section, we
shall make use of the analyticity of a±(λ) and will show that in fact all ma-
trix elements of T (λ) can be determined uniquely from each of the following
minimal sets of scattering data:

T1 ≡
{

ρ+(λ), ρ−(λ), λ ∈ R, λ±k , C
±
k , k = 1, . . . , N

}

, (3.68a)

T2 ≡
{

τ+(λ), τ−(λ), λ ∈ R, λ±k ,M
±
k , k = 1, . . . , N

}

, (3.68b)

Here, we have used the following notations:

ρ±(λ) =
b±(λ)
a±(λ)

, τ±(λ) =
b∓(λ)
a±(λ)

, λ ∈ R . (3.69)

The functions ρ±(λ) are known in the literature as the reflection coefficients
corresponding to the potential q(x), λ±k are the discrete eigenvalues of L and

C±
k =

b±k
ȧ±k

, M±
k =

1
b±k ȧ

±
k

, ȧ±k =
da±

dλ

∣

∣

∣

∣

λ=λ±
k

, (3.70)

for k = 1, . . . , N, characterize the normalization of the corresponding Jost
solutions ψ±

k (x) and φ±
k (x).

In order to demonstrate how a+(λ) and a−(λ) can be recovered from
T1, we divide both parts of the “unitarity” condition (3.26) by a+a−; this
immediately produces:

1 + ρ+(λ)ρ−(λ) =
1

a+(λ)a−(λ)
. (3.71)

Next, we insert (3.71) into (3.66) and rewrite the dispersion relation in the
form:
1 This is not to be mixed up with the dispersion law f(λ) in (2.54), (2.55) which

determines the evolution of the scattering data.
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A(λ) =
i

2
−
∫ ∞

−∞

dμ η(μ)
μ− λ

+
N
∑

k=1

ln
λ− λ+

k

λ− λ−k
, (3.72a)

where
η(μ) =

1
π

ln
(

1 + ρ+(μ)ρ−(μ)
)

. (3.72b)

If we take subsequently Imλ > 0 and Imλ < 0 in (3.72) and exponentiate
both sides we find:

a+(λ) =
N
∏

k=1

λ− λ+
k

λ− λ−k
exp

(

i

2

∫ ∞

−∞

dμ η(μ)
μ− λ

)

, (3.73)

Imλ > 0 ,

a−(λ) =
N
∏

k=1

λ− λ−k
λ− λ+

k

exp
(

− i

2

∫ ∞

−∞

dμ η(μ)
μ− λ

)

, (3.74)

Imλ < 0 .

As for real λ from the dispersion relation we conclude that:
√

a+(λ)
a−(λ)

=
N
∏

k=1

λ− λ+
k

λ− λ−k
exp

(

i

2
−
∫ ∞

−∞

dμ η(μ)
μ− λ

)

. (3.75)

Using (3.71) we get:

a+(λ) =
1

√

1 + ρ+(λ)ρ−(λ)

N
∏

k=1

λ− λ+
k

λ− λ−k
exp

(

i

2
−
∫ ∞

−∞

dμ η(μ)
μ− λ

)

,

and

a−(λ) =
1

√

1 + ρ+(λ)ρ−(λ)

N
∏

k=1

λ− λ−k
λ− λ+

k

exp
(

− i

2
−
∫ ∞

−∞

dμ η(μ)
μ− λ

)

,

Next, from the definition of the reflection coefficients (3.69), we also recover
b±(λ), since:

b±(λ) = ρ±(λ)a±(λ) (3.76)

=
ρ±(λ)

√

1 + ρ+(λ)ρ−(λ)

N
∏

k=1

λ− λ±k
λ− λ±k

exp
(

± i

2
−
∫ ∞

−∞

dμ η(μ)
μ− λ

)

.

Thus, we established that the all matrix elements of the scattering matrix
T (λ) of the ZS system L (3.1) can be reconstructed from T1 (3.68a).

Finally, we remark that from the unitarity condition (3.26) and from (3.69)
there follows:

1 + τ+(λ)τ−(λ) = 1 + ρ+(λ)ρ−(λ) =
1

a+(λ)a−(λ)
, (3.77)

for λ ∈ R. Then following similar arguments as above, we can reconstruct
T (λ) also from T2.
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3.6 Spectral Representations of the Jost Solutions

It is natural to expect that from the analyticity properties of the Jost solutions
one should be able to derive in analogous way dispersion relations like the ones
for a±(x, λ). This indeed can be done by using the same methods.

We start from the linear relations between the Jost solutions (3.2c), which
we rewrite in an equivalent form:

1
a−(λ)

φ−(x, λ) = ψ+(x, λ)− ρ−(λ)ψ−(x, λ) , (3.78a)

1
a+(λ)

φ+(x, λ) = ψ−(x, λ) + ρ+(λ)ψ+(x, λ) . (3.78b)

Next, we multiply (3.78a) by e−iλx and (3.78b) by eiλx to obtain:

1
a−(λ)

ϕ−(x, λ) = ξ+(x, λ)− ρ−(λ)e−2iλxξ−(x, λ) , (3.79a)

1
a+(λ)

ϕ+(x, λ) = ξ−(x, λ) + ρ+(λ)e2iλxξ+(x, λ) . (3.79b)

We now apply the contour integration method to the following integrals:

J1(x, λ) =
1

2πi

(

∮

C+

dμϕ+(x, μ)
(μ− λ)a+(μ)

−
∮

C−

dμ ξ−(x, μ)
μ− λ

)

, (3.80a)

J2(x, λ) =
1

2πi

(

∮

C+

dμ ξ+(x, μ)
μ− λ

−
∮

C−

dμϕ−(x, μ)
(μ− λ)a−(μ)

)

, (3.80b)

We shall outline some of the details only for the case when we consider
J2(x, λ) with Imλ > 0. Applying Cauchy theorem, we have to keep in mind
that (i) 1/a+(λ) has simple poles at λ = λ+

k ; (ii) 1/a−(λ) has simple poles at
λ = λ−k ; (iii) φ−(x, λ) and ξ+(x, λ) have no poles, and therefore the integrand
of the first integral in J2(x, λ) has only a simple pole at λ = μ, and iv) the
contour C+ is positively oriented, while C− is a negatively orientated contour.
Thus we get:

J2(x, λ) = ξ+(x, λ) +
N
∑

k=1

ϕ−
k (x)

(λ−k − λ)ȧ−k
. (3.81)

Remark 3.8. Here and below, by ϕ±
k (x), ξ±k (x) etc., we denote the values of

the functions ϕ±(x, λ), ξ±(x, λ) etc. for λ = λ±k , i.e.:

ϕ±
k (x) = ϕ±(x, λ±k ), ξ±k (x) = ξ±(x, λ±k ).

Integrating over the infinite arcs, we make use of the asymptotics of ξ+(x, λ)
and ϕ−(x, λ) to get:
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1
2πi

∮

C+
∞

dλ

λ− μ
ξ+(x, λ)− 1

2πi

∮

C−
∞

dλ

λ− μ

ϕ−(x, λ)
a−(λ)

=
1

2πi

∮

C+
∞

dλ

λ− μ

(

0
1

)

− 1
2πi

∮

C−
∞

dλ

λ− μ

(

0
1

)

=
(

0
1

)

(3.82)

Finally, the integral along the real axis is evaluated with the help of (3.79a)
to be equal to:

1
2πi

∫ ∞

−∞

dλ

λ− μ

(

ξ+(x, λ)− ϕ−(x, λ)
a−(λ)

)

=
1

2πi

∫ ∞

−∞

dλ

λ− μ
ρ−(λ)e−2iλxξ−(x, λ) , (3.83)

which leads to the following integral representation for ξ+(x, λ):

ξ+(x, λ) =
(

0
1

)

+
1

2πi

∫ ∞

−∞

dμ

μ− λ
ρ−(μ)e−2iμxξ−(x, μ)

+
N
∑

k=1

ϕ−
k (x)

ȧ−k (λ− λ−k )
. (3.84)

It remains to use the relations (3.43), which after multiplying by the corre-
sponding exponential factors take the form:

ϕ+
k (x) = b+k e

2iλ+
k xξ+k (x), ϕ−

k (x) = −b−k e−2iλ−
k xξ−k (x) . (3.85)

Thus, we find:

ξ+(x, λ) =
(

0
1

)

+
1

2πi

∫ ∞

−∞

dμ

μ− λ
ρ−(μ)e−2iμxξ−(x, μ)

−
N
∑

k=1

C−
k e

−2iλ−
k xξ−k (x)

λ− λ−k
, λ ∈ C+ , (3.86)

where the constants C±
k are introduced in (3.70).

Skipping the details, we just give the result which is obtained from working
out the integral J2(x, λ) (3.80b) with λ ∈ C−:

ξ−(x, λ) =
(

1
0

)

+
1

2πi

∫ ∞

−∞

dμ

μ− λ
ρ+(μ)e2iμxξ+(x, μ)

+
N
∑

k=1

C+
k e

2iλ+
k xξ+k (x)

λ− λ+
k

, λ ∈ C− . (3.87)

Now, it is clear why the manifold T1 (3.68a) can be considered as the mini-
mal set of scattering data. Indeed, T1 is nothing else but the set of coefficients,
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determining the system (3.86), (3.87), which is a system of singular integral
equations for the Jost solutions ξ+(x, λ) and ξ−(x, λ). This system admits
unique solution, so T1 determines uniquely the Jost solutions ξ±(x, λ). We
skip the details of the proof; below we shall prove it by other means.

Quite analogously, one can derive the integral representation for the other
pair of Jost solutions ϕ±(x, λ):

ϕ−(x, λ) =
(

0
1

)

+
1

2πi

∫ ∞

−∞

dμ

μ− λ
ϕ+(x, λ)τ+(μ)e−2iμx

−
N
∑

k=1

M+
k

λ+
k − λ

e−2iλ+
k xϕ+

k (x), λ ∈ C− , (3.88)

ϕ+(x, λ) =
(

1
0

)

+
1

2πi

∫ ∞

−∞

dμ

μ− λ
ϕ−(x, λ)τ−(μ)e2iμx

+
N
∑

k=1

M−
k

λ−k − λ
e2iλ−

k xϕ−
k (x), λ ∈ C+ , (3.89)

and the constants M±
k are given in (3.70).

Thus, we find that T2 (3.68b) is actually the set of coefficients determining
the system (3.89), (3.88), which again can be viewed as a system of singular
integral equations for the Jost solutions ϕ±(x, λ). It has unique solution and
therefore T2 determines uniquely the Jost solutions ϕ±(x, λ).

3.7 Completeness of the Jost Solutions

It is well known that for any self-adjoint operator A acting on the Hilbert
space H, one can introduce a spectral measure and then prove the spectral
theorem. This is done with the help of a family of self-adjoint commuting
projectors Eu, u ∈ R, such that:

EuEv = Es, s = min{u, v} . (3.90)

Roughly speaking, the subspace EuH ⊂ H is a direct sum of all eigenspaces
of A corresponding to the eigenvalues v ≤ u, which in this case must are real.
The set of projectors Es is called a decomposition of the unity. This means
that any element g ∈ H can be represented as

g =
∫ ∞

−∞
dEu · g , (3.91)

where dEu is the spectral measure. Then the operator A can be written down
as the following Lebesque–Stieltjes integral:

A · g =
∫ ∞

−∞
u dEu · g (3.92)
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for any element g ∈ H; This provides the spectral decomposition of A.
As a simple and well-known example of such decomposition, one can view

the usual Fourier integral decomposition:

g(x) =
1
2π

∫ ∞

−∞
dλ eiλxg̃(λ) , (3.93)

In this case

dEuf =
1
2π

∫ ∞

−∞
eiu(x−y)f(y)dy (3.94)

1
i

dg(x)
dx

=
1
2π

∫ ∞

−∞
dλλeiλxg̃(λ) . (3.95)

Thus, the Fourier transform is the spectral decomposition of the operator
−id/dx.

Unfortunately, such decompositions are usually proved only for self-adjoint
and unitary operators. As it is the ZS system is neither unitary nor self-adjoint,
so we cannot use general methods developed for proving the spectral theorem.

Below we prove the completeness relation of the Jost solution of L, which is
the analog of (3.91). Our proof, although not that rigorous, has, however, other
advantages. The first is that it can be applied to a wider class of operators,
not necessarily self-adjoint or unitary. The second advantage is that we can
obtain explicit expressions for the corresponding projection operators Eu in
terms of the Jost solutions of L.

Our derivation uses again the contour integration method. Now, we apply
it to the integral:

JR(x, y) =
1

2πi

(

∮

C+

dλR+(x, y, λ)−
∮

C−

dλR−(x, y, λ)

)

=
N
∑

k=1

(

Res
λ=λ+

k

R+(x, y, λ) + Res
λ=λ−

k

R−(x, y, λ)

)

, (3.96)

where R±(x, y, λ) provided by (3.35) determine the kernel of the resolvent
of L.

At the points of the discrete spectrum, i.e. in the neighborhood of λ±k , we
have:

a±(λ) = (λ− λ±k )ȧ±k +
1
2
(λ− λ±k )2ä±k + · · · , (3.97)

χ+(x, λ+
k ) ≡ χ+

k (x) = ψ+
k (b+k , 1) = φ+

k (x)(1, 1/b+k ) , (3.98)

χ̂+(x, λ+
k ) �

(

1
−b+k

)

ψ̃+
k (x)

(λ− λ+
k )ȧ+

k

=
(

1/b+k
−1

)

φ̃+
k (x)

(λ− λ+
k )ȧ+

k

, (3.99)

χ−(x, λ−k ) ≡ χ−
k (x) = ψ−

k (1, −b−k ) = φ−
k (x)(−1/b−k , 1) , (3.100)



90 3 The Direct Scattering Problem

χ̂−(x, λ−k ) � −
(

b−k
1

)

ψ̃−
k (x)

(λ− λ−k )ȧ−k
=
(

1
1/b−k

)

φ̃−
k (x)

(λ− λ−k )ȧ−k
, (3.101)

Here, like in Remark 3.8 φ̃−
k (x), . . . denote the values of the corresponding

functions for λ = λ±k .
In (3.97), we just used the analyticity properties of a±(λ) and the C2

condition. To derive (3.98), (3.99), (3.100) and (3.101), we used (3.43) and
(3.44).

Then, we can find the residues of the resolvent kernel:

Res
λ=λ±

k

R±(x, y, λ) = lim
λ→λ±

k

R±(x, y, λ)

= ±iφ
±
k (x)ψ̃±

k (y)
ȧ±k

. (3.102)

Now, we calculate the jump of R(x, y, λ) on the real λ-axis. From (3.35)
we have:

R±(x, y, λ) =
i

2
ε(x− y)χ±(x)χ̂±(y)∓ i

2
χ±(x)σ3χ̂

±(y) , (3.103)

where ε(x− y) = θ(x− y)− θ(y − x), i.e.

R+(x, y, λ) − R−(x, y, λ) =
i

2
ε(x− y)

(

χ+(x)χ̂+(y)− χ−(x)χ̂−(y)
)

− i

2
(

χ+(x)σ3χ̂
+(y) + χ−(x)σ3χ̂

−(y)
)

. (3.104)

But

χ+(x)χ̂+(y) = ψ(x)ψ̂(y) = χ−(x)χ̂−(y) (3.105)

so

R+(x, y, λ)−R−(x, y, λ) = − i

2
(

χ+(x)σ3χ̂
+(y)− χ−(x)σ3χ̂

−(y)
)

= − i

2
(

χ+(x)(1l + σ3)χ̂+(y) + χ−(x)(1l− σ3)χ̂−(y)
)

= −i
(

φ+(x, λ)ψ̃+(y, λ)
a+(λ)

+
φ−(x, λ)ψ̃−(y, λ)

a−(λ)

)

. (3.106)

Finally, the integrals over the arcs of the infinite circle are calculated ex-
plicitly by using the asymptotics of the FAS for λ→∞:

χ±(x, λ) = e−iλσ3x (1l +O(1/λ)) (3.107)
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i.e.

R+
as(x, y, λ) =

1
i
e−iλσ3x

(

−θ(y − x) 0
0 θ(x− y)

)

eiλσ3y , (3.108a)

R−
as(x, y, λ) =

1
i
e−iλσ3x

(

θ(x− y) 0
0 −θ(y − x)

)

eiλσ3y , (3.108b)

since the terms of order 1/λ and higher do not contribute to the integrals.
Consequently

1
2πi

(

∮

C+,∞

dλR+
as(x, y, λ)−

∮

C−,∞

dλR−
as(x, y, λ)

)

=
1
2π
σ3

∫ ∞

−∞
dλ e−iλσ3(x−y)

= δ(x− y)σ3 . (3.109)

Combining the relations (3.96), (3.102), (3.106), and (3.109) leads to the
following expressions for JR(x, y):

JR(x, y)

= δ(x− y)σ3 −
1
2π

∫ ∞

−∞
dλ

(

φ+(x, λ)ψ̃+(y, λ)
a+(λ)

+
φ−(x, λ)ψ̃−(y, λ)

a−(λ)

)

= i

N
∑

k=1

(

φ+
k (x)ψ̃+

k (y)
ȧ+

k

− φ−
k (x)ψ̃−

k (y)
ȧ−k

)

(3.110)

and, hence, to the following completeness relation:

δ(x− y)1l =
1
2π

∫ ∞

−∞
dλ

(

φ+(x, λ)ψ̃+(y, λ)
a+(λ)

+
φ−(x, λ)ψ̃−(y, λ)

a−(λ)

)

σ3

+i
N
∑

k=1

(

φ+
k (x)ψ̃+

k (y)
ȧ+

k

− φ−
k (x)ψ̃−

k (y)
ȧ−k

)

σ3 . (3.111)

Then, every vector function Y (x) =
(

Y1

Y2

)

, whose components are smooth

and fall off fast enough for x→ ±∞, can be expanded over the Jost solutions
of L in the form:

Y (x) =
1
2π

∫ ∞

−∞
dλ
(

φ+(x, λ)y+(λ) + φ−(x, λ)y−(λ)
)

+i
N
∑

k=1

(

φ+
k (x)y+

k − φ−
k (x)y−k

)

, (3.112)

where the expansion coefficients are given by:
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y±(λ) =
1

a±(λ)

∫ ∞

−∞
dy ψ̃±(y, λ)σ3Y (y) , (3.113a)

y±k =
1
ȧ±k

∫ ∞

−∞
dy ψ̃±

k (y)σ3Y (y) . (3.113b)

From (3.112) we see that

LY (x) =
1
2π

∫ ∞

−∞
dλλ

(

φ+(x, λ)y+(λ) + φ−(x, λ)y−(λ)
)

+i
N
∑

k=1

(

λ+
k φ

+
k (x)y+

k − λ−k φ
−
k (x)y−k

)

. (3.114)

The completeness relation (3.111) is the analog of (3.91) while (3.114)
generalizes (3.92).

3.8 Comments and Bibliographical Review

1. The direct and the inverse scattering problems for the Sturm-Liouville
equation (1.5) have appeared as important physical problems in the con-
text of quantum mechanics in the 1950s. Note that for real-valued poten-
tials the operator (1.5) is self-adjoint, which allows for rigorous spectral
analysis along the lines of the monographs [6, 7]; see also [8, 9, 10].

A fundamental property of the Jost solutions lies in the fact that each of
the columns ψ±(x, λ) and φ±(x, λ) allow analytic continuation for λ ∈ C±.
Detailed proof of this can be found in the monographs [2, 4, 5, 11, 12, 13,
14] and in many of the review papers.

The spectral theory of self-adjoint and unitary operators is a well-
developed area of mathematical analysis; see [15, 16]. However, as a rule,
the Lax operators that are important for the NLEE are neither self-adjoint
nor unitary. It does not seem realistic to us to generalize the rigorous
methods of the spectral analysis to generic non-self-adjoint operators. In-
deed, there are well-known examples showing that there exist non-self-
adjoint operators with smooth potentials on finite support, whose discrete
spectrum contains infinitely many discrete eigenvalues.

In order to simplify matters, we introduced the two rather restrictive
conditions C.1 and C.2. We are aware that condition C.2 is a strong
implicit condition on potential q(x). Nevertheless, we proceed with it for
three reasons:

R1. The manifold of potentials satisfying both C.1 and C.2 is not
empty; in particular we are able to construct explicitly an infinite number
of such potentials.

R2. One can establish the analyticity properties of the Jost solutions
for these potentials and then use them for solving both the direct and the
inverse scattering problems for L.
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R3. This approach allows us to analyze and derive the fundamental
properties of the corresponding class of NLEE. In a large number of cases,
the derived solutions of these NLEE have physical significance, which was
our motivation to continue with the research.

For this special class of ordinary differential operators, whose potential
satisfies both conditions C.1 and C.2, one is able to construct the spectral
theory also in cases when they are neither self-adjoint nor unitary. The
basic tool for this is the notion of the fundamental analytic solution (FAS).
For the ZS system, it is easily constructed by combining the Jost solutions
with similar analyticity properties. For the generalized sl(n) ZS system
(1.15) with real J = diag (a1, . . . , an), ak > aj for k < j, this important
result was obtained by Shabat [17, 18]. It was generalized for the case of
g � sl(n) and complex-valued aj by Mikhailov [19], Caudrey [20, 21], and
Beals and Coifman [22, 23, 24, 25, 26]; for any simple Lie algebra, see [27].
In all these cases, it is possible to follow [28] to construct the kernel of the
resolvent of L in terms of FAS using the contour integration method to
derive the completeness relation for the eigenfunctions of L. In fact, this
relation provides the spectral decomposition for L.

2. Both the direct and the inverse scattering problems for the Sturm-Liouville
equation (1.5) have appeared as important physical problems in the con-
text of quantum mechanics in the 1950s when most of the fundamental
results, including the famous Gel’fand–Levitan–Marchenko (GLM) equa-
tion, were obtained; see monographs [6, 7]. For a concise explanation and
derivation of the direct scattering problem, see [5, 6, 7, 15, 29, 30, 31, 32,
33, 34, 35, 36]. The derivation and the analysis of the GLM equation can
be found in [2, 3, 4, 5, 12, 13, 14, 37, 38].

3. The spectral theory of linear differential operators is well developed for
two important classes of operators: self-adjoint and unitary; see [16, 34].
Here, we demonstrate how this theory can be extended for ordinary dif-
ferential operators that are neither self-adjoint nor unitary. The corre-
sponding spectral densities in our case are expressed explicitly in terms of
the FAS of L(λ). These results can be generalized also for the generalized
Zakharov–Shabat system [28], for the polynomial bundles [39, 40, 41, 42],
and others.
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4

The Inverse Scattering Problem
for the Zakharov–Shabat System

In this chapter, we outline several approaches to the solution of the inverse
scattering problem (ISP) for the ZS system. In the first two sections, we
explain the classical approach to the problem based on the Gel’fand–Levitan–
Marchenko equation. There we explain two different ways of deriving this
equation.

In Sect. 4.3, we show that the ISP for the ZS system is equivalent to a
(possibly singular) Riemann–Hilbert problem.

The next two Sects. 4.4 and 4.5, are devoted to two different versions of
the Zakharov–Shabat dressing method, which is the most effective method
for deriving the reflectionless potentials and the soliton solutions of the cor-
responding NLEE.

4.1 Derivation of the GLM Equation

A basic notion in the classical approach to the inverse scattering problem is
the notion of the transformation operators, which are introduced by:

ψ(x, λ) ≡ (1l + K+)e−iλσ3x

= e−iλσ3x +
∫ ∞

x

dyK+(x, y)e−iλσ3y , (4.1a)

φ(x, λ) ≡ (1l + K−)e−iλσ3x

= e−iλσ3x +
∫ x

−∞
dyK−(x, y)e−iλσ3y , (4.1b)

In other words, the transformation operators K± are Volterra-type integral
operators, which transform the “plane wave” e−iλσ3x into the corresponding
Jost solution of L. Their kernels K±(x, y) are 2 × 2 matrix functions. The
existence of such operators will become clear in the sequel.

Gerdjikov, V.S. et al.: The Inverse Scattering Problem for the Zakharov–Shabat System. Lect.

Notes Phys. 748, 97–132 (2008)
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The representations (4.1) for the Jost solutions are valid for any real value
of the spectral parameter λ. The relations (4.1), which are in matrix form can
be rewritten for each of the two columns ψ±(x, λ) and φ±(x, λ) separately.
After multiplying with the factors e∓iλx we cast them in equivalent form:

ξ+(x, λ) =
(

0
1

)

+
∫ ∞

x

dyK
(2)
+ (x, y)eiλ(y−x) , (4.2a)

ξ−(x, λ) =
(

1
0

)

+
∫ ∞

x

dyK
(1)
+ (x, y)e−iλ(y−x) , (4.2b)

where K(i)
+ (x, y), i = 1, 2 are the first and the second columns of the matrix

K+(x, y). While (4.1a) in matrix form is valid only for real values of λ, we
assume that the (4.2a) and (4.2b) hold also for complex λ and extend to the
domains of analyticity of their left-hand sides, i.e. to the upper and lower half-
planes of the complex λ-plane correspondingly. In particular, putting λ = λ+

k

in (4.2a) and λ = λ−k in (4.2b) we obtain:

ξ+k (x) =
(

0
1

)

+
∫ ∞

x

dyK
(2)
+ (x, y)eiλ+

k (y−x) , (4.3a)

ξ−k (x) =
(

1
0

)

+
∫ ∞

x

dyK
(1)
+ (x, y)e−iλ−

k (y−x) , (4.3b)

for k = 1, . . . , N .
Analogical relations can also be derived for ϕ±(x, λ) = φ±(x, λ)e±iλx and

ϕ±
k (x). Of course, in their right-hand side, there will appear the columns K(i)

− ,
i = 1, 2 of K−(x, y), and the integration extends over the interval (−∞, x).

The first method for deriving the GLM equation is based on the analyt-
icity properties of the Jost solutions. More specifically, it uses the integral
representations (3.86) and (3.87). Inserting in them (4.2) and (4.3), we find
that K±(x, y) must satisfy:

∫ ∞

x

dyK
(2)
+ (x, y)eiμ(y−x) =

(

F̃+
+ (x, μ)

0

)

+
∫ ∞

x

dyK
(1)
+ (x, y)F̃+

+

(

x+ y

2
, μ

)

, (4.4a)
∫ ∞

x

dyK
(1)
+ (x, y)e−iμ(y−x) =

(

0
F̃−

+ (x, μ)

)

+
∫ ∞

x

dyK
(2)
+ (x, y)F̃−

+

(

x+ y

2
, μ

)

, (4.4b)

where

F̃+
+ (x, μ) =

1
2πi

∫ ∞

−∞

dλ ρ−(λ)e−2iλx

λ− μ
−

N
∑

k=1

C−
k e

−2iλ−
k x

μ− λ−k
, (4.5a)
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F̃−
+ (x, μ) =

1
2πi

∫ ∞

−∞

dλρ+(λ)e2iλx

λ− μ
+

N
∑

k=1

C+
k e

2iλ+
k x

μ− λ+
k

. (4.5b)

The next step is to multiply (4.4a) by eiμ(x−z) and (4.4b) by e−iμ(x−z)

and integrate over dμ along the real axis. If z ≥ x in the left-hand side of
(4.4) we obtain K

(i)
+ (x, z). The integration over dμ in the right-hand sides is

performed by using the formulae:

1
2π

∫ ∞

−∞

dμ

μ− λ
e−iμ(x−z)σ3 =

i

2
e−iλσ3(x−z)σ3 , (4.6a)

1
2π

∫ ∞

−∞

dμ

μ− λ−k
e−iμ(x−z)σ3 = −ie−iλ−

k (x−z)σ3 , (4.6b)

1
2π

∫ ∞

−∞

dμ

μ− λ+
k

e−iμ(x−z)σ3 = −ie−iλ+
k (x−z)σ3 . (4.6c)

In this way from (4.4) we get:

K
(2)
+ (x, z) =

(

F+
+ (x+ z)

0

)

+
∫ ∞

x

dyK
(1)
+ (x, y)F+

+ (y + z) , (4.7a)

K
(1)
+ (x, z) =

(

0
F−

+ (x+ z)

)

+
∫ ∞

x

dyK
(2)
+ (x, y)F−

+ (y + z) , (4.7b)

where

F+
+ (x) =

1
4π

∫ ∞

−∞
dλ ρ−(λ)eiλx + i

N
∑

k=1

C−
k e

−iλ−
k x , (4.8a)

F−
+ (x) =

1
4π

∫ ∞

−∞
dλ ρ+(λ)e−iλx + i

N
∑

k=1

C+
k e

iλ+
k x . (4.8b)

It is convenient to rewrite (4.7) in matrix form:

K+(x, z) = F+(x+ z) +
∫ ∞

x

dyK+(x, y)F+(y + z) , (4.9)

where

F+(x) =
(

0 F+
+ (x)

F−
+ (x) 0

)

. (4.10)

The equation (4.9) is the famous Gel’fand–Levitan–Marchenko equation.
Given the scattering data T1 (see (3.68a)), one determines the kernel F+(x)
of the GLM equation.

From the general theory of the Volterra type integral equations, one con-
cludes that the GLM equation (4.9) with the kernel F+(x) (4.10) has unique
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solution K+(x, y). Given the solution K+(x, y), we easily obtain the Jost so-
lutions ψ±(x, λ) through (4.1a).

The last step of the solution of the ISP is the determination of the potential
q(x), corresponding to T1. In order to do this, we replace the right-hand side
of (4.1a) into the ZS system, multiply on the left with eiλσ3x, and require that
ψ(x, λ) from (4.1a) is a solution for each λ, i.e.

q(x) +
∫ ∞

x

dy

(

i
∂K+

∂x
+ q(x)K+(x, y)− λσ3K+(x, y)

)

eiλσ3(x−y)

= iK+(x, x) . (4.11)

The term containing λ in the integrand can be integrated by parts and
since limy→∞K+(x, y) = 0 we obtain:

q(x) + i

∫ ∞

x

dy

(

i
∂K+

∂x
+ iσ3

∂K+

∂y
σ3 + q(x)K+(x, y)

)

eiλσ3(x−y)

= iK+(x, x)− iσ3K+(x, x)σ3 . (4.12)

The equation (4.12) is satisfied identically with respect to λ if and only if the
following two relations hold:

q(x) = iσ3[σ3,K+(x, x)] , (4.13a)

i
∂K+

∂x
+ iσ3

∂K+

∂y
σ3 + q(x)K+(x, y) = 0 . (4.13b)

More specifically, (4.13a) allows knowing the solution K+(x, y) of the GLM
equation to recover the corresponding potential q(x), which automatically
comes in an off-diagonal form.

4.2 Derivation of GLM Equation from the Completeness
Relation (3.111)

In the next approach to the GLM equation, we use as a starting point the com-
pleteness relation (3.111) of the Jost solutions and the linear relations (3.79)
between them. First we insert (3.78) into the integrand of the completeness
relation (3.111) and obtain:

φ+(x, λ)ψ̃+(y, λ)
a+(λ)

+
φ−(x, λ)ψ̃−(y, λ)

a−(λ)
= ψ(x, λ)(σ3 +R(λ))ψ̂(y, λ) (4.14a)

= φ(x, λ)(σ3 − R̃(λ))φ̂(y, λ) (4.14b)

R(λ) =
(

0 ρ−(λ)
ρ+(λ) 0

)

, R̃(λ) =
(

0 τ+(λ)
τ−(λ) 0

)

. (4.14c)
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Recall that:

ρ±(λ) =
b±(λ)
a±(λ)

, τ±(λ) =
b∓(λ)
a±(λ)

. (4.14d)

As a next step, we need the transformation operators also for the inverse
of ψ(x, λ) and φ(x, λ). In order to do this, we shall use the following formula
for inverting a 2× 2 matrix with unit determinant, which are easily verified:

ψ̂(x, λ) = σ−1ψT (x, λ)σ, σ =
(

0 −1
1 0

)

. (4.15)

Then from (4.1a) we get:

ψ̂(x, λ) = eiλσ3x +
∫ ∞

x

dy eiλσ3yσ−1KT
+(x, y)σ ,

= eiλσ3x +
∫ ∞

x

dy eiλσ3yKτ
+(x, y) , (4.16)

where

Kτ
+(x, y) =

(

K+,22 −K+,12

−K+,21 K+,11

)

=

(

K̃
(2)
+

−K̃(1)
+

)

. (4.17)

Further, we insert (4.1) and (4.16) into the integral of the right-hand side
of (3.111). After somewhat long but elementary calculations we get:

1
2π

∫ ∞

−∞
dλ

(

φ+(x, λ)ψ̃+(y, λ)
a+(λ)

+
φ−(x, λ)ψ̃−(y, λ)

a−(λ)

)

=
1
2π

∫ ∞

−∞
dλψ(x, λ)(σ3 +R(λ))ψ̂(y, λ) (4.18)

= σ3δ(x− y) +Hc(x, y) +
∫ ∞

y

dy′′Hc(x, y′′)Kτ
+(y, y′′) . (4.19)

where we have assumed that x < y and

Hc(x, y) = Fc(x, y) +K+(x, y)σ3 +
∫ ∞

x

dy′K+(x, y′)Fc(y′, y) , (4.20a)

Fc(x, y) =
1
2π

∫ ∞

−∞
dλ e−iλσ3xR(λ)eiλσ3y . (4.20b)

The terms in the discrete spectrum in (3.111) can be transformed in a
similar way. Using (4.3) we have:

i

(

φ+
k (x)ψ̃+

k (y)
ȧ+

k

− φ−
k (x)ψ̃−

k (y)
ȧ−k

)
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= i
(

C+
k e

iλ+
k (x+y)ξ+k (x)ξ̃+k (y) + C−

k e
−iλ−

k (x+y)ξ−k (x)ξ̃−k (y)
)

= Hk(x, y) +
∫ ∞

y

dy′′Hk(x, y′′)Kτ
+(y, y′′) , (4.21a)

Hk(x, y) = F+
k (x+ y) +

∫ ∞

x

dz K+(x, z)F+
k (z + y) , (4.21b)

F+
k (x) =

(

0 −C−
k e

−iλ−
k x

C+
k e

iλ+
k x 0

)

. (4.21c)

Inserting (4.18), (4.21a), (4.21b) and (4.21c) into the completeness relation
(3.111), we find:

σ3δ(x− y) = σ3δ(x− y) +H(x, y) +
∫ ∞

y

dy′′H(x, y′′)Kτ
+(y, y′′) , (4.22)

where

H(x, y) = Hc(x, y) +
N
∑

k=1

Hk(x, y) . (4.23)

Thus, from (4.22) we get:

H(x, y) +
∫ ∞

y

dy′′H(x, y′′)Kτ
+(y, y′′) = 0 . (4.24)

Let us briefly recall some well-known facts about the Volterra type integral
equations. Let us consider a generic integral equation of Volterra type:

H(x, y) +
∫ ∞

y

dy′′H(x, y′′)Kτ
+(y, y′′) = V (x, y) . (4.25)

whose kernel Kτ
+(y, y′′) and right-hand side V (x, y) are smooth and fall off

fast enough for y, y′′ tending to ∞. More precisely, these conditions ensure
that Kτ

+(y, y′′) is a kernel of a bounded integral operator.
Then the solution of (4.25) exists and is given by the following series:

H(x, y) = V (x, y) +
∞
∑

p=1

(−1)p

p!
V (p)(x, y) , (4.26)

with

V (p)(x, y) =
∫ ∞

y

dy′′V (p−1)(x, y′′)Kτ
+(y, y′′), p = 1, 2, . . . ,

V (0)(x, y) = V (x, y) . (4.27)
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The conditions on Kτ
+(x, y) and V (x, y) ensure that the integrals in

V (p)(x, y) are convergent for any p and that moreover the series (4.26) is con-
vergent. The equation (4.24) above is obtained from (4.25) with V (x, y) = 0.
Thus, the only solution of (4.24) is the trivial one:

H(x, y) = 0 , (4.28)

which due to the definition of H(x, y) gives the GLM equation.

4.3 The Riemann–Hilbert Problem

Solving the Riemann–Hilbert problem allows to recover a section-analytic
function of λ knowing its values on the boundaries of its analyticity regions.

4.3.1 The Additive RHP for Scalar and Matrix Functions

We start with the additive version of the RHP. In fact, in Sects. 3.5, 3.6,
and 3.7, we have derived the solutions of particular additive RHP both for
scalar and vector-valued functions. Here, we give a somewhat more general
treatment of the problem.

As a basic tool for solving the RHP, we shall use the well-known Plemelji–
Sokhotsky formula. Let Γ be a smooth closed contour, which divides the
complex λ-plane into two regions Γ+\Γ and Γ−\Γ . Let for definiteness Γ be
positively orientated and Γ−\Γ be the inside of Γ , see Fig. 4.1.

Let also F (λ) be a smooth bounded function on Γ and let F+(λ) and
F−(λ) be analytic functions of λ for λ ∈ Γ+\Γ and λ ∈ Γ+\Γ , respectively,
such that

F+(λ)− F−(λ) = F (λ), for λ ∈ Γ , (4.29)

where of course we assume that F+(λ) and F−(λ) allow continuous extensions
to Γ .

Γ+

Γ–

Γ

Fig. 4.1. The contour Γ and the regions Γ±\Γ for a generic RHP
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The problem of reconstructing F±(λ) for all λ ∈ Γ± and satisfying (4.29)
for λ ∈ Γ is known as additive RHP. The RHP (4.29) allows a class of solutions
of the form:

F+(λ) = H(λ) +
1

2πi

∮

Γ

F (μ)
μ− λ

dμ, λ ∈ Γ+\Γ , (4.30a)

F−(λ) = H(λ) +
1

2πi

∮

Γ

F (μ)
μ− λ

dμ, λ ∈ Γ−\Γ , (4.30b)

where H(λ) is arbitrary entire function of λ.
The fact that (4.30a) and (4.30b) provide a solution to the RHP (4.29)

follows from the formulae giving the limit values of F±(λ) for λ→ Γ :

F+(λ) = H(λ) +
1
2
F (λ) +

1
2πi

V.P.
∮

Γ

F (μ)
μ− λ

dμ , (4.31a)

F−(λ) = H(λ)− 1
2
F (λ) +

1
2πi

V.P.
∮

Γ

F (μ)
μ− λ

dμ ; (4.31b)

they are known as the Plemelji–Sokhotsky formulae.
In order to pick up a unique solution of the RHP, one has to normalize

it by fixing up the value of, say F+(λ) at λ = λ0 ∈ Γ+, that is, to require
F+(λ) = F+

0 . This fixes up the value of H(λ0) to be:

H(λ0) ≡ H0 = F+
0 −

1
2πi

∮

Γ

dμF (μ)
μ− λ0

. (4.32)

Then introducing ˜H(λ) = H(λ)−H(λ0) we get:

F+(λ) = ˜H(λ) + F+
0 +

1
2πi

∮

Γ

dμF (μ)
(

1
μ− λ

− 1
μ− λ0

)

, (4.33a)

F−(λ) = ˜H(λ) + F+
0 +

1
2πi

∮

Γ

dμF (μ)
(

1
μ− λ

− 1
μ− λ0

)

. (4.33b)

However, the entire function ˜H(λ) changes the behavior of F+(λ) when
λ → ∞. The condition that F+(λ) is bounded when λ → ∞ means that
˜H(λ) must be bounded when λ→∞. By Liouville’s theorem this means that
˜H(λ) = const . But ˜H(λ) = 0 for λ = λ0, so the constant equals 0. Therefore,
the solution of the normalized RHP is provided by:

F+(λ) = F+
0 +

1
2πi

∮

Γ

dμF (μ)
(

1
μ− λ

− 1
μ− λ0

)

, λ ∈ Γ+\Γ , (4.34a)

F−(λ) = F+
0 +

1
2πi

∮

Γ

dμF (μ)
(

1
μ− λ

− 1
μ− λ0

)

, λ ∈ Γ−\Γ . (4.34b)

The additive RHP can be effectively solved also for matrix-valued func-
tions F±(x, λ), which may depend also on additional parameters (such as x).
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Indeed, the spectral representations for the Jost solutions obtained in Sect. 3.6
are in fact solutions of an additive RHP for functions that are two-component
vector functions depending analytically on λ and also on the real parameter
x. Let us choose Γ to be the real axis, Γ± ≡ C±, λ0 = ∞ and replace in (4.29)
F+(λ), F−(λ), F (λ), F+

0 by

ξ+(x, λ),
ϕ−(x, λ)
a−(λ)

, −ρ−(λ)e−2iλxξ−(x, λ),
(

0
1

)

respectively. Then (3.79a) can be considered as a generalization of the additive
RHP (4.29) and the spectral representation (3.86) provides the solution for
ξ+(x, λ) of this RHP.

Likewise, taking F+(λ), F−(λ), F (λ), F+
0 to be

ϕ+(x, λ)
a+(λ)

, ξ−(x, λ), ρ+(λ)e2iλxξ+(x, λ),
(

1
0

)

respectively, we can treat (3.79b) as a generalization of the RHP (4.29), and
the spectral representation (3.87) provides the solution for ξ−(x, λ) of this
RHP.

An additional difficulty here is to take into account the possible pole sin-
gularities of ϕ±(x, λ)/a±(λ) (i.e. possible zeroes of a±(λ)), which correspond
to the discrete eigenvalues of L. In the terminology of the RHP λ±j are the
singular points of the RHP.

Remark 4.1. The contour integration method [46] outlined also in the previous
Chapter is an effective tool to solve additive RHP.

4.3.2 The Multiplicative RHP for Scalar Functions

By multiplicative RHP, we mean the problem of constructing two functions
F+(λ) and F−(λ) analytic for λ ∈ Γ+ and λ ∈ Γ−, respectively, such that:

F+(λ) = F−(λ)F (λ), for λ ∈ Γ . (4.35)

If the functions F±(λ) are scalar and have no zeroes in their regions of analyt-
icity, we can reduce the multiplicative RHP to an additive one by just taking
the log of both sides of (4.35):

lnF+(λ)− lnF−(λ) = lnF (λ), for λ ∈ Γ . (4.36)

Such solution we shall call regular. The solution will be unique if we normalize
it by F+

reg(λ0) = F+
0 for λ0 ∈ Γ+\Γ . Then the regular solution of (4.35) is

given by:

F+
reg(λ) = F+

0 exp (F(λ)−F(λ0)) , λ ∈ Γ+\Γ, (4.37a)

F−
reg(λ) = F+

0 exp (F(λ)−F(λ0)) , λ ∈ Γ−\Γ, (4.37b)
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F(λ) =
1

2πi
V.P.

∫

Γ

dμ
lnF (μ)
μ− λ

, λ ∈ C\Γ, . (4.37c)

We can also describe a special class of singular solutions F±
sing(λ) of the RHP

(4.35), which have simple zeroes at a set of points λ±j ∈ Γ±\Γ , j = 1, . . . , N .
Such singular solutions of (4.35) can be reduced to a regular one for the
functions F ′,±(λ)

F ′,+(λ) =
FN (λ0)
FN (λ)

F+
sing(λ), F ′,−(λ) =

FN (λ)
FN (λ0)

F−
sing(λ) , (4.38)

FN (λ) =
N
∏

j=1

λ− λ+
j

λ− λ−j
.

Indeed, the additional factors expressed through FN (λ) are such that F ′,±(λ)
have no zeroes for λ ∈ Γ± and satisfy the multiplicative RHP (4.35) with the
same sewing function F (λ). Thus, using (4.37) and (4.38) we can write down
the singular solutions of the RHP as:

F+
sing(λ) = F+

0

N
∏

j=1

λ− λ+
j

λ− λ−j

N
∏

j=1

λ0 − λ−j

λ0 − λ+
j

exp (F(λ)−F(λ0)) , λ ∈ Γ+\Γ ,

(4.39a)

F−
sing(λ) = F+

0

N
∏

j=1

λ− λ−j

λ− λ+
j

N
∏

j=1

λ0 − λ+
j

λ0 − λ−j
exp (F(λ)−F(λ0)) , λ ∈ Γ−\Γ ,

(4.39b)
Note that the factor FN (λ)/FN (λ0) equals to 1 for λ = λ0, which makes

it compatible with the normalization condition at λ = λ0. For λ → ∞, this
factor tends to a constant 1/FN (λ0), thus ensuring the boundness of F+

sing(λ)
for λ→∞. This explains also why we took equal number of zeroes in Γ+\Γ
and Γ−\Γ .

The RHP we considered above were of generic form. However, one can
think of such problems with additional involution properties, e.g.

F+(λ) = (F−(λ∗))∗ . (4.40)

Such involution requires that the contour Γ be symmetric, i.e. if λ ∈ Γ then
also λ∗ ∈ Γ . In the singular case, this involution will relate the sets of zeroes
by λ+

j = (λ−j )∗.
In what follows, we shall mostly use the so-called canonical normalization,

i.e. we shall take λ0 =∞. This simplifies the form of the RHP solution above.
Following Remark 4.1, we note that deriving the dispersion relations for

a±(λ) in Sect. 3.4 we solved a singular RHP of the form (4.35). To see this, it
is necessary to choose the contour Γ to be the real axis; then Γ+\Γ ≡ C+ and
Γ−\Γ ≡ C− are the upper and lower half-plane, respectively. Next we put:

F+
sing(λ) = a+(λ) , (4.41a)



4.3 The Riemann–Hilbert Problem 107

F+
sing(λ) =

1
a−(λ)

, (4.41b)

and

F (λ) =
1

1 + ρ+(λ)ρ−(λ)
, λ ∈ R . (4.41c)

Then a+(λ) and a−(λ) have a set of N simple zeroes located at λ±k ∈ C±.
The rest of the details are given in Sect. 3.4.

Taking the contour Γ to be the real axis requires some additional restric-
tions on F (λ), namely it must tend to 1 for λ→∞, i.e. ρ±(λ) fast enough for
λ→∞. This property is ensured by imposing condition C1 on the potential
q(x).

4.3.3 The Multiplicative RHP for Matrix-Valued Functions

The formulation of the problem is similar to the one in the preceding subsec-
tion with the substantial difference that now the functions F±(λ) and F (λ)
are n× n matrices.

Let us consider, like above, the positively orientated contour Γ splitting
the complex λ-plane into two regions Γ+\Γ and Γ−\Γ . Let also F (λ) be
smooth enough function defined for λ ∈ Γ .

We shall say that the (n × n-matrix valued) functions F±(λ) are regular
solution of the multiplicative RHP if:

1. on the contour Γ they satisfy the equation:

F+(λ) = F−(λ)F (λ), λ ∈ Γ ; (4.42)

2. all matrix elements of F±(λ) have no singularities for λ ∈ Γ±\Γ ;
3. detF+(λ) (resp. detF−(λ)) has no zeroes for λ ∈ Γ+\Γ (resp. λ ∈ Γ−\Γ ).

One can expect that the RHP (4.42) will have unique solution only after
imposing a normalization condition:

F+(λ0) = F+
0 , (4.43)

where F+
0 is a nondegenerate matrix. In analogy with the scalar case, we may

look for the solutions F±(λ) for λ ∈ Γ± in the form:

F+(λ) = F+
0 +

1
2πi

∮

Γ

(

f(μ)
μ− λ

− f(μ)
μ− λ0

)

dμ , (4.44)

F−(λ) = F+
0 −

1
2πi

∮

Γ

(

f(μ)
μ− λ

− f(μ)
μ− λ0

)

dμ . (4.45)

The next step is to find a relation between the function f(μ) in the integrands
in (4.44), (4.45) and the sewing function F (λ). To do this, we insert the (4.44),
(4.45) into (4.42), and after some calculations we obtain:
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f(λ)k(λ) + F+
0 +

1
2πi

∮

Γ

(

f(μ)
μ− λ

− f(μ)
μ− λ0

)

dμ = 0 , (4.46)

where k(λ) is the Caley transform k(λ) = (11 + F (λ))(11 − F (λ))−1 of the
sewing function F (λ). Given F (λ), we can interpret (4.46) as singular integral
equation for k(λ).

This equation simplifies for the so-called canonical normalization:

lim
λ→∞

F+(λ) = 11 , (4.47)

i.e. λ0 =∞ and F+
0 = 11. Then (4.46) takes the form:

f(λ)k(λ) + 11 +
1

2πi

∮

Γ

f(μ)
μ− λ

= 0 , (4.48)

which is easier (though not always easy!) to analyze.
Along with the regular solutions, the RHP (4.42) has also singular solutions

for which det g+(λ) and det g−(λ) may have zeroes or poles in Γ±\Γ .
The singular solutions to (4.42) are ones for which condition (3) does

not hold. That means that for some value of λ = λ+
1 the matrix F (λ+

1 ) has
vanishing eigenvalue; in what follows, we shall assume that this eigenvalue
is of multiplicity 1. The corresponding eigenspace will be characterized by a
projector P1 of rank 1.

We shall construct the corresponding singular solution F±
1 (λ) of the RHP

using the so-called dressing factors:

F±
1 (λ) = u1(λ)F±(λ) , (4.49a)
u1(λ) = 1l + (c1(λ)− 1)P1 , (4.49b)

c1(λ) =
λ− λ+

1

λ− λ−1
, (4.49c)

where P1 is a projector of rank one. Therefore, it can be written down as:

P1 =
|n(1)〉〈m(1)|
〈m(1)|n(1)〉 , (4.49d)

where |n(1)〉 is a two-component column vector and 〈m(1)| is a two-component
row vector

|n1〉 = F (λ+
1 )|n0,1〉, 〈m1| = 〈m0,1|F̂−

1 (λ−1 ) , (4.49e)

and |n0,1〉 and 〈m0,1| are two arbitrary constant vectors. Obviously (4.49d)
satisfies the characteristic equation P 2

1 = P1 identically.
This singular solution is such that F+

1 (λ) has a vanishing eigenvalue at
λ = λ+

1 , while F−
1 (λ) has a pole at λ = λ−1 . The projector P1 determines the

structure of both singularities through the dressing factor u1(λ). Note that
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the singular RHP will be characterized by the same sewing function as the
regular RHP.

The dressing procedure described above can be applied also to a singular
solution. Indeed, we can introduce

F±
2 (λ) = u2(λ)F±

1 (λ) , (4.50a)
u2(λ) = 1l− (c2(λ)− 1)P2 , (4.50b)

c2(λ) =
λ− λ+

2

λ− λ−2
, (4.50c)

which will give new singular solution provided P2 is a projector

P2 =
|n(2)〉〈m(2)|
〈m(2)|n(2)〉 , (4.51)

where

|n(2)〉 = F1(λ+
2 )|n0,2〉, 〈m(2)1| = 〈m0,2|F̂−

1 (λ−2 ) , (4.52)

and λ+
2 	= λ+

1 and λ−2 	= λ−1 .
These formulae show why we required λ±2 	= λ±1 ; the reason is that λ±2 are

regular points for g±1 (λ) and consequently g+
1 (λ+

2 ) and g−1 (λ−2 ) are invertible
matrices.

Repeating this procedure N −1 times, we can construct singular solutions
with singularities located at the prescribed points λ±k (4.42).

4.4 The Zakharov–Shabat Dressing Method

In this section, we shall show that there is a direct relation between the matrix
RHP and the inverse scattering problem for the ZS system. This is the main
idea of the Zakharov–Shabat dressing method.

We know that the RHP involves analytic functions of λ. On the other hand,
we constructed in Sect. 3.1 the fundamental solutions χ+(x, λ) and χ−(x, λ),
which are analytic functions of λ for λ ∈ C+ and λ ∈ C−, respectively.
From the definitions of χ±(x, λ) (3.25), we find that on the real axis they are
related by:

χ+(x, λ) = χ−(x, λ)G0(λ), λ ∈ R , (4.53)

where

G0(λ) =
(

1 b−/a−

0 1/a−

)(

a+ 0
b+ 1

)

=
1

a−(λ)

(

1 b−(λ)
b+(λ) 1

)

. (4.54)

Strictly speaking, χ±(x, λ) have a defect which prevents us from treating
(4.53) as RHP. They do not allow canonical normalization, because for λ→∞
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they behave like eiλσ3x. This defect can be avoided by going over from
χ±(x, λ) to

η±(x, λ) = χ±(x, λ) exp(iλσ3x) . (4.55)

Multiplying both sides of (4.53) by exp(iλσ3x) we get:

η+(x, λ) = η−(x, λ)G(x, λ), λ ∈ R , (4.56)

where the sewing function G(x, λ) depends on x according to:

G(x, λ) = exp(−iλσ3x)G0(λ) exp(iλσ3x), λ ∈ R . (4.57)

From the construction of the solutions η±(x, λ), we know that (see (3.49)):

lim
λ→∞

η+(x, λ) = lim
λ→∞

η−(x, λ) = 1l . (4.58)

i.e. they indeed can be treated as solutions to the RHP (4.53) with a canonical
normalization (4.58).

The contour Γ in our case is the real axis Γ ≡ R and Γ± ≡ C±.
Note that x enters in the RHP as an external parameter. The x-dependence

of the sewing function G(x, λ) (4.57) is of a “plane-wave” type. It has the
advantage that G(x, λ) is bounded for all values of x and λ ∈ R.

In addition, condition C1 on q(x) ensures that b±(λ) are Schwartz-type
functions of λ on the real axis; so is a−(λ) − 1. Besides, from C2 it follows
that a−(λ) − 1 has no zeroes on the real λ-axis – no discrete eigenvalues on
R. Thus, we check that G(x, λ) satisfies all the necessary conditions for being
sewing function of an RHP uniformly with respect to x.

We showed up to here that the FAS of the ZS system (or rather η±(x, λ),
which are directly related to χ±(x, λ)), satisfy the RHP (4.56) with canoni-
cal normalization. Generically, they provide a singular solution to this RHP,
because

det η±(x, λ) = a±(λ) , (4.59)

and according to the condition C2 (3.34) we have

det η±(x, λ±k ) = a±(λ±k ) = 0, λ±k ∈ C± , (4.60)

for k = 1, . . . , N . This means that the singularities of the RHP coincide with
the discrete eigenvalues of the ZS system.

Now, we shall prove that any solution of the RHP (4.56) with a sewing
function G(x, λ) (4.57) is a solution to (3.4), which is equivalent to the ZS
system. To this end we put:

X±(x, λ) =
(

i
dη±

dx
− λ[σ3, η

±(x, λ)]
)

η̂±(x, λ) . (4.61)

Using (4.56) and (4.57) for λ on the real line, we subsequently get:
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X+(x, λ) =
(

i
dη+

dx
− λ[σ3, η

+(x, λ)]
)

η̂+(x, λ)

=
(

i
dη−

dx
G− λ[σ3, η

−(x, λ)G] + iη−
dG

dx

)

Ĝη̂−(x, λ)

=
[(

i
dη−

dx
− λ[σ3, η

−]
)

G+ η−
(

i
dG

dx
− λ[σ3, G]

)]

Ĝη̂−(x, λ)

=
(

i
dη−

dx
− λ[σ3, η

−]
)

η̂−(x, λ)

= X−(x, λ) . (4.62)

But X+(x, λ) is analytic for Imλ > 0, X−(x, λ) is analytic for Imλ < 0,
and the equality X+(x, λ) = X−(x, λ) (4.62) shows that X+(x, λ), X−(x, λ)
extend to a function analytic everywhere in the complex λ-plane. Their limits
for λ→∞ are given by (see (4.58) and (3.49)):

lim
λ→∞

g±(x, λ) = lim
λ→∞

(

idη±

dx
− λ[σ3, η

±(x, λ)]
)

η̂±(x, λ)

= −[σ3, η
±
1 (x)] . (4.63)

In view of (3.50), both functions g+(x, λ) and g−(x, λ) have the same limit,
which we denote by −q(x). Then the functions:

g+(x, λ) + q(x), g−(x, λ) + q(x) , (4.64)

extend to a function analytic everywhere in the complex λ-plane and tending
to 0 for λ → ∞. Therefore, they both vanish identically. Multiplying (4.61)
by η+ (or by η−) on the right and taking into account (4.64) we get:

(

i
dη±

dx
+ q(x)η±(x, λ)− λ[σ3, η

±(x, λ)]
)

= 0 , (4.65)

which coincides with (3.4). Thus, we proved that each regular solution
η±(x, λ) of the RH problem satisfies (4.65), and consequently χ±(x, λ) =
η±(x, λ) exp(−iλσ3x) are solutions of the Zakharov–Shabat system (3.1).

The cases when η±(x, λ) are solutions of a singular RH problem is treated
analogously. In this case, the relations (4.62) hold true for all λ ∈ C\{λ±k },
i.e. for all λ except a finite number of points. This does not influence the final
result.

We need also to recover the potential q(x) from the solutions η±(x, λ) of
the RHP. In fact, the answer can be obtained from (4.65). Taking in it the
limit λ→∞ and making use of (3.49) we find:

q(x) = − lim
λ→∞

λ[σ3, η
±(x, λ)]η̂±(x, λ)

= lim
λ→∞

λ(η±(x, λ)σ3η̂
±(x, λ)− σ3) . (4.66)
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4.4.1 The RHP and the Singular Integral Equations

In Sect. 4.3, we mentioned that the RHP can be reduced to a set of singular
integral equations. Their derivation is based on the analytic properties of
η±(x, λ). They satisfy an RHP with canonical normalization, which can be
written in the form:

η+(x, λ) =
η−(x, λ)
a−(λ)

(1l +K(x, λ)) , (4.67)

or

η−(x, λ) =
η+(x, λ)
a+(λ)

(1l−K(x, λ)) , (4.68)

where

K(x, λ) =

(

0 b−(λ)e−2iλx

b+(λ)e2iλx 0

)

. (4.69)

We can apply again the contour integration method to the integrals:

J1(x, λ) =
1

2πi

∮

C+

dμη+(x, μ)
μ− λ

− 1
2πi

∮

C−

dμ

μ− λ

η−(x, μ)
a−(μ)

, (4.70)

J2(x, λ) =
1

2πi

∮

C+

dμ

μ− λ

η+(x, μ)
a+(μ)

− 1
2πi

∮

C−

dμη−(x, μ)
μ− λ

. (4.71)

Skipping the details, we only give the corresponding spectral representa-
tions for η+(x, λ) (λ ∈ C+):

η+(x, λ) = 1l +
1

2πi

∫ ∞

−∞

dμ

μ− λ

η−(x, μ)
a−(μ)

K(x, μ)−
N
∑

k=1

η−k (x)
ȧ−k (λ−k − λ)

. (4.72)

and for η−(x, λ) (λ ∈ C−):

η−(x, λ) = 1l +
1

2πi

∫ ∞

−∞

dμ

μ− λ

η+(x, μ)
a+(μ)

K(x, μ)−
N
∑

k=1

η+
k (x)

ȧ+
k (λ+

k − λ)
. (4.73)

The systems of (4.73) and (4.72) can be viewed as systems of linear integral
equations for the solutions of the RH problem (4.67). Now, keeping in mind
that the quantities η±k (x) are the values of η±(x, λ) at the points λ±k , we use
(3.97)–(3.101) and find that η±k (x) have the following structure:

η+
k (x) = ξ+k (x)

(

b+k e
2iλ+

k x, 1
)

, η−k (x) = ξ−k (x)
(

1,−b−k e−2iλ−
k x
)

. (4.74)

It is easy to see also that, if we take the second column of (4.72) and the
first column of (4.73), we obtain (3.86) and (3.87).
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4.4.2 Reflectionless Potentials

The singular integral equations that we derived in the preceding subsection
cannot be solved explicitly in the generic case. However, there are particular
cases, when it is possible to solve them explicitly. In this way, the so-called
reflectionless potentials of L (3.1) are constructed. Their name suggests that
for these solutions the reflection coefficients vanish, that is,

ρ+(λ) = ρ−(λ) = 0, λ ∈ R , (4.75)

or equivalently:
τ+(λ) = τ−(λ) = 0, λ ∈ R . (4.76)

Then the systems of equations simplify and (3.87), (3.86) are transformed
into:

ξ−(x, λ) =
(

1
0

)

−
N
∑

k=1

C+
k

λ+
k − λ

e2iλ+
k xξ+k , λ ∈ C− , (4.77)

ξ+(x, λ) =
(

0
1

)

+
N
∑

k=1

C−
k

λ−k − λ
e−2iλ−

k xξ−k , λ ∈ C+ , (4.78)

and (3.89), (3.88) – into:

ϕ+(x, λ) =
(

1
0

)

+
N
∑

k=1

M−
k

λ−k − λ
e2iλ−

k xϕ−
k , λ ∈ C+ , (4.79)

ϕ−(x, λ) =
(

0
1

)

−
N
∑

k=1

M+
k

λ+
k − λ

e−2iλ+
k xϕ+

k , λ ∈ C− , (4.80)

In order to solve the systems (4.77), (4.78) (or (4.80), (4.79)), it is enough to
calculate ξ±k (x) (or ϕ±

k (x)). This can be done by putting λ = λ−p in (4.77)
(resp. (4.80)) and λ = λ+

p in (4.78) (resp. (4.79)). Thus, we obtain the following
linear algebraic equations for ξ±k (x) and ϕ±

k (x):

(

ξ−(x), ξ+(x)
)

(

1l D−

D+ 1l

)

=
(

e+, e−
)

, (4.81a)

D+
kp(x) =

b+k (x)
lkpȧ

+
k

, D−
kp(x) =

b−k (x)
lpkȧ

−
k

, (4.81b)

and

(

ϕ+(x),ϕ−(x)
)

(

1l F+

F− 1l

)

=
(

e+, e−
)

, (4.82a)

F+
kp(x) =

1
lkpb

−
k (x)ȧ−k

, F−
kp(x) =

1
lpkb

+
k (x)ȧ+

k

, (4.82b)



114 4 The Inverse Scattering Problem

where we used the notations:

ξ±(x) =
(

ξ±1 (x), . . . , ξ±N (x)
)

, ϕ±(x) =
(

ϕ±
1 (x), . . . , ϕ±

N (x)
)

, (4.83a)

e± =
(

e±, . . . , e±
)

︸ ︷︷ ︸

N−times

, e+ =
(

1
0

)

, e− =
(

0
1

)

, (4.83b)

lkp = λ+
k − λ−p , b±k (x) = b±k e

±2iλ±
k x = e−zk±iφk , (4.83c)

zk = 2νk(x− ξ0,k), φk =
μk

νk
zk + δk , (4.83d)

The relations (4.74) show that the systems of (4.81) and (4.82) are equiv-
alent. Therefore, it will be enough to consider only one of them. For example,
the solution of (4.81) can be calculated by inverting the block matrix in the
left-hand side of (4.81). This inverse equals:
(

1l D−

D+ 1l

)−1

=
(

(1l−D−D+)−1 −D−(1l−D+D−)−1

−D+(1l−D−D+)−1 (1l−D+D−)−1

)

. (4.84)

Thus, we can obtain explicit expressions for ξ±k (x) and ϕ±
k (x). In order to

recover the Jost solutions, it is enough to insert these expressions into the
left-hand sides of (4.77)–(4.79). The corresponding reflectionless potential is
given by:

qNs(x) =

[

σ3,

N
∑

k=1

(

b+k (x)
ȧ+

k

ξ+k (x),−b
−
k (x)
ȧ−k

ξ−k (x)
)

]

. (4.85)

Also, in view of (4.75), (4.76), the scattering data, i.e. the scattering matrix,
has the form:

TNs(λ) =
(

a+
Ns(λ) 0
0 a−Ns(λ)

)

, a+
Ns(λ)a−Ns(λ) = 1 , (4.86)

where

a+
Ns(λ) =

1
a−Ns(λ)

=
N
∏

k=1

λ− λ+
k

λ− λ−k
. (4.87)

The next step would be to insert the results for ξ±k (x) and ϕ±
k (x) into the

right-hand side of (4.77)–(4.80). This immediately gives us the explicit formu-
lae for the Jost solutions and for the FAS. They are meromorphic functions
of λ and so is the corresponding scattering matrix. Note that due to (4.75)
and (4.76) it will be a diagonal matrix. More specifically, we get:

φ+
Ns(x, λ) = ψ−

Ns(x, λ)a+
Ns(λ), φ−

Ns(x, λ) = ψ+
Ns(x, λ)a−Ns(λ) , (4.88)

and
χ+

Ns(x, λ) = a+
Ns(λ)χ−

Ns(x, λ) . (4.89)
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4.4.3 The 1-Soliton Case

The solution of (4.77), (4.78), (4.80) and (4.79) is simple and is given by:

ξ−1 (x) =
1

A1(x)

(

1
−b+1 (x)

)

, ξ+1 (x) =
1

A1(x)

(

b−1 (x)
1

)

, (4.90a)

ϕ+
1 (x) =

b+1 (x)
A1(x)

(

b−1 (x)
1

)

, ϕ−
1 (x) =

b−1 (x)
A1(x)

(

−1
b+1 (x)

)

, (4.90b)

where

A1(x) = 1 + b+1 (x)b−1 (x) , (4.90c)

b±1 (x) = b±1 e
±2iλ±

1 x , (4.90d)

These formulae can be written in compact form as follows:

η+
1 (x) = 1l− P1(x), η−1 (x) = P1(x) , (4.91a)

P1(x) =
|n1(x)〉〈m1(x)|
〈m1(x)|n1(x)〉

=
1

1 + b+(x)b−(x)

(

1 −b−1 (x)
−b+1 (x) b+1 (x)b−1 (x)

)

, (4.91b)

|n1(x)〉 = e−iλ+
k σ3x|n10〉, |n10〉 =

(

1
−b+10

)

, (4.91c)

〈m1(x)| = 〈m10|eiλ−
k σ3x, 〈m10| =

(

1,−b−10
)

. (4.91d)

Inserting (4.90) into (4.72) and (4.73) we get the following explicit expres-
sions for the FAS:

η+
1s(x, λ) = 1l + (c1(λ)− 1)P1(x) , (4.92a)

η−1s(x, λ) = 1l +
(

1
c1(λ)

− 1
)

(1l− P1(x)) , (4.92b)

or

η+
1s(x, λ) = η−1s(x, λ)c1(λ) . (4.93)

The corresponding potential is given by:

q1s(x) = −(λ+
1 − λ−1 ) [σ3, P1(x)]

=
2(λ+

1 − λ−1 )
1 + b+1 b

−
1

(

0 b−1
−b+1 0

)

. (4.94)

Let us note that in the 1-soliton case we have

a+
1s(λ) =

1
a−1s(λ)

= c1(λ) ; (4.95)
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see formula (4.87) with ν = 1. From (4.67), we find that in the reflection-
less case G(x, λ) is proportional to the unit matrix; consequently, it is x-
independent. In the special case N = 1, comparing (4.67) with (4.93), we can
interpret (4.93) as an RHP.

Another important fact illustrated by (4.92) and generic for the N -soliton
case is the following. Both η+(x, λ) and η−(x, λ) are meromorphic functions
of λ (fraction-linear in our case). In fact, they can be extended to the whole
λ-plane with the exception of their pole-singularities, located at λ±1 .

In fact, what we just derived is the form of the simplest reflectionless
potential of the ZS system. In order to get the 1-soliton solution of one of the
NLEE with a dispersion law f(λ), we need to recall that b±1 must depend also
on the time t; see (2.56). Therefore, instead of b±1 (x) we must use:

b±1 (x, t) ≡ b±1 (x)e∓2if(λ±
k )t = ±ie−z1±iφ1 , z1(x, t) = 2ν1(x− ξ1(t)) ,

φ1(x, t) =
μ1

ν1
z1(x, t) + δ1(t), δ1(t) =

2
ν1

(μ1f1,1 − ν1f0,1) t+ δ1(0) ,

ξ1(t) =
1

2ν1

(

2f1,1t+ ln |b+01|
)

, f(λ±1 ) = f0,1 ± if1,1.

(4.96)

Inserting (4.90d) and (4.96) into the right-hand side of (4.94) we get

q−,∗
1s (x, t) = q+1s(x, t) = u1s(x, t), u1s =

2iν1e
∓iφ1(x,t)

cosh(z1(x, t))
. (4.97)

In this parametrization, ξ1(t) must be interpreted as the center of mass of the
soliton, μ1 as its velocity, ν1 as its amplitude, and δ1 as its phase. Obviously,
the 1-soliton solution is a (traveling) wave moving with constant velocity.

4.5 The Dressing Method: The Singular Solutions

The dressing method supposes that we already know explicitly (at least) one
regular solution η±0 (x, λ) of (4.67). By “regular”, here, we mean that η+

0 (x, λ)
and η−0 (x, λ) have no singularities or zeroes in their regions of analyticity. In
particular, this means that

a±0 (λ) = det η±0 (x, λ) 	= 0 for λ ∈ C± . (4.98)

As we already know, the condition (4.98) means that the corresponding ZS
system has no discrete eigenvalues.

It is only natural that we apply the same idea, like in Sect. 4.3.3, only now
the dressing factor should depend parametrically on x. Indeed, we rewrite the
formulae (4.49) in the form:

η+(x, λ) = u1(x, λ)η+
0 (x, λ) , (4.99a)
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u1(x, λ) = 1l + (c1(λ)− 1)P1(x), c1(λ) =
λ− λ+

1

λ− λ−1
, (4.99b)

η−(x, λ) =
1

c1(λ)
u1(x, λ)η−0 (x, λ) , (4.99c)

where P1(x) is a projector, like in (4.91a), with conveniently chosen right and
left eigenvectors |n1(x)〉 and 〈m1(x)|. Our aim here will be to find out how
these eigenvectors depend on x and how they are determined by the scattering
data of L.

First of all, let us take the determinant of both sides of (4.99a) and (4.99c)
remembering that det η±(x, λ) = a±(λ) and det η±0 (x, λ) = a±0 (λ), where
a±0 (λ) are related to the regular RHP. Thus we find:

a+(λ) = c1(λ)a+
0 (λ), a−(λ) =

a−0 (λ)
c1(λ)

. (4.100)

Since a±0 (λ) are regular (i.e. have no zeroes in λ ∈ C±, respectively) then
from (4.100) we get that a+(λ) and a−(λ) have simple zeroes at λ = λ+

1 and
λ = λ−1 , respectively. This explains why we introduced the additional factor

1
c1(λ) in (4.99c). With it, the functions η±(x, λ) satisfy an RHP

η+(x, λ) = η−(x, λ)G1(x, λ), G1(x, λ) = G0(x, λ)c1(λ) , (4.101)

with slightly different sewing function. The new sewing function G1(x, λ) is
like the old one G0(x, λ), due to the fact that Imλ±1 	= 0 has no singularities
on the real axis.

In order to determine |n1(x)〉 and 〈m1(x)|, we remind that η±(x, λ)
have singularities at the points λ = λ±1 . Indeed from the definition of the
FAS (3.24) and their inverse (3.32), and from the structure of their degen-
eracies at the points of the discrete spectrum (3.43) and (3.44), we find:

χ+(x, λ+
1 ) = ψ+

1 (x)(b+1 , 1) , (4.102a)

Res
λ=λ−

1

χ̂−(x, λ) = − 1
ȧ−1

(

b−1
1

)

ψ̃−
1 (x) , (4.102b)

which means that

χ+(x, λ+
1 )|n1〉 = 0, |n1〉 =

(

1
−b+1

)

(4.103a)

Res
λ=λ−

1

〈m1|χ̂−(x, λ) = 0, 〈m1| = (1,−b−1 ) , (4.103b)

where the constants b±1 = C±
1 ȧ

±
1 are related to the data characterizing the

discrete eigenvalues λ±1 .
Let us now insert (4.99) into (4.103):
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(1l− P1(x))χ+
0 (x, λ+

1 )|n1〉 = 0 , (4.104a)
〈m1|χ̂−

0 (x, λ−1 )(1l− P1(x)) = 0 , (4.104b)
χ±

0 (x, λ) = η±0 (x, λ)eiλσ3x (4.104c)

and compare with the general definition of P1(x) (4.91a). This gives

|n1(x)〉 = χ+
0 (x, λ+

1 )|n1〉 = η=
0 (x, λ+

1 )eiλ+
1 σ3x

(

1
−b+1

)

, (4.105a)

〈m1(x)| = 〈m1|χ̂−
0 (x, λ−1 ) = (1,−b−1 )e−iλ−

1 σ3xη̂−0 (x, λ−1 ) . (4.105b)

These formulae make the dressing procedure effective. Indeed, |n1〉 and
〈m1| are determined by the scattering data of L and the x-dependence of
|n1(x)〉, and 〈m1(x)| is determined by the solutions of the regular RHP, which
are supposed to be known. Then (4.105) and (4.99) provide us with the new
singular solutions η+(x, λ) and η−(x, λ) of the RHP, whose singularities are
located at the points λ±1 .

Let us display also another way of determining the x-dependence of |n1(x)〉
and 〈m1(x)|. Now, we shall use the fact that η±0 (x, λ) are related to the ZS
with a known potential q0(x):

i
dη±0
dx

+ q0(x)η±0 (x, λ)− λ[σ3, η
±
0 (x, λ)] = 0 , (4.106a)

while η±(x, λ) is related to the ZS:

i
dη±

dx
+ q(x)η±(x, λ)− λ[σ3, η

±(x, λ)] = 0 , (4.106b)

with a potential q(x) which is to be found. Then, from (4.99a) and (4.106),
we find that the dressing factor u(x, λ) must satisfy the equation:

i
du

dx
+ q(x)u(x, λ)− u(x, λ)q0(x)− λ[σ3, u(x, λ)] = 0 . (4.107)

The anzats for u(x, λ) (4.99b) must be compatible with (4.107), i.e. (4.107)
must hold identically with respect to λ. This can be achieved by requiring
the limit for λ → ∞ of the left-hand side of (4.107) to vanish; its residue at
λ = λ−1 vanishes too. Easy calculation shows that the first condition leads to
the following relation between q(x) and q0(x):

q(x)− q0(x) = −(λ+
1 − λ−1 )[σ3, P1(x)] . (4.108)

The second condition gives us the following nonlinear equation for P1(x):

i
dP1

dx
+ q(x)P1(x)− P1(x)q0(x)− λ+

1 σ3P1(x) + λ−1 P1(x)σ3

+ (λ+
1 − λ−1 )P1(x)σ3P1(x) = 0,

(4.109)
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Note that P1(x) satisfies (4.109) identically, provided the eigenvectors |n1(x)〉
and 〈m1(x)| are solutions of the equations:

L+
1 |n1(x)〉 ≡ i

d|n1〉
dx

+ (q0(x)− λ+
1 σ3)|n1(x)〉 = 0 , (4.110a)

〈m1(x)|L̂−
1 ≡ i

d〈m1|
dx

− 〈m1(x)|(q0(x)− λ−1 σ3) = 0 . (4.110b)

The solutions to (4.110) are given by (4.105) so, as should be expected,
both methods give compatible results. Thus, we can construct singular solu-
tions to the RHP, provided we know explicitly the regular solutions η±0 (x, λ)
to the RHP. The simplest possible choice for η±0 (x, λ) is the trivial one

η±0 (x, λ) = 1l , (4.111)

which corresponds to q0(x) = 0. Simple comparison between (4.91) and (4.99),
(4.105) shows that the dressing method in this case leads to the same reflec-
tionless potential as the GLM equation.

The dressing procedure can be repeated subsequently, which allows one
to construct solutions of the RH problem with arbitrary number of pairs of
singularities. Besides this “limitation” the anzats (4.99b) requires that λ±k 	=
λ±j for k 	= j. This will become evident below. Here, we note that all known
examples of reflectionless potentials, tending sufficiently fast to zero when
|x| → ∞ satisfy this condition. The attempt to construct a solution with odd
number of singularities using this scheme, or with singularities lying on the
real axis, lead to potentials, violating the boundary condition (i.e., not tending
fast enough to 0 for |x| → ∞); see [1].

Now, let us show how we can add N pairs of eigenvalues to the spectrum of
L. The corresponding singular solutions to the RHP are related to the regular
ones η±0 (x, λ) by:

η+(x, λ) = uN (x, λ) · · ·u2(x, λ)u1(x, λ)η+
0 (x, λ) , (4.112a)

η−(x, λ) = c(λ)uN (x, λ) · · ·u2(x, λ)u1(x, λ)η−0 (x, λ) , (4.112b)
uk(x, λ) = 1l + (ck(λ)− 1)Pk(x) , (4.112c)

ck(λ) =
λ− λ+

k

λ− λ−k
, c(λ) =

N
∏

k=1

ck(λ) , (4.112d)

Pk(x) =
|nk(x)〉〈mk(x)|
〈mk(x)|nk(x)〉 . (4.112e)

The x-dependence of the vectors |nk(x)〉 and 〈mk(x)|:

|nk(x)〉 = uk−1(x, λ+
k ) · · ·u1(x, λ+

k )η+
0 (x, λ+

k )|nk〉 , (4.112f)
〈mk(x)| = 〈mk|η̂−0 (x, λ−k )û1(x, λ−k ) · · · ûk−1(x, λ−k ) , (4.112g)

|nk〉 =
(

1
−b+k

)

, 〈m0| = (1,−b−k ) , (4.112h)
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where the constants b±k = C±
k ȧ

±
k specify the data characterizing the discrete

spectrum of L. The formulae (4.112f), (4.112g) explain why we need the con-
dition λ±k 	= λ±j for k 	= j. Indeed, it is important that the factors uj(x, λ+

k )
and ûj(x, λ−k ) with

ûj(x, λ−k ) = 1l +
(

1
cj(λ−k )

− 1
)

Pj(x) (4.113)

must be regular (invertible) matrices.
This version of the dressing method can be applied to any regular solutions

η±0 (x, λ) and not just to the trivial one (4.111). A drawback is that the dressing
factors must be constructed consecutively. In order to write down uk(x, λ) or
Pk(x), one needs to know all uj(x, λ) with j = 1, 2, . . . , k − 1. Note also that
uk(x, λ) and uj(x, λ) do not commute for k 	= j. This fact may lead to the
wrong conclusion that the final results for η±(x, λ) depend on the order in
which the different pairs of singularities are added.

It is a technical, although cumbersome calculation, which allows us to
see that the recurrent procedure in (4.112) for the trivial choice of η±0 (x, λ)
(4.111) gives the same answer as the solution to the system of (4.77), (4.78)
(or (4.79), (4.80)). We end this section by the relation:

q(x)− q0(x) = −
N
∑

k=1

(λ+
k − λ−k )[σ3, Pk(x)] , (4.114)

which naturally generalizes (4.108) to N > 1 and coincides with (4.85). Since
the proof of this fact is highly technical we shall omit it.

4.6 Soliton Interactions

Among the first important results which demonstrated the special properties
of the NLEE was the fact that the solitons interact in a purely elastic manner.
This was established by calculating the limits of the N -soliton solutions for
t→ −∞ and then comparing it with the limit for t→∞. Assuming that all
solitons move with different velocities, one finds that in this limit they become
well separated between themselves and do not interact:

u(x, t) −→
t→−∞

N
∑

k=1

u1s,k(x, t;μk, νk, ξ
−
k , δ

−
k ) . (4.115)

where u1s,k is the 1-soliton solution (4.97) of the NLEE with the soliton pa-
rameters μk, νk, ξ−k and δ−k . The last two characterize the asymptotic values
of the “center” of mass position and of the soliton phase. We also assume that
the solitons are ordered in such a way that the leftmost one is the fastest,
while the rightmost one is the slowest. In the simplest case, when we have
just two solitons the following picture appears.
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With time evolution, the faster soliton will overtake the slower one which
is in front of it. Since the soliton equations are nonlinear, the sum of two
one-soliton solutions is not a solution of the NLEE. Due to the nonlinearity
the two solitons interact, which means that they may substantially be de-
formed and overlapped. After the interaction, however, they separate again
and recover their initial shape and velocities. Thus, the soliton interaction is
a purely elastic process, during which no dissipation of energy occurs. It is
more complicated to study the N -soliton solution, but the result for it is anal-
ogous. The interaction is again purely elastic and is reduced to a sequence of
two-soliton interactions. Thus for t→∞, one gets the following asymptotics
for the solution u(x, t):

u(x, t) −→
t→∞

N
∑

k=1

u1s(x, t;μk, νk, ξ
+
k , δ

+
k ) (4.116)

The above means that again u(x, t) asymptotically becomes a sum of one-
soliton solutions, which have the same velocities and amplitudes but are or-
dered in inverse order: i.e. now the leftmost soliton is the slowest, while the
rightmost is the fastest. The other difference between (4.115) and (4.116) con-
sists in the change of the relative center of mass positions, ξ−k to ξ+k , and the
relative phases from δ−k to δ+k . The pure elastic nature of the N -soliton in-
teractions is due to the infinite set of integrals of motion. Thus, the soliton
interaction is such that the nonlinear interactions exactly compensate for the
dissipation coming from the linear terms.

This method of studying the N -soliton interactions has the advantage of
being exact. Unfortunately, it does not allow one to handle cases when two
or more of the solitons have equal velocities. Such solitons do not separate
asymptotically, and the limits of such N -soliton solutions for t→ ±∞ remain
very complicated and do not allow to draw any definite conclusions.

This called for an alternative method for analyzing the N -soliton inter-
actions and such was proposed by Karpman, Maslov and Solov’ev [2, 3]. It
is not exact, because it is based on the so-called adiabatic approximation, in
which the small parameter ε is the overlap between the neighboring solitons,
and only terms that are of the order of ε are taken into account. This “draw-
back” becomes an advantage, because one is also able to treat nonintegrable
NLEE. Indeed, in many physical applications described by soliton equations,
one often needs to take into account additional small (perturbational) effects
that violate the integrability.

Here, we briefly outline this approach, which is important for many phys-
ical applications.

The N -soliton train for the NLS equation (i.e. f(λ) = −2λ2) is defined as
the solution to the NLS equation with the initial condition:

u(x, 0) =
N
∑

k=1

u1s,k(x, 0), u1s,k(x, t) =
2iνke

iφk

cosh zk
, (4.117)
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zk = 2νk(x− ξk(t)), φk(z, t) =
μ

ν
zk + δk(t) ,

ξk(t) = μkt+ ξ0,k, δk(t) = (μ2
k + ν2

k)t+ δk,0,
(4.118)

In order that the adiabatic approximation holds, they must satisfy a set of
constraints:

|νk − ν0| � ν0, |μk − μ0| � μ0, |νk − ν0||ξk+1,0 − ξk,0| � 1 , (4.119)

where ν0 = 1
N

∑N
k=1 νk, and μ0 = 1

N

∑N
k=1 μk are the average amplitude and

velocity, respectively. The idea of Karpman, Solov’ev, Maslov’s was to derive
a dynamical system for the 4N parameters that would describe the dynamics
of the N -soliton train. They did this for two solitons and derived a dynamical
systems for the 8 parameters, which they were able to solve exactly.

Later, in [4, 5, 6], these results were extended for the general case when the
number of solitons is N > 2. Skipping the details of derivation, we formulate
the final result. Let us introduce the complex variables:

qk(t) = 2iλ0ξk(t) + 2k ln(2ν0) + i(kπ − δk(t)− δ0) , (4.120)

where δ0 = 1/N
∑N

k=1 δk and λ0 = μ0 + iν0. Then the dynamical system
mentioned above becomes the so-called complex Toda chain (CTC) [4, 5]:

d2qj

dt2
= 4ν2

0

(

eqj+1−qj − eqj−qj−1
)

, j = 1, . . . , N . (4.121)

with free-ends conditions, i.e. e−q0 ≡ eqN+1 ≡ 0.
Thus the problem of determining the evolution of an NLS N -soliton train

in this approximation is reduced to solving the CTC for N sites, which like
RTC [7], is integrable; see [8, 9, 10, 11].

One should keep in mind that the N -soliton train is not an exact N -soliton
solution taken at t = 0; normally a small portion of its energy (∼ 1 ÷ 2%)
is due to “radiation” coming from the continuous spectrum of L. Another
important remark is that the values of the soliton parameters are not directly
related to the spectral data of L; we will discuss this below. In fact ξk, μk, νk

and δk taken at t = 0 show the center of mass positions, velocities, amplitudes,
and phases of the initial N -soliton train

There are obvious similarities between the RTC [8, 9, 10, 11] and CTC
[4, 5]:

S1 The CTC Lax representation is the same as for the RTC: L̇ = [B,L],
where

L =
N
∑

k=1

(bkEkk + ak(Ek,k+1 + Ek+1,k)) , (4.122)

Here ak = 1
2e

(qk+1−qk)/2 and bk = 1
2 (μk + iνk). The matrices (Ekn)pq =

δkpδnq, and (Ekn)pq = 0, whenever p or q becomes 0 or N + 1.
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S2 The integrals of motion in involution are provided by the eigenvalues, ζk,
of L0 = L(t = 0) and can be calculated from the initial conditions.

S3 The solutions of both the CTC and the RTC are determined by the scat-
tering data SL0 = {ζk, rk}N

k=1 of L0, where rk are the first components of
the properly normalized eigenvectors of L0 [10, 11].

S4 The set of eigenvalues ζk determine the asymptotic behavior of the solu-
tions of (4.121). This fact will be used to classify the regimes of asymptotic
behavior.

Along with them there are also important differences, namely:

D1 While for RTC, qk, rk and ζk are all real, for CTC they generically take
complex values;

D2 While for RTC ζk 	= ζj for k 	= j, for CTC no such restriction holds.

As a consequence of (S2), (S4) and (D2), the only possible asymptotic be-
havior in the RTC is an asymptotically separating, free motion of the solitons.
For CTC it is κk that determines the asymptotic velocity of the k-th soliton.
For simplicity and without loss of generality we assume that: trL0 = 0; ζk 	= ζj
for k 	= j; and Re ζ1 ≤ Re ζ2 ≤ · · · ≤ Re ζN . Then we have:

• Regime (i): Re ζk 	= Re ζj for k 	= j, i.e. the asymptotic velocities are all
different. Then we have asymptotically separating, free solitons; see also
[4, 5]. This is the only dynamical regime possible for RTC;

• Regime (ii): Re ζ1 = Re ζ2 = · · · = Re ζN = 0, i.e. all N solitons move with
the same mean asymptotic velocity and form a “bound state.” The key
question now will be the nature of the internal motions in such a bound
state: Is it quasi-equidistant or not? In [6], the CTC model is used to de-
termine the sets of 4N soliton parameters that ensure quasi-equidistant
motion; this is very important for soliton-based fiber optics communica-
tions.

• Regimes (iii): a variety of intermediate situations when one group (or sev-
eral groups) of particles move with the same mean asymptotic velocity;
then they would form one (or several) bound state(s), and the rest of the
particles will have free asymptotic motion.

• Regimes (iv): degenerate regimes when two or more of the eigenvalues ζk
become equal (e.g., ζ1 = ζ2).

Obviously the regimes (ii) and (iii), as well as the degenerate and singular
cases, which we do not consider here (see e.g., [12, 13]), have no analogies in
the RTC and physically are qualitatively different from (i).

We have compared the predictions from the CTC model with the numerical
solutions of the NLS and verified excellent match for the asymptotic regimes
(i), (ii), and (iii). Particularly, the bound states regimes indeed take place and
are very well described. Our analytic approach allows us to predict the set of
initial parameters, for which each of these asymptotic regimes takes place. We



124 4 The Inverse Scattering Problem

put special stress on the bound state and the quasi-equidistant regimes, since
such behavior is desirable in long-range fiber optics communications [4, 6, 14].

Another important issue is the possibility to treat the effects of possible
perturbations. Many physical effects in nonlinear optics such as birefringence,
or nonlinear gain lead to the necessity to add additional terms to the NLS
equations that violate its integrability. The effects of such terms on the N -
soliton train dynamics can be calculated; the result is a perturbed CTC which
again can be useful [15, 16].

These ideas were applied also to the higher NLS equations [17, 18, 19]
and modified NLS equation [20], and again it was shown that a CTC model
describes very well the N -soliton train dynamics. In [17, 18], the interrelation
between the 4N soliton parameters and the scattering data of the correspond-
ing ZS system L was analyzed. In particular, it was shown that the discrete
eigenvalues of L are clustered in a circle of radius

√
ε around λ0 and are well

approximated by the eigenvalues ζk of the CTC Lax matrix.
A natural generalization of the CTC describes the N -soliton train inter-

action also for the Manakov [21, 22] model and other multicomponent NLS
equations, which proves the hypothesis proposed in [21] in 1998.

4.7 Comments and Bibliographical Review

1. The inverse scattering problems for the Sturm–Liouville equation (1.5)
became important with the development of quantum mechanics in the
1950s. At that time it was important to determine the potentials of the
atoms and nuclei from the experimental data of electron scattering. The
problem was made simpler by the fact that the Sturm-Liouville operator
is a self-adjoint operator and therefore it allows rigorous spectral analysis.
As a result the GLM equation has been discovered and analyzed [6, 7],
see also [25]. This equation reflects the fact that the Jost solutions of (1.5)
are analytic functions of the spectral parameter λ. The Jost solutions of
the ZS system also possess analyticity properties, namely their columns
ψ±(x, λ) and φ±(x, λ) allow analytic continuation for λ ∈ C±, for detailed
proofs see [1, 26, 27, 28, 29, 30, 31].

However, the spectral theory of self-adjoint and unitary operators [32,
33] is not very useful for the analysis of Lax operators. The reason is that
as a rule the Lax operators are neither self-adjoint nor unitary. Therefore
our approach, as we mentioned in Sect. 3.8, is not so rigorous and is based
on the two conditions C.1 and C.2. These conditions allow us to construct
the spectral theory for several classes of Lax operators that are neither self-
adjoint nor unitary. The basic tool for this is the notion of the fundamental
analytic solution (FAS). While for the ZS system it is easily constructed,
for the generalized sl(n) ZS system (1.15) with real J = diag (a1, . . . , an),
ak > aj for k < j the construction is more complicated and involves
the Gauss decomposition of the scattering matrix T (λ) [34, 35]. The GZS
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system with complex-valued aj was considered by Mikhailov [36], Caudrey
[37, 38] and Beals and Coifman [39, 40, 41, 42, 43]; the generalization
for any simple Lie algebra and complex-valued J is constructed in [44].
For all these cases, one can construct the kernel of the resolvent of L
in terms of FAS and then use the contour integration method to derive
the completeness relation for the eigenfunctions of L [45]. In fact this
amounts to the explicit construction of the spectral decomposition for L.

2. The Riemann–Hilbert problem reduces to a system of singular integral
equations. In most cases it has been well studied and shown that RHP with
canonical normalization has unique regular solution, see [46, 47, 48, 49].

3. The GLM equation is directly related to the spectral decomposition of
L because it can be derived from the completeness relation of the Jost
solutions (3.111). The GLM equation is comparatively easy to derive and
analyze for systems of second order such as the Sturm–Liouville problem,
for the ZS system. The derivation of the GLM equation for the n×n gen-
eralization of the ZS system was done by Zakharov and Manakov in their
preprint [50]. The substantial difficulties encountered in the derivation to
our opinion are related to the difficulties in constructing the FAS for gZS
system.

The fundamental differences between the well-known GLM for the ZS
system and the generalized GLM (gGLM) for the generalized ZS system
are as follows. While the GLM is an integral equation of Volterra type,
the gGLM is an integral equation of Fredholm type. As a consequence,
one can prove that the GLM has unique solution, while for the gGLM one
needs to analyze and solve first for the Fredholm alternative. Therefore,
even the derivation of the soliton solutions from the gGLM encounters
problems.

A way out of these difficulties was proposed by Shabat [34, 35] who
succeeded to reduce the inverse scattering problem for the gZS system to
a Riemann–Hilbert for the matrix-valued FAS. The next important step
done by Zakharov and Shabat consisted in devising an elegant algebraic
method which allowed one starting from a simple (or even trivial) regular
solution of the RHP to construct new singular solutions of the RHP. This
method [27, 51, 52] has several equivalent formulations now, see [53, 54]
and allowed one to derive the soliton solutions of a large number of classes
of NLEE, related to different types of Lax operators.

4. The dressing method is based on an ansatz for the dressing factor which is
natural and well known for the basic examples of gZS system related to the
algebra sl(n) with potentials q(x) vanishing fast enough for x→ ±∞. Im-
posing on q(x) algebraic reductions (e.g., requesting that q(x) belongs to
the simple algebra g, or imposing on it reduction in the sense of Mikhailov
[55]) may substantially change the dressing factors. Such analysis has been
done for the N -wave type NLEE related to the simple Lie algebras of low
rank with imposed Z2-reductions on them, see [56, 57, 58] where all in-
equivalent Z2-reductions of N -wave NLEE were classified. Recently in [59]
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we outlined how the dressing factor can be constructed for the N -wave
equations with Z2 × Z2-reductions. The additional Z2 reductions makes
possible the existence of two types of discrete eigenvalues: doublets which
pairs of λ±i = ±iρi, ρi – real and quadruplets which consist of ±λ+

k ,
±(λ+

k )∗ where λ+
k is a generic complex number. As a result, we have to

consider two types of solitons here, in analogy with the situation with the
s-G equation.

5. The special properties of the soliton interactions attracted the attention of
many scientists since the discovery of the ISM. The first classical results in
that direction were obtained by studying and comparing the asymptotics
of the exact N -soliton solutions for t → −∞ and t → ∞. These studies
revealed the purely elastic interactions of the solitons for the KdV, NLS
and s-G equations, for detailed derivation and explanation see the mono-
graph [28]. These results, however, are valid only for the generic case when
the solitons move with different velocities; if two or more of the solitons
have the same velocity, the asymptotics acquire rather complex form and
become uninformative.

One way out of this situation was to apply numeric methods. However,
the number of initial parameters grows quickly with the number of the
solitons1 which makes it very difficult to determine the regions in the
soliton parameter space corresponding to a given dynamical regime.

The method proposed by Karpman, Maslov and Soloviev [2,3] and
developed further in [4, 5, 6, 17] became more effective. Using the adiabatic
approximation it allowed one to derive a system of dynamical equations
for the soliton parameters, which for the NLS equation turned out to
be the CTC. The fact that CTC is also completely integrable dynamical
system allowed one knowing the initial soliton parameters to predict the
asymptotical dynamics of the N -soliton train [4]. It also allowed one to
describe the regions in the soliton parameter space responsible for the
different dynamical regimes [6].

By taking into account the effects of different perturbations, one natu-
rally obtains a CTC with perturbation terms. Many scientists have com-
bined this method with numerical tools in order to study the effects of
perturbations on specific physical problems; the list of references here nec-
essarily shows only some of them: [4, 6, 18, 28, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83].

6. All the soliton equations mentioned up to now: KdV, NLS, N -wave,
mKdV, etc. have wide applications to various physical problems. This
is due to the fact that they describe wave–wave interactions which are not
sensitive to physical characteristics of the waves. The following references
are just a representative sample of the numerous relevant publications:
[7, 26, 27, 28, 30, 64, 65, 66, 67, 72, 75, 79, 84, 85, 86, 87, 88, 89, 90, 91,

1 Ror NLS each soliton is characterized by four parameters.
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92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121].
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5

The Generalized Fourier Transforms

The main idea here is to show that the mapping of the potential q(x) of L(λ)
onto the minimal sets of scattering data Ti, i = 1, 2 is one-to-one. Similarly,
we analyze the mappings from the variations δq(x) onto δTi. The basic tools
for doing that are the Wronskian relations (Sect. 5.1), which allow one to ex-
press the elements of Ti and δTi as Fourier-like integrals, whose integrands are
products of q(x) (or δq(x)) with the squared solutions. In Sect. 5.2, we intro-
duce three sets of squared solutions: {Ψ±(x, λ)}, {Φ±(x, λ)} and the symplec-
tic basis {P(x, λ),Q(x, λ)}. The squared solutions are constructed explicitly
through the FAS χ±(x, λ), which ensures their analyticity properties. This
makes it possible, by applying the contour integration method to a properly
chosen Green function, to prove that they are complete sets of functions in
the space of allowed potentials.

Since the sets of squared solutions are complete, we can expand any func-
tion, including q(x) and σ3δq(x) over each of the sets {Ψ±(x, λ)}, {Φ±(x, λ)}
and {P(x, λ),Q(x, λ)}. Doing this in Sect. 5.3, we find that the elements of
Ti and δTi can be viewed as expansion coefficients of these expansions.

In the next two Sects., 5.4, 5.5, we introduce the recursion operators Λ±, Λ
for which {Ψ±(x, λ)}, {Φ±(x, λ)} and {P(x, λ),Q(x, λ)} are sets of eigenfunc-
tions. Therefore, the completeness relations of the squared solutions can be
viewed as spectral decompositions of the recursion operators. We also derive
the biorthogonality relations between the squared solutions which allows us
to obtain an integral representation for the Green functions of the recursion
operators.

In the last section of this chapter, we derive the generalized Wronskian
relations that relate the scattering data and the potentials of two Zakharov–
Shabat systems with potentials q(x) and q′(x). Thus, we find two sets
{Ψ ′,±(x, λ)} and {′Φ±(x, λ)} of “products of solutions” of the two ZS sys-
tems and prove that they are also complete sets of functions. The expansions
of q(x) + q′(x) and σ3(q′(x) − q(x)) are derived. The explicit form of the
operators Λ′

±, for which the “products of solutions” are eigenfunctions are
constructed.
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5.1 The Wronskian Relations

The analysis of the mapping F : M → T between the class of the allowed
potentialsM and the scattering data of L starts with the so-called Wronskian
relations. As we shall see, they would allow us to

1. formulate the idea that the ISM is a generalized Fourier transforms (GFT);
2. determine explicitly the proper generalizations of the usual exponents;
3. introduce the skew-scalar product on M, which endows it with a sym-

plectic structure.

All these ideas will be worked out for the Zakharov–Shabat system:

Lψ ≡ i
dψ

dx
+ U(x, t, λ)ψ(x, t, λ) = 0 (5.1a)

for which

U(x, t, λ) = q(x, t)− λσ3 (5.1b)

At the end, we shall discuss various generalizations of this system.
First of all, we remark that with (5.1) one can associate the following

systems:

i
dψ̂

dx
− ψ̂(x, t, λ)U(x, t, λ) = 0 (5.2)

i
dδψ

dx
+ δU(x, t, λ)ψ(x, t, λ) + U(x, t, λ)δψ(x, t, λ) = 0 (5.3)

i
dψ̇

dx
+ U̇(x, t, λ)ψ(x, t, λ) + U(x, t, λ)ψ̇(x, t, λ) = 0 , (5.4)

where δψ corresponds to a given variation δq(x, t) of the potential, while
by dot, we denote the derivative with respect to the spectral parameter; for
example, U̇(x, t, λ) = −σ3, and as before by ψ̂ we denote ψ−1.

5.1.1 The Mapping from q to T

We start with the identity:

(χ̂σ3χ(x, λ)− σ3)|∞−∞ = −i
∫ ∞

−∞
dx

d

dx
(iχ̂σ3χ) (x, λ)

= −i
∫ ∞

−∞
dx χ̂[U(x, λ), σ3]χ(x, λ) ,

= −i
∫ ∞

−∞
dx χ̂[q(x), σ3]χ(x, λ) , (5.5)

where χ(x, λ) can be any fundamental solution of L. For convenience, we
choose them to be the FAS introduced earlier.
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The left-hand side of (5.5) can be calculated explicitly by using the asymp-
totics of χ±(x, λ) for x→ ±∞. It would be expressed by the matrix elements
of the scattering matrix T (λ), i.e. by the scattering data of L as follows:

(

χ̂+σ3χ
+(x, λ)− σ3

)∣

∣

∞
−∞ = −2

(

0 b−(λ)
b+(λ) 0

)

(5.6)

(

χ̂−σ3χ
−(x, λ)− σ3

)∣

∣

∞
−∞ = −2

(

0 b−(λ)
b+(λ) 0

)

(5.7)

We have seen that there exist two independent sets of scattering data T1

and T2, which contain the two sets of reflection coefficients:

ρ±(λ) =
b±(λ)
a±(λ)

, τ±(λ) =
b∓(λ)
a±(λ)

, λ ∈ R (5.8)

We shall show that these Wronskian relations allow us to express each of
the reflection coefficients ρ±(λ) and τ±(λ) as integrals of the potential q(x)
multiplied by the some bilinear combination of eigenfunctions of L. Indeed,
let us multiply both sides of (5.5) by σ+, take the trace, and divide by a+(λ).
Fixing up χ ≡ χ+(x, λ) we find:

ρ+(λ) = − i

2a+(λ)

∫ ∞

−∞
tr
(

χ̂+[q(x), σ3]χ+(x, λ)σ+

)

= − i

2a+(λ)

∫ ∞

−∞
tr
(

[q(x), σ3]χ+(x, λ)σ+χ̂
+(x, λ)

)

= − i

(a+(λ))2
[[

q(x), E+
+ (x, λ)

]]

, (5.9)

where

E+
+ (x, λ) = χ+(x, λ)σ+χ̂

+(x, λ) , (5.10)

and

[[

X,Y
]]

≡ 1
2

∫ ∞

−∞
dx tr (X(x), [σ3, Y (x)]) = −

[[

Y,X
]]

. (5.11)

As we see, the skew-symmetric scalar product
[[

·, ·
]]

appeared in a natural
way. It is immediately checked that it depends only on the off-diagonal parts
of the matrices X and Y . Therefore, in the right-hand side of (5.9) only the
off-diagonal part of E+(x, λ) will contribute. Using the explicit form of the
FAS χ+(x, λ) and its inverse, we find:

E+(x, λ) =
1

a+(λ)

(

−φ+
1 (x, λ)φ+

2 (x, λ) (φ+
1 (x, λ))2

−(φ+
2 (x, λ))2 φ+

1 (x, λ)φ+
2 (x, λ)

)

. (5.12)
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Thus we can rewrite one of the Wronskian relations (5.5) in the form:

ρ+(λ) =
i

2a+(λ)

∫ ∞

−∞
dx tr (q(x)[σ3, Φ

+(x, λ)])

=
i

(a+(λ))2
[[

q(x),Φ+(x, λ)
]]

, (5.13)

where we introduced the “squared” solutions of L:

Φ+(x, λ) = a+(λ)E+
+ (x, λ)f =

(

0 (φ+
1 (x, λ))2

−(φ+
2 (x, λ))2 0

)

. (5.14)

Now (5.13) really shows us that the mapping F has the sense of GFT.
Indeed, the reflection coefficient ρ+(λ) is represented as an integral, whose
integrand contains the potential q(x) and the “squared” solution Φ+(x, λ) or
rather Φ+(x, λ). In the limit, when q(x) � 0 the FAS χ+(x, λ) � e−iλσ3x and
Φ+(x, λ) � e−2iλxσ+. As a result, in this limit we recover from (5.13) the
well-known Born approximation, namely that

ρ+
Born = i

∫ ∞

−∞
dx tr (q(x)[σ3, σ+])e−2iλx

= 2i
∫ ∞

−∞
dx q−(x)e−2iλx . (5.15)

In this limit, the mapping F goes into the standard Fourier transform. Our
aim is to show that this interpretation holds true for any potential q(x) ∈M.
We shall return once again to this point at the end of this chapter.

To achieve our aim, we need additional formulae, which can be derived
from (5.5). Acting in an analogous way as before we find:

ρ±(λ) =
i

(a±(λ))2
[[

q(x),Φ±(x, λ)
]]

, (5.16)

and

τ±(λ) =
i

(a±(λ))2
[[

q(x),Ψ±(x, λ)
]]

, (5.17)

where the “squared” solutions Φ±(x, λ) and Ψ±(x, λ) are defined by:

Φ±(x, λ) = a±(E±± (x, λ))f =
(

0 ±(φ±
1 (x, λ))2

∓(φ±
2 (x, λ))2 0

)

(5.18)

Ψ±(x, λ) = a±(E±∓ (x, λ))f =
(

0 ∓(ψ±
1 (x, λ))2

±(ψ±
2 (x, λ))2 0

)

(5.19)

These “squared” solutions effectively coincide with the ones that appeared
originally in [1]. We keep this form with the zeroes on the diagonal for
later purposes, when we pose analogous problems for the gauge-equivalent
system L̃.
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5.1.2 The Mapping from δq to δT

The second type of Wronskian relations relates the variation of the potential
δq(x) to the corresponding variations of the scattering data. To this purpose,
we start with the identity:

χ̂δχ(x, λ)|∞−∞ = −i
∫ ∞

−∞
dx

d

dx
(iχ̂δχ) (x, λ) (5.20)

To calculate the integrand in (5.20), we need to use the (5.3), satisfied by
d
dxδχ(x, λ). This, we find by taking the variation of the Zakharov–Shabat
system. Inserting (5.1b) into (5.3) we find:

i
d

dx
δχ(x, λ) + (q(x)− λσ3)δχ(x, λ) + δq(x)χ(x, λ) = 0 . (5.21)

Using this we easily find:

χ̂δχ(x, λ)|∞−∞ = i

∫ ∞

−∞
dx χ̂δq(x)χ(x, λ) . (5.22)

We apply again the same ideas as in the previous subsection. Evaluating
the left-hand side of (5.22) with χ(x, λ) ≡ χ+(x, λ) and χ(x, λ) ≡ χ−(x, λ)
we find:

χ̂+δχ+(x, λ)
∣

∣

∞
−∞ =

(

δ ln a+(λ) −a+(λ)δτ+(λ)

a+(λ)δρ+(λ) −δ ln a+(λ)

)

, (5.23)

and

χ̂−δχ−(x, λ)
∣

∣

∞
−∞ =

(

−δ ln a−(λ) −a−(λ)δρ−(λ)

a−(λ)δτ−(λ) δ ln a−(λ)

)

. (5.24)

Next, multiplying by σ± and taking the trace we arrive to:

δρ±(λ) = ∓ i

2(a±(λ))2
[[

[σ3, δq(x)],Φ±(x, λ)
]]

(5.25)

δτ±(λ) = ± i

2(a±(λ))2
[[

[σ3, δq(x)],Ψ±(x, λ)
]]

(5.26)

and
δA(λ) = − i

4a±(λ)
[[

[σ3, δq(x)],Θ±(x, λ)
]]

. (5.27)

Here Ψ±(x, λ) and Φ±(x, λ) are the same “squared” solutions as in (5.18),
(5.19),

Θ±(x, λ) = a+(λ)(χ±(x, λ)σ3χ̂
±(x, λ))f
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=

(

0 −2(φ±
1 ψ

±
1 )(x, λ)

2(φ±
2 ψ

±
2 )(x, λ) 0

)

, (5.28)

and A(λ) is introduced in (3.67).
These relations are basic in the analysis of the NLEE related to the

Zakharov–Shabat system and their Hamiltonian structures. We shall use them
later, assuming that the variation of q(x) is due to its time evolution. In this
case, q(x, t) depends on t in such a way that it satisfies certain NLEE. Then
we consider variations of the type:

δq(x, t) =
∂q

∂t
δt+O((δt)2) . (5.29)

Keeping only the first-order terms with respect to δt we find:

ρ±t (λ) = ∓ i

2(a±(λ))2
[[

[σ3, qt(x)],Φ±(x, λ)
]]

(5.30)

τ±t (λ) = ± i

2(a±(λ))2
[[

[σ3, qt(x)],Ψ±(x, λ)
]]

. (5.31)

We postpone the application of these relations until later.

5.1.3 Still More Wronskian Relations

The third type of Wronskian relations, which allows us to treat the conserved
densities of the integrals of motion are of the form:

(χ̂χ̇(x, λ) + ixσ3)|∞−∞ = i

∫ ∞

−∞
dx (χ̂(x, λ)U̇(x, λ)χ(x, λ) + σ3)

= −i
∫ ∞

−∞
dx (χ̂σ3χ(x, λ)− σ3) , (5.32)

where we remind that “dot” means derivative with respect to λ.
The left-hand sides of (5.32) for χ(x, λ) = χ±(x, λ) are given by:

(

1
2
tr χ̂χ̇(x, λ)σ3 + ix

)∣

∣

∣

∣

∞

−∞
= ± ȧ±

a±(λ)
=
dA
dλ

, (5.33)

where A(λ) = ± ln a±(λ) for λ ∈ C± was introduced in (3.67).
Next, we multiply the integrand in the right-hand side of (5.32) by 1

2σ3

and take the trace. It can be rearranged as follows:

1
2
tr
(

χ̂±σ3χ
±(x, λ)σ3

)

− 1 =
1
2

∫ x

±∞
dy

d

dy

(

tr
(

χ̂±σ3χ
±(y, λ)σ3

))

= − i

2

∫ x

±∞
dy tr

(

χ̂±[U(y, λ), σ3]χ±(y, λ)σ3

)
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= − i

2

∫ x

±∞
dy tr

(

[q(y), σ3]χ±σ3χ̂
±(y, λ)

)

= − i

2a±(λ)

∫ x

±∞
dy tr

(

[q(y), σ3]Θ±(y, λ)
)

, (5.34)

which means that

dA(λ)
dλ

= −i
∫ ∞

−∞
dx

(

1
2
tr
(

χ̂±σ3χ
±(x, t, λ)σ3

)

− 1
)

= − 1
2a±(λ)

∫ ∞

−∞
dx

∫ x

±∞
dy tr

(

[q(y), σ3]Θ±(y, λ)
)

. (5.35)

5.2 Completeness of the “Squared” Solutions

The important fact, which follows from the Wronskian relations is that the
transition from the potential q(x) to the scattering data Tk, k = 1, 2 is closely
related to the expansions over the “squared” solutions.

In this section, we shall prove their basic property – their completeness,
which underlies the invertibility of the maps q(x) → Tk, k = 1, 2, and the
uniqueness of the solution of the inverse scattering problem.

The proof is based again on the contour integration method, this time
applied to the following Green function:

G(x, y, λ) =

⎧

⎨

⎩

G+(x, y, λ), for λ ∈ C+ ,
1/2(G+(x, y, λ) +G−(x, y, λ)), for λ ∈ R ,
G−(x, y, λ), for λ ∈ C− ,

(5.36)

where

G±(x, y, λ) = G±
1 (x, y, λ)θ(x− y)−G±

2 (x, y, λ)θ(y − x) , (5.37)

G±
1 (x, y, λ) =

1
(a±(λ))2

Ψ±(x, λ)⊗Φ±(y, λ) , (5.38)

G±
2 (x, y, λ) =

1
(a±(λ))2

(

Φ±(x, λ)⊗ Ψ±(y, λ)

+
1
2
Θ±(x, λ)⊗Θ±(y, λ)

)

. (5.39)

Now we consider the integral

JG(x, y) =
1

2πi

(

∮

C+

dλG+(x, y, λ)−
∮

C−

dλG−(x, y, λ)

)

=
N
∑

k=1

(

Res
λ=λ+

k

G+(x, y, λ) + Res
λ=λ−

k

G−(x, y, λ)

)

. (5.40)



140 5 The Generalized Fourier Transforms

Obviously the poles of G± coincide with λ±k ; if a±(λ) have first-order zeroes
at λ±k , then G± would have second-order poles at these points.

Theorem 5.1. For real λ

G+
1 (x, y, λ) +G+

2 (x, y, λ) = G−
1 (x, y, λ) +G−

2 (x, y, λ) . (5.41)

Proof. From (5.37) and (5.38), (5.39) we find:

G±
1 (x, y, λ) +G±

2 (x, y, λ) +
1
2
1l⊗ 1l

=
(

χ±(x, λ)⊗ χ±(y, λ)
)

Π
(

χ̂±(x, λ)⊗ χ̂±(y, λ)
)

, (5.42)

where

Π = σ+ ⊗ σ− + σ− ⊗ σ+ +
1
2
(σ3 ⊗ σ3 + 1l⊗ 1l) , (5.43)

which is known as the second Casimir endomorphism of the algebra sl(2).1

Its important property can be formulated as follows:

Π(X ⊗ Y ) = (Y ⊗X)Π . (5.44)

Then from (5.42) we have:

G±
1 (x, y, λ) +G±

2 (x, y, λ) +
1
2
1l⊗ 1l

=
(

χ±(x, λ)χ̂±(y, λ)
)

⊗
(

χ±(y, λ)χ̂±(x, λ)
)

Π , (5.45)

But from the linear relations between the FAS and the Jost solutions we have:

χ+(x, λ)χ̂+(y, λ) = χ−(x, λ)χ̂−(y, λ) = ψ(x, λ)ψ̂(y, λ) . (5.46)

This concludes the proof.

The expression in (5.46) can be viewed as a solution of the Zakharov–
Shabat system, which is normalized to 1l for x = y. It is well known that such
solutions are meromorphic functions of λ.

Next, we calculate the residues of the Green functions at λ±k . Here and
below by Ψ±

k (x), Φ±
k (x) etc., we denote Ψ±(x, λ±k ), Φ±(x, λ±k ) etc. With these

notations we have:

Res
λ=λ±

k

G±(x, y, λ) = Res
λ=λ±

k

G±
1 (x, y, λ) = X±

k (x, y) , (5.47)

X±
k (x, y) =

1
(ȧ±k )2

(

Ψ±
k (x)⊗ Φ̇

±
k (y) + Ψ̇

±
k (x)⊗Φ±

k (y)

− ä
±
k

ȧ±k
Ψ±

k (x)⊗Φ±
k (y)

)

. (5.48)

1 There, we identify the endomorphisms of sl(2) and the space sl(2) ⊗ sl(2).
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Working out the residues, we shall make use of the relations (3.98), (3.99),
(3.100) and (3.101). Thus, we find that Ψ±

k (x) and Φ±
k (x) have the form:

Ψ±
k (x) = ±π0(ψ±

k (x)ψ̃±
k (x))) , (5.49a)

Φ±
k (x) = ∓(b±k )2π0ψ

±
k (x)ψ̃±

k (x))) (5.49b)

= −(b±k )2Ψ±
k (x) , (5.49c)

Let us now evaluate the integrals along the infinite arcs of the contours.
We have:

JG,∞ =
1

2πi

(

∮

C+,∞

dλG+(x, y, λ)−
∮

C−,∞

dλG−(x, y, λ)

)

=
1

2πi

(

∮

C+,∞

dλG+
as(x, y, λ)−

∮

C−,∞

dλG−
as(x, y, λ)

)

. (5.50)

Using (3.107), we evaluate the asymptotic values of G±(x, y, λ) for λ ∈ C±:

G+
1,as(x, y, λ) = σ− ⊗ σ+e

2iλ(x−y) (1 +O(1/λ)) , (5.51a)

G−
1,as(x, y, λ) = σ+ ⊗ σ−e

−2iλ(x−y) (1 +O(1/λ)) , (5.51b)

G+
2,as(x, y, λ) = σ+ ⊗ σ−e

−2iλ(x−y) (1 +O(1/λ)) , (5.52a)

G−
2,as(x, y, λ) = σ− ⊗ σ+e

2iλ(x−y) (1 +O(1/λ)) , (5.52b)

i.e.

G+
as(x, y, λ) =

(

σ− ⊗ σ+e
2iλ(x−y)θ(x− y)

− σ+ ⊗ σ−e
−2iλ(x−y)θ(y − x)

)

(1 +O(1/λ)) , (5.53a)

for λ ∈ C+ and

G−
as(x, y, λ) =

(

σ+ ⊗ σ−e
−2iλ(x−y)θ(x− y)

− σ− ⊗ σ+e
2iλ(x−y)θ(y − x)

)

(1 +O(1/λ)) , (5.53b)

for λ ∈ C−.
Due to Jordan lemma, the terms of order 1/λ do not contribute to the

integral, so we can drop them. Then the integrands in JG,∞, due to (5.53a)
and (5.53b), are entire functions of λ, so we may freely deform the contours
C±,∞ till they coincide with the real axis. Then we subtract G+

as − G−
as and

find out that the θ-functions conveniently add up to give 1. Thus:
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JG,∞ =
i

2π

∫ ∞

−∞
dλ
(

σ− ⊗ σ+e
2iλ(x−y) − σ+ ⊗ σ−e

−2iλ(x−y)
)

= − i

2
δ(x− y)Π0 , (5.54)

Π0 = σ+ ⊗ σ− − σ− ⊗ σ+ . (5.55)

Finally, we have to evaluate the jump of the Green function across the real
axis. Due to (5.41) we find:

G+(x, y, λ)−G−(x, y, λ)

= G+
1 (x, y, λ)−G−

1 (x, y, λ) (5.56)

=
Ψ+(x, λ)⊗Φ+(y, λ)

(a+(λ))2
− Ψ−(x, λ)⊗Φ−(y, λ)

(a−(λ))2
. (5.57)

Now we equate both answers for the integral JG(x, y):

JG(x, y) = − i

2
δ(x− y)Π0

− i

2π

∫ ∞

−∞
dλ

(

Ψ+(x, λ)⊗Φ+(y, λ)
(a+(λ))2

− Ψ−(x, λ)⊗Φ−(y, λ)
(a−(λ))2

)

=
N
∑

k=1

(

X+
k (x, y) +X−

k (x, y)
)

, (5.58)

where X±
k (x, y) are defined by (5.48). Thus, the completeness relation for the

“squared” solutions acquires the form:

δ(x− y)Π0 = − 1
π

∫ ∞

−∞
dλ

(

Ψ+(x, λ)⊗Φ+(y, λ)
(a+(λ))2

− Ψ−(x, λ)⊗Φ−(y, λ)
(a−(λ))2

)

+ 2i
N
∑

k=1

(

X+
k (x, y) +X−

k (x, y)
)

, (5.59a)

Π0 = σ+ ⊗ σ− − σ− ⊗ σ+ . (5.59b)

As we will see in the next Section, this relation is compatible with the one
derived for the first time by Kaup [2].

Remark 5.2. The derivation of the above completeness relation can be made
quite rigorous. First, we remind that we identify sl(2)⊗sl(2) by sl(2)⊗sl∗(2)
using the Killing form of sl(2). Next, sl(2) ⊗ sl∗(2) is naturally isomorphic
with the space of endomorphisms of sl(2) (as linear space). Finally, we take
a function f(y) from the class L1(R) with values in sl(2) and act by the
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Green function (now understood as endomorphism) on it. Then performing
essentially the same steps as in the proof, we obtain a completeness relation
(5.68). The formula which we used in (5.54), namely,

1
2π

∫ ∞

−∞
eiλ(x−y)dλ = δ(x− y) , (5.60)

simply means that we apply our construction to functions for which F−1
0 F0f =

f , where F0 is the usual Fourier transform. Thus, for the functions of Schwartz
class, we have our expansions, and for the smooth functions we have them in
distributional sense.

Also, since sl(2)⊗sl(2) can be identified with sl∗(2)⊗sl(2), and this again
can be identified with the endomorphisms of sl(2) the completeness relation
obtained here can be used in two different ways, getting two different expan-
sions; see the next section. This was one of the main reasons for presenting
them in the above tensor form.

The constant tensor Π0 is closely related to the skew-scalar product
[[

·, ·
]]

we had earlier; see (5.11). Indeed, if we interpret Π0 as 4× 4 matrix, we can
write:

[[

X,Y
]]

= −
∫ ∞

−∞
dx tr

(

1
2
[σ3,X(x)]⊗ 1l

)

Π0

(

1
2
1l⊗ [σ3, Y (x)]

)

.

5.2.1 The Symplectic Basis

Here, we introduce the so-called symplectic basis, which will be extensively
used in the analysis of the Hamiltonian structures of the NLEE. The ele-
ments of this basis are certain linear combinations of the “squared” solutions,
namely:

P(x, λ) =
1
π

(

τ+(λ)Φ+(x, λ)− τ−(λ)Φ−(x, λ)
)

= − 1
π

(

ρ+(λ)Ψ+(x, λ)− ρ−(λ)Ψ−(x, λ)
)

, (5.61a)

P±
k (x) = 2iC±

k Ψ±
k (x) = −2iM±

k Φ±
k (x) , (5.61b)

Q(x, λ) =
τ+(λ)Φ+(x, λ) + ρ+(λ)Ψ+(x, λ)

2b+(λ)b−(λ)

=
ρ−(λ)Ψ−(x, λ) + τ−(λ)Φ−(x, λ)

2b+(λ)b−(λ)
, (5.61c)

Q±
k (x) =

1
2

(

C±
k Ψ̇

±
k (x) +M±

k Φ̇
±
k (x)

)

, (5.61d)

where we must recall that
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C±
k =

b±k
ȧ±k

, M±
k =

1
b±k ȧ

±
k

. (5.62)

Like the other systems of squared solutions, the symplectic basis also sat-
isfies completeness relation. It is derived by adding (5.59) and the relation
(5.59)’, where the primed relation is obtained from (5.59) by exchanging the
factors to the left of the tensor product with the ones to the right of it.

The relation itself has the form:

δ(x− y)Π0 =
∫ ∞

−∞
dλ (P(x, λ)⊗Q(y, λ)−Q(x, λ)⊗P(y, λ))

+
N
∑

k=1

(

Z+
k (x, y) + Z−

k (x, y)
)

, (5.63a)

Z±
k (x, y) =

(

P±
k (x)⊗Q±

k (y)−Q±
k (x)⊗P±

k (y)
)

. (5.63b)

5.3 Expansions Over the “Squared” Solutions

Using the completeness relations, one can expand any generic element X(x) of
the phase spaceM over each of the three complete sets of “squared solutions.”
In this section, we explain how this can be done. We remind that X(x) is a
generic element of M if it is an off-diagonal matrix-valued function, which
falls off fast enough for |x| → ∞. Obviously X(x) can be written down in
terms of its matrix elements X±(x) as:

X(x) = X+(x)σ+ +X−(x)σ− . (5.64)

From (5.59b) we get:

1
2
tr 1 ([σ3,X(x)]⊗ 1l)Π0 = −1

2
tr 2Π0 (1l⊗ [σ3,X(x)])Π0

= −X(x) , (5.65)

where tr 1 (and tr 2) mean that we are taking the trace of the elements in the
first (or the second) position of the tensor product.

Now, we multiply (5.63) on the right by 1
2 [σ3,X(x)] ⊗ 1l, take tr 1, and

integrate over dx. This leads to the expansion of X(x) over the system Φ±.

X(x) =
1
π

∫ ∞

−∞
dλ
(

ψ+
X(λ)Φ+(x, λ)− ψ−

X(λ)Φ−(x, λ)
)

− 2i
N
∑±

k=1

(

ψ±
X,kΦ̇

±
k + ψ̇±

X,kΦ±
k

)

, (5.66)
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where
∑±,N

k=1 X
±
k ≡

∑N
k=1(Z

+
k + Z−

k ) and

ψ±
X(λ) =

[[

Ψ±(x, λ),X(x)
]]

(a±(λ))2
, ψ±

X,k =

[[

Ψ±
k (x),X(x)

]]

(ȧ±k )2
, (5.67a)

ψ̇±
X,k =

1
(ȧ±k )2

[[

Ψ̇
±
k (x)− ä±k

ȧ±k
Ψ±

k (x),X(x)
]]

. (5.67b)

Analogously, we can multiply (5.59) on the left by 1
21l⊗[σ3,X(x)], take tr 2,

and integrate over dx. This leads to the expansion of X(x) over the system
Ψ±, which runs as follows:

X(x) = − 1
π

∫ ∞

−∞
dλ
(

φ+
X(λ)Ψ+(x, λ)− φ−

X(λ)Ψ−(x, λ)
)

+ 2i
N
∑±

k=1

(

φ±
X,kΨ̇

±
k + φ̇±

X,kΨ±
k

)

, (5.68)

φ±
X(λ) =

[[

Φ±(x, λ),X(x)
]]

(a±(λ))2
, φ±

X,k =

[[

Φ±
k (x),X(x)

]]

(ȧ±k )2
, (5.69a)

φ̇±
X,k =

1
(ȧ±k )2

(

[[

Φ̇
±
k (x),X(x)

]]

− ä±k
ȧ±k

[[

Φ±
k (x),X(x)

]]

)

. (5.69b)

The same procedure applied to the completeness relation (5.63) for the
symplectic basis leads to:

X(x) =
∫ ∞

−∞
dλ (κX(λ)P(x, λ)− ηX(λ)Q(x, λ))

+
N
∑±

k=1

(

κ±X,kP
±
k − η±X,kQ

±
k

)

, (5.70)

κX(λ) =
[[

Q(x, λ),X(x)
]]

, ηX(λ) =
[[

P(x, λ),X(x)
]]

(5.71a)

κ±X,k =
[[

Q±
k (x),X(x)

]]

, η±X,k =
[[

P±
k (x),X(x)

]]

(5.71b)

The completeness relations derived above allow us to establish a one-to-
one correspondence between the element X(x) ∈M and its expansion coeffi-
cients. Indeed, from (5.59) and (5.63), we derived the expansions (5.66), (5.68),
and (5.70) with the inversion formulae (5.67), (5.69), and (5.71), respectively.
Using them we prove the following:
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Proposition 5.3. The function X(x) ≡ 0 if and only if one of the following
sets of relations holds:

ψ+
X(λ) = ψ−

X(λ) ≡ 0, λ ∈ R , (5.72a)

ψ±
X,k = ψ̇±

X,k = 0, k = 1, . . . , N ; (5.72b)

φ+
X(λ) = φ−

X(λ) ≡ 0, λ ∈ R , (5.73a)

φ±
X,k = φ̇±

X,k = 0, k = 1, . . . , N ; (5.73b)

κX(λ) = ηX(λ) ≡ 0, λ ∈ R , (5.74a)

κ±X,k = η±X,k = 0, k = 1, . . . , N ; (5.74b)

Proof. Let us show that from X(x) ≡ 0 there follows (5.72). To this end, we
insert X(x) ≡ 0 into the right-hand sides of the inversion formulae (5.67) and
immediately get (5.72). The fact that from (5.72) there follows X(x) ≡ 0 is
readily obtained by inserting (5.72) into the right-hand side of (5.66).

The equivalence of X(x) ≡ 0 to (5.73) and (5.74) is proved analogously us-
ing the inversion formulae (5.69), (5.71) and the expansions (5.68) and (5.70).
The proposition is proved.

5.3.1 Expansions of q(x)

Here we calculate the expansion coefficients for X(x) ≡ q(x). As the readers
have guessed already, their evaluation will be based on the Wronskian relations
(5.25), (5.26), which we derived above. From them we have:

ψ±
q (λ) =

1
(a±(λ))2

[[

Ψ±(x, λ), q(x)
]]

= iτ±(λ) , (5.75a)

ψ±
q,k =

1
(ȧ±k )2

[[

Ψ±
k (x), q(x)

]]

= 0 , (5.75b)

ψ̇±
q,k =

1
(ȧ±k )2

(

[[

Ψ̇
±
k (x), q(x)

]]

− ä±k
ȧ±k

[[

Ψ±
k (x), q(x)

]]

)

= iM±
k , (5.75c)

As a result, we get the following expansion of q(x) over the system Φ±:

q(x) =
i

π

∫ ∞

−∞
dλ
(

τ+(λ)Φ+(x, λ)− τ−(λ)Φ−(x, λ)
)

+ 2
N
∑

k=1

(

M+
k Φ+

k (x) +M−
k Φ−

k (x)
)

. (5.76)
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Using the other Wronskian relations for Φ±(x, λ) we have:

φ±
q (λ) =

1
(a±(λ))2

[[

Φ±(x, λ), q(x)
]]

= iρ±(λ) , (5.77a)

φ±
q,k =

1
(ȧ±k )2

[[

Φ±
k (x), q(x)

]]

= 0 , (5.77b)

φ̇±
q,k =

1
(ȧ±k )2

(

[[

Φ̇
±
k (x), q(x)

]]

− ä±k
ȧ±k

[[

Φ±
k (x), q(x)

]]

)

= iC±
k , (5.77c)

and as a consequence get the expansion for q(x) over the system Ψ±:

q(x) = − i

π

∫ ∞

−∞
dλ
(

ρ+(λ)Ψ+(x, λ)− ρ−(λ)Ψ−(x, λ)
)

− 2
N
∑

k=1

(

C+
k Ψ+

k (x) + C−
k Ψ−

k (x)
)

. (5.78)

The expansion coefficients over the symplectic basis are given by:

ηq(λ) =
[[

P(x, λ), q(x)
]]

= 0, κq(λ) =
[[

Q(x, λ), q(x)
]]

= i , (5.79a)

η±q,k =
[[

P±
k (x), q(x)

]]

= 0, κ±q,k =
[[

Q±
k (x), q(x)

]]

= i , (5.79b)

and therefore:

q(x) = i

∫ ∞

−∞
dλP(x, λ) + i

N
∑

k=1

(

P+
k (x) + P−

k (x)
)

. (5.80)

Note that only half of the elements in the symplectic basis contribute to
the right-hand side of (5.80). We shall see that this makes the above basis
quite special.

5.3.2 Expansions of σ3δq(x)

Here, we evaluate the expansion coefficients for X(x) ≡ σ3q(x). Their cal-
culation is again based on the Wronskian relations (5.25), (5.26), which we
introduced above. We have:

ψ±
σ3δq(λ) =

1
(a±(λ))2

[[

Ψ±(x, λ), σ3δq(x)
]]

= ±iδτ±(λ) , (5.81a)

ψ±
σ3δq,k =

1
(ȧ±k )2

[[

Ψ±
k (x), σ3δq(x)

]]

= ±iδλ±k M
±
k , (5.81b)



148 5 The Generalized Fourier Transforms

ψ̇±
σ3δq,k =

1
(ȧ±k )2

(

[[

Ψ̇
±
k (x), σ3δq(x)

]]

− ä±k
ȧ±k

[[

Ψ±
k (x), σ3δq(x)

]]

)

= ±iδM±
k . (5.81c)

As a result, we get the following expansion of σ3δq(x) over the system Φ±:

σ3δq(x) =
i

π

∫ ∞

−∞
dλ
(

δτ+(λ)Φ+(x, λ) + δτ−(λ)Φ−(x, λ)
)

(5.82)

+ 2
N
∑

k=1

(

M+
k δλ

+
k Φ̇

+

k (x) + δM+
k Φ+

k (x)−M−
k δλ

−
k Φ̇

−
k (x)

− δM−
k Φ−

k (x)
)

.

The other two expansions for σ3δq(x) over the system Ψ± can be found
in a similar way. Indeed, as:

φ±
σ3δq(λ) =

1
(a±(λ))2

[[

Φ±(x, λ), σ3δq(x)
]]

= ∓iδρ±(λ) , (5.83a)

φ±
σ3δq,k =

1
(ȧ±k )2

[[

Φ±
k (x), σ3δq(x)

]]

= ∓iδλ±k C
±
k , (5.83b)

φ̇±
σ3δq,k =

1
(ȧ±k )2

(

[[

Φ̇
±
k (x), σ3δq(x)

]]

− ä±k
ȧ±k

[[

Φ±
k (x), σ3δq(x)

]]

)

= ∓iδC±
k , (5.83c)

we get:

σ3δq(x) =
i

π

∫ ∞

−∞
dλ
(

δρ+(λ)Ψ+(x, λ) + δρ−(λ)Ψ−(x, λ)
)

(5.84)

+ 2
N
∑

k=1

(

C+
k δλ

+
k Ψ̇

+

k (x) + δC+
k Ψ+

k (x)− C−
k δλ

−
k Ψ̇

−
k (x)

− δC−
k Ψ−

k (x)
)

.

Finally, with the expansion coefficients over the symplectic basis being
given by:

ησ3δq(λ) =
[[

P(x, λ), σ3δq(x)
]]

= −iδη(λ) , (5.85a)

κσ3δq(λ) =
[[

Q(x, λ), σ3δq(x)
]]

= −iδκ(λ) , (5.85b)

η±σ3δq,k =
[[

P±
k (x), σ3δq(x)

]]

= ∓2δλ±k , (5.85c)

κ±σ3δq,k =
[[

Q±
k (x), σ3δq(x)

]]

= ∓iδ ln b±k , (5.85d)
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we obtain:

σ3δq(x) = i

∫ ∞

−∞
dλ (δκ(λ)P(x, λ)− δη(λ)Q(x, λ)) (5.86)

+ i

N
∑

k=1

(

δη+
k Q+

k (x)− δκ+
k P+

k (x) + δη−k Q−
k (x)− δκ−k P−

k (x)
)

,

where

η(λ) =
1
π

ln
(

1 + ρ+(λ)ρ−(λ)
)

, η±k = ∓2iλ±k , (5.87a)

κ(λ) =
1
2

ln
b+(λ)
b−(λ)

, κ±k = ± ln b±k . (5.87b)

In the next chapter, we shall see how this set of variables is related to the
action-angle variables of the corresponding NLEE.

The expansion (5.86) allows us to introduce one more minimal set of scat-
tering data:

T ≡
{

η(λ), κ(λ), λ ∈ R, η±k , κ±k , k = 1, . . . , N
}

, (5.88)

which, like T1 and T2 in (3.68), allows to recover uniquely both the scattering
matrix T (λ) and the corresponding potential. Indeed, to determine T (λ) from
(5.88), we make use of the dispersion relations (3.66), (3.67), which allow us
to find a±(λ) in their whole domains of analyticity, knowing η(λ) and λ±k .
Then, knowing a±(λ) and b+(λ)/b−(λ) = exp(2κ(λ)), it is easy to deter-
mine b±(λ) as functions on the real λ-axis. The coefficients C±

k = b±k /ȧ
±
k

and M±
k = 1/(b±k ȧ

±
k ) are obtained through b±k = exp(±κ±k ) (5.87b) and

ȧ±k = da±/dλ|λ=λ±
k

(3.97).

5.4 Generating Operators Revisited

We introduced the generating (or the recursion) operators in Chap. 2 by
solving the set of recurrent relations derived by AKNS. Here, we shall obtain
them using another idea as the operators, for which the squared solutions are
eigenfunctions.

First of all, note that the squared solutions Ψ±(x, λ) and Φ±(x, λ) satisfy
the equation:

i
dEα

dx
+ [q(x)− λσ3, Eα(x, λ)] = 0 . (5.89)

which actually is satisfied by any function which is a linear combination of
functions of the form (compare with (5.10)):

Eα(x, λ) = a(λ)χσαχ̂(x, λ) , (5.90)
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where χ(x, λ) is any fundamental solution of the Zakharov–Shabat system
and a(λ) = detχ(x, λ) is an x-independent function. In what follows, we shall
specify χ(x, λ) = χ±(x, λ) and a(λ) = a±(λ), respectively.

Next, omitting for brevity the subscript α, we introduce the splitting:

E(x, λ) = e(x, λ)σ3 + Φ(x, λ) , (5.91a)

e(x, λ) =
1
2
tr (E(x, λ)σ3) , (5.91b)

Φ(x, λ) = π0(E(x, λ)) . (5.91c)

Let us multiply (5.89) by 1
2σ3 and take the trace. We obtain:

i
de

dx
+ 〈σ3[q(x),Φ(x, λ)]〉 = 0, 〈X,Y 〉 =

1
2
trXY . (5.92)

Then

e(x, λ) = i

∫ x

±∞
dy 〈σ3[q(y),Φ(y, λ)]〉+ lim

y→±∞
e(y, λ) . (5.93)

Next, we apply to (5.89) the projector π0 (i.e. take its off-diagonal part):

i
dΦ

dx
+ π0[q(x), e(x, λ)σ3 + Φ(x, λ)] = λ[σ3,Φ(x, λ)] (5.94)

and insert into it (5.93). Thus we obtain

i

4

[

σ3,
dΦ

dx

]

− iq(x)
∫ x

±∞
dy 〈σ3[q(y),Φ(y, λ)]〉 − λΦ(y, λ)

= q(x) lim
y→±∞

e(y, λ) , (5.95)

or in compact form:

(Λ± − λ)Φ(y, λ) = q(x) lim
y→±∞

e(y, λ) , (5.96)

where the integro-differential operators Λ± are defined by:

Λ±X =
i

4

[

σ3,
dX

dx

]

− iq(x)
∫ x

±∞
dy 〈σ3[q(y),X(y)]〉 , (5.97)

If it were for the nonzero terms in the right-hand side of (5.95) we could
say that any of the operators Λ± will do the job. Since it is not so we have
to go further and evaluate the right-hand side of (5.95) and find for what
specific choices of Φ(x, λ) it vanishes. To this end, we need the asymptotics
of the “squared” solutions for x→ ±∞, which are collected in Table 5.1.



5.4 Generating Operators Revisited 151

Table 5.1. The limits of E±(x, λ) for x → ±∞.

σα = σ+ σα = σ− σα = σ3

E+
α (x, λ)

+∞ E+
1 (x, λ) e2iλxσ− a+(λ)σ3 + 2b+(λ)e2iλxσ−

−∞ e−2iλxσ+ E+
2 (x, λ) a+(λ)σ3 − 2b−(λ)e−2iλxσ+

E−
α (x, λ)

+∞ e−2iλxσ+ E−
1 (x, λ) a−(λ)σ3 + 2b−(λ)e−2iλxσ+

−∞ E−
2 (x, λ) e2iλxσ− a−(λ)σ3 − 2b−(λ)e2iλxσ−

Here we have used the notations:

E+
1 =

(

−a+(λ)b+(λ) (a+(λ))2e−2iλx

−(b+(λ))2e2iλx a+(λ)b+(λ)

)

, (5.98a)

E−
1 =

(

−a−(λ)b−(λ) −(b−(λ))2e−2iλx

(a−(λ))2e2iλx a−(λ)b−(λ)

)

, (5.98b)

E+
2 =

(

a+(λ)b−(λ) −(b−(λ))2e−2iλx

(a+(λ))2e2iλx −a+(λ)b−(λ)

)

, (5.98c)

E−
2 =

(

a−(λ)b+(λ) (a−(λ))2e−2iλx

−(b+(λ))2e2iλx −a−(λ)b+(λ)

)

. (5.98d)

Thus we find the following relations, which in particular show that
Ψ±(x, λ) and Φ±(x, λ) are eigenfunctions of the operators Λ+ and Λ−,
respectively:

(Λ+ − λ)Ψ±(x, λ) = 0 , (5.99a)

(Λ− − λ)Ψ±(x, λ) = q(x)a±(λ)b∓(λ) , (5.99b)

and

(Λ− − λ)Φ±(x, λ) = 0 , (5.100a)

(Λ+ − λ)Φ±(x, λ) = −q(x)a±(λ)b±(λ) , (5.100b)

The “squared” solutions Θ±(x, λ), which are related to the diagonal of the
resolvent, and which were used to obtain the densities of the integrals of
motion, are not eigenfunctions of Λ±. For them we get:

(Λ+ − λ)Θ±(x, λ) = q(x)a±(λ) , (5.101a)
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(Λ− − λ)Θ±(x, λ) = q(x)a±(λ) . (5.101b)

It is also natural to evaluate the action of Λ± on the elements of the
symplectic basis:

(Λ± − λ)P(x, λ) = 0 , (5.102a)

(Λ± − λ)Q(x, λ) = ∓1
2
q(x) . (5.102b)

From these relations, it is easy to see that the symplectic basis consists of the
eigenfunctions of the operator:

Λ =
1
2
(Λ+ + Λ−) , (5.103)

that is

(Λ− λ)P(x, λ) = 0, (Λ− λ)Q(x, λ) = 0 , (5.104)

Below, we shall need also the action of the recursion operators on the
eigenfunctions of the discrete spectrum. The calculations are performed in an
analogous way and the results are:

(Λ+ − λ±k )Ψ±
k (x) = 0, (Λ+ − λ±k )Ψ̇

±
k (x) = Ψ±

k (x) , (5.105)

(Λ− − λ±k )Φ±
k (x) = 0, (Λ− − λ±k )Φ̇

±
k (x) = Φ±

k (x) , (5.106)

and

(Λ− λ±k )P±
k (x) = 0, (Λ− λ±k )Q±

k (x) = 0 . (5.107)

5.5 Spectral Properties of the Λ-Operators

In the preceding section, we showed that the sets of “squared solutions”

{Ψ} ≡ {Ψ±(x, λ), λ ∈ R ,

Ψ±
k (x), Ψ̇

±
k (x), k = 1, . . . , N} , (5.108a)

{Φ} ≡ {Φ±(x, λ), λ ∈ R ,

Φ±
k (x), Φ̇

±
k (x), k = 1, . . . , N} , (5.108b)

{P,Q} ≡ {P(x, λ),Q(x, λ), λ ∈ R ,

P±
k (x),Q±

k (x), k = 1, . . . , N} , (5.108c)

are complete sets of functions in the phase space M. As a consequence, any
function X(x) ∈M can be expanded over any of the sets (5.108).
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On the other hand, the formulae (5.99), (5.100), and (3.3) allow us to
interpret Ψ±(x, λ), Φ±(x, λ) and P(x, λ), Q(x, λ) as eigenfunctions of the
operators Λ+, Λ− and Λ = 1

2 (Λ+ + Λ−), respectively. These are the eigen-
functions corresponding to the continuous spectrum of the Λ-operators, which
fills up the real axis in the complex λ-plane and is therefore doubly degen-
erate. Note that the L operator has the same doubly degenerate continuous
spectrum.

The discrete spectrum of each of these operators Λ+, Λ−, Λ, and L is
located at the same sets of points λ±k ∈ C±, k = 1, . . . , N . However, there is
a substantial difference in the structure of the corresponding eigenspaces. In
Sect. 3.1, we imposed condition C2, which means that the eigenvalues of L
are simple, i.e. the corresponding eigenspaces of L are one-dimensional.

As can be seen from the completeness relations (5.59) and (5.63), the
eigenspaces of Λ+, Λ−, and Λ are two-dimensional, so each eigenvalue is doubly
degenerate. For the operator Λ+, the eigenspaces corresponding to λ±k are
spanned by Ψ±

k (x) and Ψ̇±
k (x). While the former are eigenfunctions the latter

are not; Ψ̇±
k (x) are known as the adjoint eigenfunctions of Λ+.

Quite analogous is the interpretation of Φ±
k (x) and Φ̇±

k (x) as eigenfunctions
and adjoint eigenfunctions of Λ−. Finally each of the eigenspaces of Λ is
spanned by two linearly independent eigenfunctions; see (3.3).

As we shall see in Part II, the degeneracy of the eigenspaces of the Λ-
operators plays a fundamental role in their geometric properties.

5.5.1 The Biquadratic Relations

Let us analyze the properties of the squared solutions and the Λ-operators
with respect to the skew-symmetric scalar product

[[

·, ·
]]

. We start with the
relation:

[[

Λ+X,Y
]]

=
[[

X,Λ−Y
]]

, (5.109a)

which means that the operator Λ− is the “adjoint” to Λ+ with respect to the
skew-symmetric scalar product. The relation (5.109a) follows from the explicit
expressions of Λ+ and Λ− and integration by parts. An easy consequence of
(5.109a) is

[[

ΛX, Y
]]

=
[[

X,ΛY
]]

, (5.109b)

which means that Λ is “self-adjoint” with respect to the skew-symmetric scalar
product.

The skew-symmetric scalar products of the squared solutions can be eval-
uated with the help of the so-called “biquadratic” relations for the Jost solu-
tions. In order to derive them, we shall use the definition (5.90) of Eα(x, λ)
and remind that Eα(x, λ) and Eβ(x, μ) are solutions of the following equations:

i
dEα

dx
+ [q(x)− λσ3, Eα(x, λ)] = 0 , (5.110)
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i
dEα

dx
+ [q(x)− μσ3, Eβ(x, μ)] = 0 . (5.111)

Now, we multiply (5.110) and (5.111) by Eβ(x, μ) and Eα(x, λ), respectively,
add them together and take the trace. After some standard rearrangements
using the properties of the trace we get:

i
d

dx

tr (Eα(x, λ)Eβ(x, μ))
λ− μ

+ tr (Eα(x, λ), [σ3, Eβ(x, μ)) = 0 . (5.112)

Now, we integrate with respect to dx to get:
[[

Eα(x, λ), Eβ(x, μ)
]]

≡
[[

Φα(x, λ),Φβ(x, μ)
]]

=
i tr (Eα(x, λ)Eβ(x, μ))

2(μ− λ)

∣

∣

∣

∣

∞

x=−∞
. (5.113)

Here, we used the fact that only the off-diagonal parts Φα, Φβ of Eα and Eβ

contribute to the skew-symmetric scalar product. Setting χ(x, λ) ≡ χ+(x, λ)
or χ(x, λ) ≡ χ−(x, λ), and taking σα, σβ to be σ+, σ− or σ3, we obtain in the
left-hand side of (5.113) all the possible relations of the type (5.113) for the
“squared solutions.” The right-hand side of (5.113) can be evaluated explicitly
in terms of the scattering data with the help of the well-known asymptotics
of χ±(x, λ) for x→ ±∞.

Obviously, the knowledge of the skew-symmetric scalar products (5.113)
allows one to calculate the expansion coefficients and thus to expand any of
the “squared” solutions (e.g. Ψ+(x, λ) over any of the other sets of “squared”
solutions (e.g. over Φ+(x, λ). Here, we have to note that since Ψ+(x, λ) do
not tend to 0 for x → ±∞, some of these expansion coefficients will contain
singularities.

We already encountered the necessity of these limits in the calculation of
the generating operators. But now, in addition to the data in Table 5.1, for
real λ, we need also the formulae:

lim
y→−∞

V.P.
e±iλy

λ
= ∓iπδ(λ), lim

y→∞
V.P.

e±iλy

λ
= ±iπδ(λ) , (5.114)

Exactly, the terms of this type are responsible for the appearance of the above
mentioned singularities.

The results for all possible “biquadratic” relations are collected in Ta-
ble 5.2, where

V ±(λ− μ) =
1

λ− μ
± iπδ(λ− μ) , (5.115a)

U±(λ, μ) =
iu±(λ)u±(μ)

μ− λ
, (5.115b)
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Table 5.2. The skew-symmetric scalar products between the “squared solutions”;
the notations are given in formulae (5.115)

Φ+(x, μ) Φ−(x, μ) Ψ+(x, μ) Ψ−(x, μ)

Φ+(x, λ) V +(λ − μ) U(λ, μ) −D+(λ, μ) 0

Φ−(x, λ) −U(μ, λ) V −(λ, μ) 0 D−(λ, μ)

Ψ+(x, λ) D+(λ, μ) 0 −U+(λ, μ) W (λ, μ)

Ψ−(x, λ) 0 −D−(λ, μ) −W (μ, λ) −U−(λ, μ)

Θ+(x,λ)

a+(λ)
v+(μ)Y + v−(μ)Y + u+(μ)Y + u−(μ)Y +

Θ−(x,λ)

a−(λ)
v+(μ)Y − v−(μ)Y − u+(μ)Y − u−(μ)Y −

W (λ, μ) = 2πδ(λ− μ)a+(λ)a−(λ)− iu+(λ)u−(μ)
μ− λ

, (5.115c)

U(λ, μ) = −2πδ(λ− μ)a+(λ)a−(λ) +
iv+(λ)v−(μ)

μ− λ
, (5.115d)

D±(λ, μ) = 2π(a±(λ))2δ(λ− μ), (5.115e)

v±(λ) = (a±(λ))2ρ±(λ), u±(λ) = (a±(λ))2τ±(λ) , (5.115f)

Y ± ≡ Y ±(λ− μ) = − i

λ− μ
± 2πδ(λ− μ) . (5.115g)

From formulae (5.66) and (5.67) we see that in order to expand the function
X(x) over the systems of “squared solutions”, one needs to evaluate the skew-
symmetric scalar products

[[

Φ±(x, λ),X(x)
]]

, etc. Therefore, the results in
Table 5.2 allow us to expand the “squared” solutions over themselves, say
Θ±(x, λ) over any of the systems of “squared” solutions. Skipping the details,
we just list the results. For λ ∈ C+, the expansion over Ψ± reads:

Θ+,f (x, λ)
a+(λ)

= 2ρ+(λ)Ψ+(x, λ)

− i

π

∫ ∞

−∞

dμ

μ− λ

(

ρ+(μ)Ψ+(x, μ)− ρ−(μ)Ψ−(x, μ)
)

− 2
N
∑

k=1

(

C+
k

λ+
k − λ

Ψ+
k (x) +

C−
k

λ−k − λ
Ψ−

k (x)
)

(5.116a)

= 2ρ+(λ)Ψ+(x, λ) + (Λ+ − λ)−1q(x) , (5.116b)
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while the one over Φ± has the form:

Θ+,f (x, λ)
a+(λ)

= −2τ+(λ)Φ+(x, λ)

+
i

π

∫ ∞

−∞

dμ

μ− λ

(

τ+(μ)Φ+(x, μ)− τ−(μ)Φ−(x, μ)
)

+ 2
N
∑

k=1

(

M+
k

λ+
k − λ

Φ+
k (x) +

M−
k

λ−k − λ
Φ−

k (x)
)

(5.117a)

= −2τ+(λ)Φ+(x, λ) + (Λ− − λ)−1q(x) . (5.117b)

Analogously, for λ ∈ C− we find:

Θ−,f (x, λ)
a−(λ)

= −2ρ−(λ)Ψ+(x, λ) + (Λ+ − λ)−1q(x) , (5.118a)

and

Θ−,f (x, λ)
a−(λ)

= −2τ−(λ)Φ−(x, λ) + (Λ− − λ)−1q(x) . (5.118b)

Obviously relations (5.101) can be considered as consequences of (5.116),
(5.117a), (5.117b), (5.118a) and (5.118b).

5.5.2 Biorthogonality of the Squared Solutions

The important consequence of the results in the previous section is the
biorthogonality property of the “squared” solutions with respect to the skew-
symmetric scalar product. Indeed, from Table 5.2 and from (7.50) there
follows:

[[

Φ+(x, λ),Ψ+(x, μ)
]]

= −π(a+(λ))2δ(λ− μ) ,
[[

Φ−(x, λ),Ψ−(x, μ)
]]

= π(a−(λ))2δ(λ− μ) . (5.119)

Using these relations, we can expand Φ+(x, μ) and Φ−(x, μ) over “them-
selves”. The result is trivial: Φ+(x, λ) = Φ+(x, λ). Analogously with (5.119),
we can expand Ψ+(x, μ) and Ψ−(x, μ) over themselves with the same trivial
result.

In order to derive the corresponding relations for the “squared” solutions
related to the discrete spectrum, we would need the limits in Table 5.2 evalu-
ated for λ = λ±k . In fact we already used them implicitly in the evaluation of
the expansion coefficients of Θ±(x, μ)/a±(μ). Skipping the technical details
we list the results:
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[[

Φ±
k (x),Ψ±

m(x)
]]

= 0,
[[

Φ̇
±
k (x),Ψ±

m(x)
]]

= − i

2
(ȧ±k )2δkm , (5.120)

[[

Φ±
k (x), Ψ̇

±
m(x)

]]

= − i

2
(ȧ±k )2δkm,

[[

Φ̇
±
k (x), Ψ̇

±
m(x)

]]

= − i

2
ȧ±k ä

±
k δkm .

All the other skew-symmetric scalar products vanish.
Next, we can use the above results to derive also the skew-symmetric scalar

products between the elements of the symplectic basis:
[[

P(x, λ),P(x, μ)
]]

= 0,
[[

Q(x, λ),Q(x, μ)
]]

= 0 , (5.121a)
[[

P(x, λ),Q(x, μ)
]]

= −iδ(λ− μ),
[[

P±
k (x),Q±

m(x)
]]

= −iδkm , (5.121b)

In other words, we can say the the symplectic basis is the analog of the
orthogonal basis with respect to the skew-symmetric scalar product.

5.5.3 The Green Functions of Λ±

Let us now briefly outline the relation between G(x, y, λ) (5.64) and the Green
functions of the operators Λ±. This can be done by applying the contour
integration method to the following integral:

J4(x, y, λ) =
1

2πi

(

∮

C+

dμG+(x, y, μ)
μ− λ

−
∮

C−

dμG−(x, y, μ)
μ− λ

)

. (5.122)

Due to the additional factor μ− λ in the denominator, we conclude now that
the integrals along the infinite semi-arcs vanish. However, the same factor for
λ ∈ C+ adds one more singular point to the integrand of the first integral in
the right-hand side of (5.122). The residue at that point is equal toG+(x, y, λ).

Skipping the rest of the details, we formulate the analog of the spectral
decomposition of the Green function G(x, y, λ) (5.36), which follows from
(5.122):

G(x, y, λ) = − 1
π

∫ ∞

−∞

dμ

μ− λ

(

Ψ+(x, μ)⊗Φ+(y, μ)
(a+(μ))2

(5.123a)

− Ψ−(x, μ)⊗ Φ−(y, μ)
(a−(μ))2

)

+ 2i
N
∑

k=1

(

Y +
k + Y −

k

)

(x, y) ,

Y ±
k (x, y) =

1
(λ− λ±k )(ȧ±k )2

{

Ψ̇
±
k (x)⊗Φ±

k (y) + Ψ±
k (x)⊗ Φ̇

±
k (y)

−
(

ä±k
ȧ±k

+
1

λ− λ±k

)

Ψ±
k (x)⊗Φ±

k (y)
}

. (5.123b)

Let us apply (Λ+ − λ)⊗ 1l on (5.123) on the left and make use of (5.105),
(5.106) and the completeness relation (5.89). This gives the result:
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((Λ+ − λ)⊗ 1l)G(x, y, λ) = Π0δ(x− y)

= (σ+ ⊗ σ− − σ− ⊗ σ+)δ(x− y) . (5.124)

We can now apply to both sides of (5.124) the contraction C1, which is defined
by:

C1(X ⊗ Y ) = XY , (5.125)

i.e. it reduces the tensor product to the standard matrix multiplication. Then
(5.124) leads to:

(Λ+ − λ)G(1)(x, y, λ) = 1lδ(x− y) , (5.126)

where G(1) = C1(G(x, y, λ)(1l⊗ σ3)).
We remind that by construction G(x, y, λ) is section-analytic function of λ.

We recall also that in Sect. 5.2 we established that it falls off exponentially
for |x|, |y| → ∞. These properties, combined with (5.126), show us that
G(1)(x, y, λ) is the resolvent kernel of the operator Λ+.

Quite analogously, we can construct the resolvent kernel of the opera-
tor Λ−. This time we shall need another contraction:

C2(X ⊗ Y ) = Y X = C1(Y ⊗X) , (5.127)

which first exchanges the positions of the elements in the tensor product and
then applies the contraction C1. We apply C2 to:

(1l⊗ (Λ− − λ))G(y, x, λ) = Π0δ(x− y) , (5.128)

which also follows from (5.123) and (5.99), (5.100). As a result we find that

(Λ− − λ)G(2)(x, y, λ) = δ(x− y) , (5.129)

where G(2)(x, y, λ) = C2 (G(x, y, λ)(1l⊗ σ3)). Thus G(2)(x, y, λ) is the kernel
of the Green function of Λ−.

The relations (5.126) and (5.129) can be derived also by a rather tedious
direct calculation using the explicit form of Λ± and G(x, y, λ).

We end this section with the following proposition.

Proposition 5.4. For any smooth function f(λ), which has no singularities
on the spectrum of L the following relations hold:

f(Λ+)q(x) = f(Λ−)q(x) = f(Λ)q(x) . (5.130)

Proof. From the relations (5.105), (5.106) and (5.107) we find:

(f(Λ+)− f(λ))Ψ±(x, λ) = 0 , (5.131a)

(f(Λ+)− f(λ±k ))Ψ±
k (x) = 0 , (5.131b)
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(f(Λ+)− f(λ±k ))Ψ̇
±
k (x) = ḟ(λ±k )Ψ±

k (x) , (5.131c)

(f(Λ−)− f(λ))Φ±(x, λ) = 0 , (5.132a)

(f(Λ−)− f(λ±k ))Φ±
k (x) = 0 , (5.132b)

(f(Λ−)− f(λ±k ))Φ̇
±
k (x) = ḟ(λ±k )Φ±

k (x) , (5.132c)

(f(Λ)− f(λ))P(x, λ) = 0, (f(Λ)− f(λ))Q(x, λ) = 0 , (5.133a)

(f(Λ)− f(λ±k ))P±
k (x) = 0, (f(Λ)− f(λ±k ))Q±

k (x) = 0 . (5.133b)

On the other hand, from (5.76), (5.78) and (5.80), we have:

f(Λ+)q(x) =
i

π

∫ ∞

−∞
dλ f(λ)

(

τ+(λ)Φ+(x, λ)− τ−(λ)Φ−(x, λ)
)

+ 2
N
∑

k=1

(

f+
k M

+
k Φ+

k (x) + f−
k M

−
k Φ−

k (x)
)

, (5.134)

f(Λ−)q(x) = − i

π

∫ ∞

−∞
dλ f(λ)

(

ρ+(λ)Φ+(x, λ)− ρ−(λ)Φ−(x, λ)
)

− 2
N
∑

k=1

(

f+
k C

+
k Φ+

k (x) + f−
k C

−
k Φ−

k (x)
)

, (5.135)

f(Λ)q(x) = i

∫ ∞

−∞
dλ f(λ)P(x, λ) + i

N
∑

k=1

(

f+
k P+

k (x) + f−
k P−

k (x)
)

. (5.136)

where f±
k = f(λ±k ).

Now, due to the definitions of the functions of the symplectic basis (5.61a)
and (5.61b), we see that the right-hand sides of (5.134) and (5.135) coincide
with the right-hand side of (5.136). The proposition is proved.

5.6 Expansions Over the “Products of Solutions”

5.6.1 Generalized Wronskian Relations

The Wronskian relations derived in Sect. 5.1 can be generalized and used to
relate the scattering data and the potentials of two different Zakharov–Shabat
systems.

Let us consider two ZS systems: Equation (5.1) with potential U(x, λ) and
(5.1’) with potential U ′(x, λ):
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U(x, λ) = q′(x, t)− λσ3 . (5.137)

All quantities such as Jost solutions, scattering matrix and its elements, FAS
etc. will be denoted by the same letter with additional “prime”.

We start with the generalized Wronskian identities [3, 4]:

(χ̂′σ3χ(x, λ)− σ3)|∞−∞ = −i
∫ ∞

−∞
dx χ̂′[U ′(x, λ)σ3 − U(x, λ)σ3]χ(x, λ) ,

= i

∫ ∞

−∞
dx χ̂σ3(q′(x) + q(x))χ(x, λ), (5.138)

(χ̂′χ(x, λ)− 11)|∞−∞ = −i
∫ ∞

−∞
dx χ̂′[U ′(x, λ)− U(x, λ))χ(x, λ),

= −
∫ ∞

−∞
dx χ̂′(q′(x)− q(x))χ(x, λ) , (5.139)

where χ(x, λ) and χ′(x, λ) can be any fundamental solution of L and L′,
respectively; for convenience, we choose them to be the FAS introduced earlier.

The left-hand sides of (5.138) and (5.139) can be calculated explicitly
by using the asymptotics of χ±(x, λ) and χ′,±(x, λ) for x → ±∞. They are
expressed by the matrix elements of the scattering matrix T (λ) and T ′(λ) as
follows:

(

χ̂′,±σ3χ
±(x, λ)− σ3

)∣

∣

∞
−∞ =

1
a′,±

(

a± − a′,± ∓(b′,−a± + b−a′,±)

∓(b′,+a± + b+a′,±) a± − a′,±

)

,

(5.140)

(

χ̂′,±χ±(x, λ)− 11
)∣

∣

∞
−∞ =

1
a′,±

(

±(a± − a′,±) (b′,−a± − b−a′,±)

−(b′,+a± − b+a′,±) ∓(a± − a′,±)

)

(5.141)
The individual matrix elements are obtained by multiplying both sides

of the above equations by the Pauli matrices σα and taking the trace. After
such operation the integrands in the right-hand sides of (5.138), (5.139) are
expressed through the skew-scalar product (5.12) like in Sect. 5.1 but now
instead of E(x, λ) (5.11) there appear

E ′,±α (x, λ) = χ±(x, λ)σαχ̂
′,±(x, λ) , (5.142)

and instead of the “squared solutions” we naturally get the “products of the
solutions”

Φ′,±(x, λ) = a′,±(E ′,±± (x, λ))f =
(

0 ±φ′,±
1 φ±

1 (x, λ)
∓φ′,±

2 φ±
2 (x, λ) 0

)

(5.143)
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Ψ ′,±(x, λ) = a′,±(E ′,±∓ (x, λ))f =
(

0 ∓ψ′,±
1 ψ±

1 (x, λ)
±ψ′,±

2 ψ±
2 (x, λ) 0

)

,(5.144)

Θ′,±(x, λ) = a′,±(E ′,±3 (x, λ))f =

(

0 −φ′,±
1 ψ±

1 − φ±
1 ψ

′,±
1

φ′,±
2 ψ±

2 + φ±
2 ψ

′,±
2 0

)

,

(5.145)

Ξ ′,±(x, λ) = a′,±(E ′,±0 (x, λ))f =

(

0 ±φ′,±
1 ψ±

1 ∓ φ±
1 ψ

′,±
1

∓φ′,±
2 ψ±

2 ± φ±
2 ψ

′,±
2 0

)

,

(5.146)
One can repeat the same arguments with χ′(x, λ) and χ(x, λ) interchanged.
Thus, we get a second set of Wronskian relations which involve a dual form
of E ′,±α :

′E±α (x, λ) = χ′,±(x, λ)σαχ̂
±(x, λ) . (5.147)

The dual set of the “products of solutions”:

′Φ±(x, λ) = a±(′E±± (x, λ))f , ′Ψ±(x, λ) = a±(′E±∓ (x, λ))f , (5.148)

′Θ±(x, λ) = a±(′E±3 (x, λ))f , ′Ξ±(x, λ) = a±(′E±0 (x, λ))f (5.149)

in fact coincide with Φ′,±(x, λ), Ψ ′,±(x, λ), Θ′,±(x, λ) and Ξ ′,±(x, λ), respec-
tively. Thus we find:

ρ′,±(λ) + ρ±(λ) =
i

a+a′,+

∫ ∞

−∞
tr
(

χ̂+[q(x), σ3]χ+(x, λ)σ+

)

=
i

a+a′,+

[[

q(x) + q′(x),Φ′,±(x, λ)
]]

, (5.150)

τ ′,±(λ) + τ±(λ) =
i

a+a′,+

[[

q(x) + q′(x),Ψ ′,±(x, λ)
]]

, (5.151)

and

∓ (ρ′,±(λ)− ρ±(λ)) =
i

a+a′,+

[[

σ3(q′(x)− q(x)),Φ′,±(x, λ)
]]

, (5.152)

±(τ ′,±(λ) + τ±(λ)) =
i

a+a′,+

[[

σ3(q′(x)− q(x)),Ψ ′,±(x, λ)
]]

, (5.153)

These “products of solutions” effectively coincide with the ones that ap-
peared originally in [3, 4]. We keep this form with the zeroes on the diagonal
for later purposes, when we pose analogous problems for the gauge-equivalent
system L̃.

The generalized Wronskian relations derived above allow one to analyze
the mappings between the pairs of potentials {q(x), q′(x)} and the pairs of
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minimal sets of scattering data {T ′, T }. To this end, we will show that the
“products of solutions” (5.143), (5.144), just like the “squared” solutions, are
complete sets of functions in the space of allowed potentials.

The proof is based again on the contour integration method, this time
applied to the Green function:

G′(x, y, λ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

G′,+(x, y, λ), for λ ∈ C+ ,

1/2(G′,+(x, y, λ) +G′,−(x, y, λ)), for λ ∈ R ,

G′,−(x, y, λ), for λ ∈ C− ,

(5.154)

where

G′,±(x, y, λ) = G′,±
1 (x, y, λ)θ(x− y)−G′,±

2 (x, y, λ)θ(y − x) , (5.155)

G′,±
1 (x, y, λ) =

1
a′,±(λ)a±(λ)

Ψ ′,±(x, λ)⊗ ′Φ±(y, λ) , (5.156)

G′,±
2 (x, y, λ) =

1
a′,±(λ)a±(λ)

(

Φ′,±(x, λ)⊗ ′Ψ±(y, λ)

+
1
2
Θ′,±(x, λ)⊗ ′Θ±(y, λ) +

1
2
Ξ ′,±(x, λ)⊗ ′Ξ±(y, λ)

)

.

(5.157)

Now, we consider the integral

J ′
G(x, y) =

1
2πi

(

∮

C+

dλG′,+(x, y, λ)−
∮

C−

dλG′,−(x, y, λ)

)

=
N
∑

k=1

(

Res
λ=λ+

k

G′,+(x, y, λ) + Res
λ=λ−

k

G′,−(x, y, λ)

)

. (5.158)

Obviously G′,± has poles whenever a±(λ) or a′,±(λ) have zeroes. In what
follows, we will denote the sets of zeroes of a±(λ) and a′,±(λ) by Z± and Z ′,±,
respectively:

Z± =
{

λ±j , a±(λ±j ) = 0, j = 1, . . . , N
}

, λ±j ∈ C± (5.159)

Z ′,± =
{

λ′,±j , a′,±(λ′,±j ) = 0, j = 1, . . . , N ′} , λ′,±j ∈ C± (5.160)

To be more specific, we assume that all zeroes are simple. Therefore, G′,±

(x, y, λ) would have second-order poles at those λ±j , which happen to be equal
to some λ′,±k . Without loss of generality, we split the set of indices N ≡
{1, . . . , N} into three subsets: N = N0 ∪N1 ∪N2, where
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N0 = {j ∈ N0 : a±(λ±j ) = 0, a′,±(λ′,±j ) = 0} ,

N1 = {j ∈ N1 : a±(λ±j ) = 0, a′,±(λ′,±j ) 	= 0} , (5.161)

N2 = {j ∈ N2 : a±(λ±j ) 	= 0, a′,±(λ′,±j ) = 0}.

With these notations, the Green functionG′,±(x, y, λ) will have poles of second
order at λ±j if j ∈ N0 and first-order poles if j ∈ N1 ∪ N2. Applying Cauchy
residue theorem, we have:

J ′
G(x, y) =

∑

j∈N0

(X ′,+
j +X ′,−

j )+
∑

j∈N1

(Y ′,+
j +Y ′,−

j )+
∑

j∈N2

(Z ′,+
j +Z ′,−

j ) , (5.162)

where

X ′,±
j (x, y) =

1
ȧ±j ȧ

′,±
j

{

Ψ ′,±
j (x)⊗ ′Φ̇

±
j (y) + Ψ̇

′,±
j (x)⊗ ′Φ±

j (y) (5.163)

−
(

ȧ±j ä
′,±
j + ä±j ȧ

′,±
j

2ȧ±j ȧ
′,±
j

)

Ψ ′,±
j (x)⊗ ′Φ±

j (y)

)

, j ∈ N0;

Y ′,±
j (x, y) =

1
ȧ±j a

′,±(λ±j )
Ψ ′,±

j (x)⊗ ′Φ±
j (y), j ∈ N1; (5.164)

Z ′,±
j (x, y) =

1
a±j (λ′,±j )ȧ′,±

Ψ ′,±
j (x)⊗ ′Φ±

j (y), j ∈ N2 . (5.165)

Working out the residues we shall make use of the relations (5.49).

Theorem 5.5. For real λ

G′,+
1 (x, y, λ) +G′,+

2 (x, y, λ) = G′,−
1 (x, y, λ) +G′,−

2 (x, y, λ) . (5.166)

Proof. From (5.37) and (5.38), (5.39) we find:

G′,±
1 (x, y, λ) +G′,±

2 (x, y, λ)

=
(

χ±(x, λ)⊗ χ′,±(y, λ)
)

Π
(

χ̂′,±(x, λ)⊗ χ̂±(y, λ)
)

, (5.167)

where Π is the second Casimir endomorphism of the algebra sl(2) and has
the property (5.44). It remains to use (5.46) to conclude the proof.

The integrals along the infinite arcs of the contours are evaluated in a way
similar to the one in Sect. 5.2. We have:

J ′
G,∞ = − i

2
δ(x− y)Π0 , (5.168)

where Π0 is the same as in (5.59b).
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Finally, we have to evaluate the jump of the Green function across the real
axis. Due to (5.167) we find:

G′,+(x, y, λ)−G′,−(x, y, λ) = G′,+
1 (x, y, λ)−G′,−

1 (x, y, λ)

=
Ψ ′,+(x, λ)⊗ ′Φ+(y, λ)

a+(λ)a′,+(λ)
− Ψ ′,−(x, λ)⊗ ′Φ−(y, λ)

a−(λ)a′,−(λ)
. (5.169)

Equating both answers for the integral JG(x, y), we get the completeness
relation for the “products” of solutions in the form:

δ(x− y)Π0 = − 1
π

∫ ∞

−∞
dλ

(

Ψ ′,+(x, λ)⊗ ′Φ+(y, λ)
a+(λ)a′,+(λ)

− Ψ ′,−(x, λ)⊗ ′Φ−(y, λ)
a−(λ)a′,−(λ)

)

+ 2i

⎛

⎝

∑±

j∈N0

X ′,±
j +

∑±

j∈N1

Y ′,±
j +

∑±

j∈N2

Z ′,±
j

⎞

⎠ , (5.170)

This relation is compatible with the one derived for the first time in [5, 6, 7].

5.6.2 Expanding X(x) Over the “Products of Solutions”

The next step is to use the completeness relation (5.170) to obtain the expan-
sions over the products of solutions. Using the same technique as in Sect. 5.2,
we derive the following expansion of the function X(x) in (5.64):

X(x) =
1
π

∫ ∞

−∞
dλ
(

ψ′,+
X (λ)′Φ+(x, λ)− ψ′,−

X (λ)′Φ−(x, λ)
)

− 2i
∑±

k∈N0

(

ψ±
X,k

′Φ̇
±
k − ψ̇±

X,k
′Φ±

k

)

− 2i
∑±

k∈N1∪N2

ψ±
X,k

′Φ±
k , (5.171)

X(x) = − 1
π

∫ ∞

−∞
dλ
(

φ′,+
X (λ)Ψ ′,+(x, λ)− φ′,−

X (λ)Ψ ′,−(x, λ)
)

+ 2i
∑±

k∈N0

(

φ±
X,kΨ̇

′,±
k + φ̇±

X,kΨ ′,±
k

)

+ 2i
∑±

k∈N1∪N2

φ±
X,kΨ ′,±

k , (5.172)

where

ψ′,±
X (λ) =

[[

Ψ ′,±(x, λ),X(x)
]]

a±(λ)a′,±(λ)
, ψ′,±

X,k =

[[

Ψ ′,±
k (x),X(x)

]]

A±
k

, (5.173a)

ψ̇±
X,k =

1
A±

k

[[

Ψ̇
±
k (x)− ä±k

ȧ±k
Ψ±

k (x),X(x)
]]

, k ∈ N0 , (5.173b)
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φ′,±
X (λ) =

[[′Φ±(x, λ),X(x)
]]

a±(λ)a′,±(λ)
, φ′,±

X,k =

[[′Φ′,±
k (x),X(x)

]]

A±
k

, (5.173c)

φ̇±
X,k =

1
A±

k

[[

Φ̇
±
k (x)− ä±k

ȧ±k
Φ±

k (x),X(x)
]]

, k ∈ N0 , (5.173d)

A±
k =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ȧ±k ȧ
′,±
k , for k ∈ N0 ,

ȧ±k a
′,±
k , for k ∈ N1 ,

ȧ±k a
′,±
k , for k ∈ N2.

(5.173e)

Proposition 5.6. The function X(x) ≡ 0 if and only if one of the following
sets of relations holds:

ψ′,+
X (λ) = ψ′,−

X (λ) ≡ 0, λ ∈ R , (5.174a)

ψ′,±
X,k = 0, k = 1, . . . , N ; ψ̇′,±

X,k = 0, k ∈ N0 , (5.174b)

φ′,+
X (λ) = φ′,−

X (λ) ≡ 0, λ ∈ R , (5.175a)

φ′,±
X,k = 0, k = 1, . . . , N ; φ̇′,±

X,k = 0, k ∈ N0 (5.175b)

Proof. Let X(x) ≡ 0. Then all coefficients in the right-hand sides of (5.174)
and (5.175) vanish due to (5.173). Let now all coefficients in the left-hand
sides of (5.174) and (5.175) vanish. Then inserting them in the right hand
sides of the expansions (5.171) and (5.172), we get that X(x) ≡ 0.

It is easy to check that the expansion coefficients φ±
X(λ) and ψ±

X(λ) can
be explicitly evaluated for two particularly important choices of X(x). In-
deed, using (5.142) and (5.147), it is easy to express the skew-scalar prod-
ucts

[[

Ψ ′,±(x, λ),X(x)
]]

and
[[′Φ±(x, λ),X(x)

]]

for X(x) = q(x) + q′(x) and
X(x) = σ3(q′(x)− q(x)) through the reflection coefficients ρ±(λ), ρ′,±(λ) and
τ±(λ), τ ′,±(λ). Skipping the details one gets the following expansions:

σ3(q′(x)− q(x))

=
i

π

∫ ∞

−∞
dλ
(

(ρ′,+(λ)− ρ+(λ))Ψ ′,+(x, λ) + (ρ′,−(λ)− ρ−(λ))Ψ ′,−(x, λ)
)

+ 2
∑±

k∈N0

±(C ′,±
k − C±

k )Ψ ′,±
k (x)− 2

∑±

k∈N1

±C±
k Ψ ′,±

k (x)

+ 2
∑±

k∈N2

±C ′,±
k Ψ ′,±

k (x), (5.176)
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=
i

π

∫ ∞

−∞
dλ
(

(τ ′,+(λ)− τ+(λ))′Φ+(x, λ) + (τ ′,−(λ)− τ−(λ))′Φ−(x, λ)
)

+ 2
∑±

k∈N0

±(M ′,±
k −M±

k )′Φ±
k (x)− 2

∑±

k∈N1

±M±
k

′Φ±
k (x)

+ 2
∑±

k∈N2

±M ′,±
k

′Φ±
k (x) , (5.177)

and

q′(x) + q(x)

= − i

π

∫ ∞

−∞
dλ
(

(ρ′,+(λ) + ρ+(λ))Ψ ′,+(x, λ)− (ρ′,−(λ) + ρ−(λ))Ψ ′,−(x, λ)
)

− 2
∑±

k∈N0

(C ′,±
k + C±

k )Ψ ′,±
k (x)− 2

∑±

k∈N1

C±
k Ψ ′,±

k (x)− 2
∑±

k∈N2

C ′,±
k Ψ ′,±

k (x) ,

(5.178)

=
i

π

∫ ∞

−∞
dλ
(

(τ ′,+(λ) + τ+(λ))′Φ+(x, λ)− (τ ′,−(λ) + τ−(λ))′Φ−(x, λ)
)

+ 2
∑±

k∈N0

(M ′,±
k +M±

k )′Φ±
k (x) + 2

∑±

k∈N1

M±
k

′Φ±
k (x) + 2

∑±

k∈N2

M ′,±
k

′Φ±
k (x) ,

(5.179)

In other words, the elements of the two sets of scattering data T and T ′

determine the expansion coefficients of σ3(q′(x)− q(x)) and q′(x) + q(x) over
the products of solutions.

5.6.3 Generalized Recursion Operators

The completeness relations obtained above can be treated as spectral de-
compositions of the operators Λ′

±, for which the products of solutions are
eigenfunctions:

Λ′
+Ψ ′,±(x, λ) = λΨ ′,±(x, λ), λ ∈ Z± ∪ Z ′,± ,

Λ′
+Ψ̇

′,±
j (x) = λ±j Ψ̇

′,±
j (x) + Ψ ′,±

j (x), j ∈ N0 ,
(5.180)

Λ′
−
′,Φ±(x, λ) = λ′,Φ±(x, λ), λ ∈ Z± ∪ Z ′,± ,

Λ′
−
′, Φ̇

±
j (x) = λ±j

′, Φ̇
±
j (x) + ′,Φ±

j (x), j ∈ N0 ,
(5.181)

The integro-differential operators Λ′
± generalize the recursion operators Λ±.

In order to derive their explicit form, we make use of the equation:
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i
dE ′,±α

dx
+ q(x)E ′,±α (x, λ)− E ′,±α (x, λ)q′(x)− λ[σ3, E ′,±α (x, λ)] = 0 , (5.182)

which is satisfied by all E ′,±α (x, λ) in (5.142). It is only natural to introduce in
(5.182) the splitting

E ′(x, λ) = E ′,d(x, λ) + E ′,f(x, λ) (5.183)

of E ′,±α (x, λ) into diagonal and off-diagonal parts. Here, for simplicity of no-
tations we dropped some of the upper and the lower index of E ′. Now, we
must keep in mind that the trace of E ′(x, λ) is nonvanishing, so E ′(x, λ) is
an element of the algebra gl(2) rather than sl(2). Therefore, its diagonal part
consists of two summands:

E ′(x, λ) =
1
2
1ltr (E ′(x, λ)) +

1
2
σ3tr (E ′(x, λ)σ3) . (5.184)

Taking the diagonal part of the left-hand side of (5.182) we find:

i
dE ′,d
dx

+ q(x)E ′,f(x, λ)− E ′,f(x, λ)q′(x) = 0 , (5.185)

which can be formally integrated with the result:

E ′,d(x, λ)
∣

∣

x

x=±∞ = − i

2
1l
∫ x

±∞
dy tr

(

(q′(y)− q(y))E ′,f(y, λ)
)

(5.186)

+
i

4
σ3

∫ x

±∞
dy tr

(

σ3

[

q′(y) + q(y), E ′,f(y, λ)
])

.

It remains to consider the off-diagonal part of (5.182) and to insert in it the
expression for E ′,d(x, λ) from (5.186). The result is:

Λ′
±E ′,f(x, λ) = = λE ′,f(x, λ) +

1
4

[

σ3, q(x)e′,d± (λ)− e′,d± (λ)q′(x)
]

, (5.187)

e′,d± (λ) = lim
x→±∞

E ′,d(x, λ) , (5.188)

where Λ′
± acts on any off-diagonal 2× 2 matrix-valued function X(x) by:

Λ′
±X =

i

4

[

σ3,
dX

dx

]

− i

8
(q′(x) + q(x))

∫ x

±∞
dy tr (σ3 [q′(y) + q(y),X(y)])

+
i

4
σ3(q′(x)− q(x))

∫ x

±∞
dy tr ((q′(y)− q(y))X(y)) . (5.189)

In order to establish the relations in (5.180), (5.181), it remains to use the
proper definitions of the “products of solutions” in (5.143) and (5.144) and to
evaluate the limits of the corresponding diagonal parts e′,d± (λ).
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Remark 5.7. We leave it to the reader to derive the spectral decompositions
of the Green functions G′,±(x, y, λ), following the same ideas as in Sect. 5.5.3.

Remark 5.8. One can check that the recursion operators Λ′
± evaluated for

q(x) = q′(x) coincide with the recursion operators Λ±. The expansions (5.178)
and (5.179) for q(x) = q′(x) go into the expansion for q(x); see (5.76) and
(5.77a). Taken in the limit q′(x) → q(x) + δq(x), where δq(x) is small, the
expansions (5.176) and (5.177) go into the expansions (5.82), (5.84). The
proof is based on the fact that if δq(x) is uniformly small enough, then the
Zakharov–Shabat systems L and L′ have the same sets of discrete eigenvalues.
Besides, the differences ρ′,±(λ) − ρ±(λ), τ ′,±(λ) − τ±(λ) will also be small.
Then, up to terms of higher order in δq we have:

(ρ′,±(λ)− ρ±(λ))Ψ ′,±(x, λ) → δρ±(λ)Ψ±(x, λ) ,

(τ ′,±(λ)− τ±(λ))′Φ′,±(x, λ) → δτ±(λ)Ψ±(x, λ) ,
(5.190)

C ′,±
k Ψ ′,±(x)− C±

k Ψ±(x) → δλ±k C
±
k Ψ̇

±
k (x) + δC±

k Ψ±
k (x) ,

M ′,±
k Φ′,±(x)−M±

k Φ±(x) → δλ±k M
±
k Φ̇

±
k (x) + δM±

k Φ±
k (x),

(5.191)

thus reproducing the expansions of σ3δq(x) over the “squared solutions”.

Remark 5.9. To the best of our knowledge no symplectic basis for the “prod-
ucts of solutions” is known.

5.7 Comments and Bibliographical Review

1. The Wronskian relations are a well-known method for analyzing spectral
problems for ordinary differential operators; see [8, 9]. Their importance
for solving NLEE was realized at the end of the 60s [10, 11], which led to
their applications in solving NLEE [1] and to a number of their general-
izations in the 70s [3, 4, 5, 6, 7, 12, 13, 14, 15]. They allow one to derive
the explicit form of the “squared solutions” [1, 12, 16, 17], which play the
role of generalized exponentials.

2. The first paper in which the Green function for the squared solutions of
the Sturm-Liouville problem was proposed in [18]. However, his result did
not receive much attention.

Next important result in this direction was Kaup’s formulation of the
completeness (or the closure) relation for the “squared solutions” of the ZS
system [2]. The Green function for the squared solutions of the ZS system
was proposed in [5, 7] and used to prove in a more rigorous way their
completeness relation [2]. In [5, 7], a new complete set of functions – the
symplectic basis – was introduced by taking proper linear combinations
of the “squared solutions”. The advantage of using the symplectic basis is
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in the fact that it directly relates the potential q(x) of ZS system to the
action-angle variables of the hierarchy of NLS-type equations.

3. A direct consequence of the completeness relation for the “squared so-
lutions” is the possibility to expand any function X(x) ∈ M over the
“squared solutions” or over the elements of the symplectic basis. In the
process one naturally encounters the skew-scalar product (5.11). The ex-
pansion coefficients of X(x) are expressed through the skew-scalar prod-
ucts of X(x) with the “squared solutions”.

4. These skew-scalar products can be expressed in terms of the scatter-
ing data of L for three important particular choices for X(x): q(x),
σ3qt, σ3δq(x). The expansions for these three functions over the “squared
solutions”, along with the fact that the “squared solutions” are eigenfunc-
tions of the recursion operator Λ, are basic for deriving the fundamen-
tal properties of the NLEE and their Hamiltonian hierarchy. These facts
have been realized independently by Kaup and Newell [19] and Gerdjikov
and Khristov [5, 7]. The symplectic basis introduced in the latter papers
simplified very much the derivation of the action-angle variables of the
corresponding NLEE and the proof of compatibility of their Hamiltonian
hierarchies.

5. Using a natural generalization of the Green function for the “squared so-
lutions”, one is able to prove the completeness of the products of solutions
for two ZS system with potentials q(x) and q′(x) [5, 6, 7, 20]. One can
use these relation and expand over the “products of solutions” the sum
q(x) + q′(x) and the difference σ3(q(x) − q′(x)) of these potentials. The
expansion coefficients are expressed in terms of the scattering data of the
two ZS system. As a result one is able to describe the class of Bäcklund
transformations [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] for the corre-
sponding NLEE. The results in [5, 6, 7] make more precise the results of
Calogero and Degasperis, based on the generalized Wronskian relations
[3, 4].

6. The Green function for the “squared solutions” was also used to outline
the construction of the spectral theory of the corresponding recursion
operators Λ±. They have been extended to a number of generalizations of
the ZS system, including:
• the n×n ZS system related to the sl(n) algebras, allowing to solve the

N -wave-type equations [32, 33, 34, 35]. Using the possibility to express
the resolvent of L through the FAS, one can also derive the spectral
decomposition of the Lax operator [34].

• to quadratic and higher order polynomial in λ bundles [36, 37, 38, 39,
40, 41]

• to ZS system related to the simple Lie algebra g [42, 43] of two different
ZS system.

• to discrete analogs of the ZS system [44, 45, 46, 47] and their multi-
componenet generalizations [48]

• to ZS system with nonvanishing boundary conditions [49, 50];
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• to Lax operators gauge equivalent to the ZS system [13, 14, 51] and
to the generalized ZS system [52];

7. Generalizations of the construction of the recursion operator for 2 + 1-
dimensional NLEE was proposed by Konopelchenko and Zakharov in [53,
54, 55] and by Fokas and Santini in [56]. Unfortunately, the construction
of their eigenfunctions and spectral decomposition is still an unsolved
problem.

8. For all these generalized ZS systems, it was possible to introduce the Green
function for the recursion operators Λ± in terms of FAS. Again using the
contour integration method one can prove the completeness relation for
the “squared solutions” of L, which are eigenfunctions of Λ±. Thus, we
are able to construct the spectral decompositions also for Λ±, which are
integro-differential non-self-adjoint operators.
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6

Fundamental Properties of the Solvable NLEEs

In this chapter, we shall show how the expansions over the “squared solutions,”
derived in Chap. 5, can be used for the analysis of the solvable NLEEs related
to the ZS system. First, we shall describe the class of these NLEEs and show
that the expansions over the “squared solutions” linearize them. After that
the NLEEs can be solved trivially. Next, we shall demonstrate the important
role of the recursion (generating) operators in the theory of the NLEEs. They
allow us to describe the class of integrable NLEE and construct their integrals
of motion and hierarchy of Hamiltonian structures. An easy consequence of
the expansions over the symplectic basis is the complete integrability of the
NLEEs and the explicit form of their action-angle variables.

In the last section of this Chapter, we demonstrate how the expansions
over the “products of solutions” and the generalized recursion operators can
be used to describe the class of Bäcklund transformations for the NLEE.

6.1 Description of the Class of NLEEs

The main tool we shall use now are the expansions over the “squared” solu-
tions of the potential q(x, t) and its time derivative σ3qt. The latter is obtained
by considering a special type of variations δq(x, t), namely:

σ3δq(x, t) = σ3qtδt+O((δt)2) . (6.1)

Keeping only the terms of order δt, from (5.82), (5.84), and (5.86) we find:

σ3qt(x, t) =
i

π

∫ ∞

−∞
dλ
(

ρ+
t (t, λ)Ψ+(x, t, λ) + ρ−t (t, λ)Ψ−(x, t, λ)

)

+ 2
N
∑

k=1

(

C+
k (t)λ+

k,tΨ̇
+
k (x, t) + C+

k,tΨ
+
k (x, t)

− C−
k (t)λ−k,tΨ̇

−
k (x, t)− C−

k,tΨ
−
k (x, t)

)

, (6.2)
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σ3qt(x, t) = − i

π

∫ ∞

−∞
dλ
(

τ+
t (t, λ)Φ+(x, t, λ) + τ−t (t, λ)Φ−(x, t, λ)

)

(6.3)

+ 2
N
∑

k=1

(

M+
k (t)λ+

k,tΦ̇
+
k (x, t) + M+

k,tΦ
+
k (x, t)

− M−
k (t)λ−

k,tΦ̇
−
k (x, t) − M−

k,tΦ
−
k (x, t)

)

,

σ3qt(x, t) = i

∫ ∞

−∞
dλ (κt(λ)P(x, t, λ) − ηt(λ)Q(x, t, λ)) (6.4)

+ i
N
∑

k=1

(

η+
k,tQ

+
k (x, t) − κ+

k,tP
+
k (x, t) + +η−k,tQ

−
k (x, t) − κ−

k,tP
−
k (x, t)

)

,

where

η(λ) =
1
π

ln
(

1 + ρ+(t, λ)ρ−(t, λ)
)

, η±k = ∓2iλ±k ,

κ(t, λ) =
1
2

ln
b+(t, λ)
b−(t, λ)

, κ±k (t) = ± ln b±k (t) . (6.5)

As already mentioned, the dispersion law f(λ)

f(λ) =
∑

k

fkλ
k , (6.6)

determines the evolution of the scattering data of the particular NLEEs. In
most of the examples of NLEEs given below the corresponding dispersion laws
are polynomial in λ. However, the theorem proved below holds true for a much
larger class of dispersion laws.

Theorem 6.1. Let the potential q(x, t) satisfy conditions C1 and C2 and let
the function f(λ) be meromorphic for λ ∈ C and has no singularities on the
spectrum of L. Then the NLEEs:

iσ3qt + 2f(Λ+)q(x, t) = 0 , (6.7a)
iσ3qt + 2f(Λ−)q(x, t) = 0 , (6.7b)
iσ3qt + 2f(Λ)q(x, t) = 0 , (6.7c)

are pairwise equivalent to the following linear evolution equations for the scat-
tering data:

iρ±t ∓ 2f(λ)ρ±(λ, t) = 0 , (6.8a)
iC±

k,t ∓ 2f±
k C

±
k (t) = 0 , (6.8b)

λ±k,tC
±
k (t) = 0 , (6.8c)

iτ±t ± 2f(λ)τ±(λ, t) = 0 , (6.9a)
iM±

k,t ± 2f±
k M

±
k (t) = 0 , (6.9b)
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λ±k,tM
±
k (t) = 0 , (6.9c)

iηt = 0, iκt − 2f(λ) = 0 , (6.10a)
iη±k,t = 0, iκ±k,t − 2f±

k = 0 , (6.10b)

Proof. Inserting (6.2) and (5.134) into the left-hand side of the NLEEs (6.7a),
we obtain that the following expansion over the “squared” solutions Ψ±:

i

π

∫ ∞

−∞
dλ
[(

iρ+
t − 2f(λ)ρ+(t, λ)

)

Ψ+(x, t, λ)

+
(

iρ−t + 2f(λ)ρ−(t, λ)
)

Ψ−(x, t, λ)
]

+ 2
N
∑

k=1

[(

iC+
k,t − 2f+

k C
+
k (t)

)

Ψ+
k (x, t)−

(

iC−
k,t + 2f−

k C
−
k (t)

)

Ψ−
k (x, t)

+ iλ+
k,tC

+
k (t)Ψ̇+

k (x, t)− iλ−k,tC
−
k (t)Ψ̇−

k (x, t)
]

= 0 (6.11)

must vanish. In order to prove the equivalence between (6.7a) and (6.8), it
remains to use proposition 5.3.

Analogously, inserting the expansions (6.2) and (5.135) into the left-hand
side of (6.7a), we find that the following expansion over Φ±:

i

π

∫ ∞

−∞
dλ
[(

iτ+
t + 2f(λ)τ+(t, λ)

)

Φ+(x, t, λ)

+
(

iτ−t − 2f(λ)τ−(t, λ)
)

Φ−(x, t, λ)
]

+ 2
N
∑

k=1

[(

iM+
k,t + 2f+

k M
+
k (t)

)

Φ+
k (x, t) −

(

iM−
k,t − 2f−

k M
−
k (t)

)

Φ−
k (x, t)

+ iλ+
k,tM

+
k (t)Φ̇+

k (x, t)− iλ−k,tM
−
k (t)Φ̇−

k (x, t)
]

= 0 (6.12)

must vanish. Using again the Proposition 5.3, one immediately proves the
equivalence between (6.7b) and (6.9).

Finally, inserting the expansions over the symplectic basis (see (6.4) and
(5.136)) into the left-hand side of (6.7c) we get:

i

∫ ∞

−∞
dλ {iηtQ(x, t, λ)− (iκt − 2f(λ))P(x, t, λ)}

+ i
N
∑

k=1

{

iη+
k,tQ

+
k (x, t)−

(

iκ+
k,t − 2f+

k

)

P+
k (x, t)

+ iη−k,tQ
−
k (x, t)−

(

iκ−k,t − 2f−
k

)

P−
k (x, t)

}

= 0 . (6.13)

Using again Proposition 5.3, we establish the equivalence of (6.7c) and (6.10).
To complete the proof of the theorem, it is necessary to invoke Propo-

sition 5.4 and (5.130), from which it follows that the left-hand sides of the
NLEEs (6.7a)–(6.7c) coincide. The theorem is proved.
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Remark 6.2. Note the special role of the symplectic basis and the related
scattering data (5.88). From (6.10), we see that half of these data, namely,
η(λ), η±k are time-independent, while the other half, κ(λ), κ±k , depends lin-
early on time. This implies that T in fact provides us with global action–angle
variables for the NLEEs (6.7). We shall return to this question in Sect. 6.2
below.

Remark 6.3. The terms in the NLEEs, corresponding to f0 and f1 in the
dispersion law can be removed by the following simple change of variables:

q(x, t) → q̃(x, t) = e−iασ3tq(x+ βt, t) .

Indeed, if we denote by Λ̃ the operator, obtained from Λ, by changing q(x, t)
to q̃(x, t) we have:

Λ̃nq̃(x, t) = e−iασ3t(Λnq)(x+ βt, t) ,
iσ3q̃t = e−iασ3t (iσ3qt + αq(x+ βt, t) + iβσ3qx)

= e−iασ3tiσ3qt + (α+ 2βΛ̃q̃(x, t)
= e−iασ3tiσ3qt + (α+ 2βΛ̃)q̃ .

After this change of variables the NLEEs (6.7) will go into:

iσ3q̃t + f̃(Λ̃)q̃(x, t) = 0 ,

where f̃(λ) = f(λ)− α/2− βλ.

6.2 Examples of NLEEs

Here, we list several examples of physically important NLEEs, which fall into
the above scheme. The Theorem 6.1 shows that each NLEE is specified by
the corresponding function f(λ). In physics, this function is known as the
dispersion law of the NLEEs; clearly f(λ) fixes up uniquely both the explicit
form of the NLEEs and the evolution of the scattering data. Below, we list
examples of two types of dispersion laws: (a) regular, i.e. polynomial in λ and
(b) singular, including negative powers of λ.

6.2.1 Polynomial Dispersion Laws

In order to find the explicit form of the NLEEs, we shall need to calculate
Λp
±q(x, t) for p = 1, 2, 3. Recall that

Λ±X =
i

4

[

σ3,
dX

dx

]

+
i

2
q(x, t)

∫ x

±∞
dy tr (q(y, t), [σ3,X(y, t)]) . (6.14)
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The calculation shows that

Λ±q(x, t) =
i

4
[σ3, qx] , (6.15)

(Λ±)2q(x, t) = −1
4
(

qxx + 2q+q−q(x, t)
)

, (6.16)

(Λ±)3q(x, t) = − i

16
[

σ3, qxxx + 6q+q−qx

]

, (6.17)

These expressions illustrate two important facts. The first one was actually
introduced by (5.130); the second one, which will be analyzed below, is that
Λkq(x, t) are local in q(x, t) for positive k, i.e. Λkq(x, t) depend only on q and
its x-derivatives.

The generic NLEEs will be systems of equations for the two complex-
valued functions q+(x, t) and q−(x, t), which parametrize the potential q(x, t).
Next, we shall show how these systems of NLEEs can be simplified by addi-
tional algebraic restrictions on q(x, t). Let us consider some examples.

Example 6.4 (The GNLS equation). This generalization of the NLS equation
is obtained by choosing f(λ) = c2λ

2. Then (6.7a) and (6.16) lead to the
following system:

iq+t −
c2
2

(q+xx + 2(q+)2q−(x, t)) = 0 , (6.18)

−iq−t −
c2
2

(q−xx + 2(q−)2q+(x, t)) = 0 . (6.19)

We can put for simplicity c2 = −2 and require that q+ = ε0(q−)∗ = u(x, t)
with ε0 = ±1. Then the second equation (6.19) is obtained from the first one
(6.18) by complex conjugation, and the system reduces to the standard NLS
equation:

iut + uxx + 2ε0|u|2u(x, t) = 0, ε0 = ±1 . (6.20)

Example 6.5 (The GmKdV equation). The dispersion law for the generalized
mKdV equation is given by f(λ) = −8λ3. Then (6.7a) and (6.17) lead to:

q+t + q+xxx + 6q+q+x q
−(x, t) = 0 ,

q−t + q−xxx + 6q−q−x q
+(x, t) = 0 , (6.21)

In order to get the famous mKdV equation, we need to impose the relation
q+ = η0q

− = v(x, t), with η0 = ±1 and we obtain:

vt + vxxx + 6η0vxv
2(x, t) = 0, η0 = ±1 . (6.22)

Here, v(x, t) is a complex–valued function. It is possible, by imposing another
restriction on q, to make v(x, t) either real or purely imaginary function. This
equation finds applications in the physics of fluids, in plasma physics [1, 2],
and in differential geometry [3].
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Example 6.6 (Mixed GNLS–GmKdV equation). The last example here is a
generalization of the NLEEs with a dispersion law f(λ) = −2λ2 − 8c3λ3,
where c3 is some real constant. The corresponding system of NLEEs is:

iq+t + q+xx + 2(q+)2q−(x, t) + ic3(q+xxx + 6q+q−q+x ) = 0 ,

−iq−t + q−xx + 2(q−)2q+(x, t) + ic3(q−xxx + 6q+q−q−x ) = 0 , (6.23)

Here, like in the NLS case, we can impose the restriction q+ = ε0(q−)∗ =
w(x, t) which leads to:

iwt + wxx + 2ε0|w|2w(x, t) + ic3(wxxx + 6ε0|w|2wx) = 0 . (6.24)

This equation has applications in nonlinear optics [4].

6.2.2 Singular Dispersion Laws

There are also important examples of NLEEs, characterized by singular dis-
persion relations; an example of such is provided by f(λ) = c4/λ. To treat
such cases, we shall need also explicit expression for (Λ±)−1. Generically, it
can be obtained as follows. Let us introduce g(x, t) as the solution of the
Zakharov–Shabat system at λ = 0:

i
dg

dx
+ q(x, t)g(x, t) = 0, lim

x→−∞
g(x, t) = 1l . (6.25)

Note that for the proof of Theorem 6.1 we needed the condition that the
dispersion law is regular on the real axis. Now we shall need modifications
in order to treat singular dispersion laws. We need to impose additional im-
plicit restriction on the class of potentials q(x, t), which would ensure the
convergence of the integrals in (6.11)–(6.13) and the validity of the theorem,
namely, we require that q(x, t) be such that the reflection coefficients ρ±(t, λ)
are smooth functions of λ and vanish fast enough for λ→ 0:

lim
λ→0

λ−kρ+(t, λ) = lim
λ→0

λ−kρ−(t, λ) = const , (6.26)

for k = 1, . . . , N1. This condition with conveniently chosen N1 will ensure the
convergence of the integrals in (6.11)–(6.13). Clearly, N1 is determined by the
order of the singularity of f(λ); it must be such that limλ→0 λ

N1f(λ) = const.
The condition (6.26) means that:

T (t, 0) =
(

a+(0) 0
0 a−(0)

)

, a+(0)a−(0) = 1 . (6.27)
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Recall also that the asymptotic of g(x, t) for x→∞ is:

lim
x→−∞

g(x, t) = T (t, 0) . (6.28)

Let us now apply a similarity transformation E → Ẽ = ĝEg to the solution
E(x, t, λ) of the equation (5.89). We get:

i
dẼ
dx

= λĝ(x, t)[σ3, E(x, t, λ)]g(x, t) . (6.29)

Next, we divide by λ and integrate over x, which yields:

1
λ
Ẽ(x, t, λ) − 1

λ
lim

y→±∞
Ẽ(y, t, λ)

= −i
∫ x

±∞
dy ĝ(y, t)[σ3, E(y, t, λ)]g(y, t) . (6.30)

In order to get (Λ±)−1, it remains to apply the inverse similarity transfor-
mation to (6.30) and to take off the diagonal part of E with the result:

1
λ
π0E(x, t, λ) − 1

λ
lim

y→±∞
π0

(

h(x, y, t)E(y, t, λ)ĥ(x, y, t)
)

= (Λ±)−1π0E(x, t, λ) , (6.31)

where h(x, y, t) = g(x, t)ĝ(y, t) and

(Λ±)−1X(x, t) = −iπ0g(x, t)
∫ x

±∞
dy ĝ(y, t)[σ3,X(y, t)]g(y, t)ĝ(x, t) . (6.32)

If we put X = q(x, t) in (6.32) and make use of (6.25) we get:

Λ−1
± q(x, t) = −iΛ−1

± (gxĝ(x, t))

= −π0

(

g(x, t) (ĝ(y, t)σ3g(y, t))|xy=±∞ ĝ(x, t)
)

= π0 (g(x, t)σ3ĝ(x, t)) . (6.33)

Here, we find again that both Λ−1
+ and Λ−1

− produce the same effect on q(x, t),
which is a consequence of the regularity condition (6.26) and (6.27). Indeed,
the contribution to the right-hand side of (6.33) from the limit x → +∞ or
x→ −∞, turns out to be the same.1

Example 6.7 (The generalized Maxwell–Bloch (GMB) equation).
For the NLEEs with dispersion law f4(λ) = c4/λ we get:

iσ3qt + 2π0c4 (g(x, t)σ3ĝ(x, t)) = 0 . (6.34)

1 There is no reason to expect that Λ−k
+ q(x, t) will be equal to Λ−k

− q(x, t) for k > 1.
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Of course generically we do not have explicit expression for g(x, t) in terms
of q(x, t). Nevertheless, we can consider the system, consisting of (6.34) and
(6.25), with the boundary condition:

lim
x→∞

g(x, t) = 1l, g(x, t) =
(

g−1 g+
1

g−2 g+
2

)

. (6.35)

The resulting system of equations written in components has the form:

i
dg±1
dx

+ q+(x, t)g±2 (x, t) = 0 , (6.36a)

i
dg±2
dx

+ q−(x, t)g±1 (x, t) = 0 , (6.36b)

i
dq+

dt
− 4c4g−1 g

+
1 (x, t) = 0 , (6.36c)

i
dq−

dt
− 4c4g−2 g

+
2 (x, t) = 0 , (6.36d)

Imposing the relation q+(x, t) = (q−(x, t))∗, we find that the matrix ele-
ments of g(x, t) are related by:

g−1 (x, t) = (g+
2 (x, t))∗, g−2 (x, t) = −(g+

1 (x, t))∗ . (6.37)

Then the GMB equation

dEp

dx
+Q(x, t)Es(x, t) = 0 , (6.38a)

dEs

dx
−Q∗(x, t)Ep(x, t) = 0 , (6.38b)

dQ

dt
− E∗

s (x, t)Ep(x, t) = 0 , (6.38c)

follows from (6.36) and (6.37) if we put

g+
1 (x, t) = Ep(x, t), g+

2 (x, t) = −Es(x, t), c4 = −1
4
. (6.39)

The GMB equation (6.38) describes the propagation of light in a two-level
media; see [5] and the references therein. In the physical applications Ep(x, t),
Es(x, t), and Q(x, t) have the meaning of a pump wave, the Stockes wave, and
the normalized effective polarization of the medium, respectively. Of course,
here we are using normalized variables and dimensionless units.

Example 6.8 (The sine-Gordon equation).
The NLEEs (6.34) greatly simplifies for two specific choices of the potential

q(x, t), namely:

q+(x, t) = −q−(x, t), i.e., q(x, t) = wxσ2 , (6.40a)
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q+(x, t) = q−(x, t), i.e., q(x, t) = −iwxσ1 . (6.40b)

It happens because if (6.40) holds, then [q(x, t), q(y, t)] = 0 for any values of
x, t and y; as a consequence for g(x, t) we find:

g(x, t) = cosw(x, t)1l + i sinw(x, t)σ2 , (6.41)
g(x, t) = coshw(x, t)1l + sinhw(x, t)σ1 . (6.42)

Then (6.36a), (6.36b), and (6.25) are satisfied identically. The explicit form
of Λ−1

± q(x, t) also greatly simplifies, giving:

(Λ±)−1q(x, t) = − sin 2w(x, t)σ1, η0 = −1 , (6.43)
(Λ±)−1q(x, t) = −i sin 2w(x, t)σ2, η0 = 1 , (6.44)

Thus fixing up c4 = −1/4 (6.34) transforms into one of the well-known
versions

2wxt + sin 2w(x, t) = 0 , (6.45)
2wxt + sinh 2w(x, t) = 0 , (6.46)

of the s-G equation.

Obviously, for these specific forms of q(x, t) we are able to evaluate the
explicit form of the NLEEs, whose dispersion laws contain any finite number
of inverse power of λ. However, due to the form of (Λ±)−1 (6.32) these NLEEs
are in general nonlocal. It seems that the s-G equation is the only local NLEE
in the class of equations having singular dispersion laws.

6.3 Involutions of the Zakharov–Shabat System

Up to now, we considered the operator L with a generic potential, i.e. we
supposed q+ and q− to be independent complex-valued functions. However,
the attentive reader has noticed already that the most important of the above
examples – the NLS equation, the mKdV equation, and the s-G equation
are obtained after imposing special constraints on the potential q(x, t). These
constraints lead to symmetries of second order of the ZS system, which are
known as involutions. In this section, we shall formulate them in an algebraic
way and will show what is their implication on the spectral data of L.

The first involution we shall consider has the form:

q−(x, t) = ε0(q+(x, t))∗, ε0 = ±1 , (6.47)

and the second one is

q−(x, t) = η0q
+(x, t), η0 = ±1 . (6.48)

Each restriction on q(x, t) like (6.47) or (6.48) imposes constraints on
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1. the Jost solutions, the FAS, and the scattering matrix;
2. the minimal sets of scattering data T1, T2, and T ;
3. the corresponding NLEE;
4. the possible dispersion laws f(λ).

We start with (1). The relation (6.47) means that for U(x, t, λ) the follow-
ing Z2 symmetry holds:

U∗(x, t, λ∗) = −ε−1U(x, t, λ)ε, ε =
(

0 1
−ε0 0

)

. (6.49)

This implies that FAS and the scattering matrix must satisfy:

(χ±(x, t, λ∗))∗ = ε−1χ∓(x, t, λ)ε , (6.50)
(T (t, λ∗))∗ = ε−1T (t, λ)ε . (6.51)

Written in components, the relation (6.51) has the form:

a−(λ) = (a+(λ∗))∗ , (6.52a)
b−(t, λ) = ε0(b+(t, λ∗))∗ , (6.52b)

i.e. for the reflection coefficients we obtain:

ρ−(t, λ) = ε0(ρ+(t, λ∗))∗ , (6.53a)
τ−(t, λ) = ε0(τ+(t, λ∗))∗ . (6.53b)

and as a consequence

η(λ) = η∗(λ), κ(λ) = −κ∗(λ), λ ∈ R . (6.53c)

In fact, (6.52a) is valid for any complex value of λ, while (6.52b), (6.53) hold
only for λ ∈ R.

These formulae show the effect of the involutions on the scattering data,
related to the continuous spectrum of L. Analyzing their analogs for the dis-
crete spectrum, we have to consider separately the case of (6.47) with ε0 = −1.
Such involution allows to reformulate the Zakharov–Shabat system into:

Lψ(x, t, λ) ≡
(

iσ3
dψ

dx
+ U0(x, t)ψ(x, t, λ)

)

= λψ(x, t, λ) , (6.54)

where U0(x, t) = σ3q(x, t) ≡ U†
0 (x, t) is a Hermitian matrix. The linear system

(6.54) on the line then is an eigenvalue problem for the self-adjoint operator L.
From the general theory of such operators, the spectrum of L must be located
on the real λ-axis. This is indeed the case, because the continuous spectrum of
L fills up the whole real λ-axis. In addition, for real λ, the unitarity condition
for the scattering matrix reads:

a+(λ)a−(λ) + b+(t, λ)b−(t, λ) = 1, λ ∈ R . (6.55a)
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Taking into account (6.52) with ε0 = −1 we get:

|a+(λ)|2 = 1 + |b+(t, λ)|2, λ ∈ R , (6.55b)

which means that for all λ ∈ R |a+(λ)|2 ≥ 1, and therefore L (or, equivalently,
L) does not have discrete eigenvalues on the real λ-axis.

In short, the involution (6.52) with ε0 = −1 ensures that L does not have
discrete eigenvalues; then the minimal sets of scattering data consist of:

T1 ≡ {ρ±(t, λ), λ ∈ R} , (6.56a)
T2 ≡ {τ±(t, λ), λ ∈ R} , (6.56b)
T ≡ {η(λ), κ(t, λ), λ ∈ R} . (6.56c)

The absence of discrete spectrum means that

1. The corresponding NLEEs do not have soliton solutions. In particular,
this holds true for the NLS and the mixed NLS–mKdV equations with
the “wrong” sign ε0 = −1 and also for the sinh-Gordon equation (6.46).

2. The corresponding completeness relations remain true, if the terms corre-
sponding to the discrete spectrum are dropped.

Let us now consider the involution (6.47) with ε0 = 1 and (6.48) with
η0 = ±1. Each of these choices, or combinations of them, allows the existence
of discrete spectrum of L, of course, restricted by the involution. Let us derive
these restrictions.

Recall that the eigenvalues λ±k are located at the zeroes of a±(λ), which are
analytic in C±, respectively. In the neighborhood of some discrete eigenvalues
λ±k , according to condition C2, a±(λ) have simple zeroes, namely:

a+(λ) = (λ− λ+
k )
(

ȧ+
k +

1
2
(λ− λ+

k )ä+
k + · · ·

)

, (6.57a)

a−(λ) = (λ− λ−k )
(

ȧ−k +
1
2
(λ− λ−k )ä−k + · · ·

)

. (6.57b)

If we impose now (6.47) with ε0 = 1 (or equivalently, (6.52a)) from (6.57), we
find that (6.57b) after complex conjugation goes into (6.57a) provided:

λ−k = (λ+
k )∗, ȧ−k = (ȧ+

k )∗, ä−k = (ä+
k )∗ . (6.58)

Thus we get that the data on the discrete spectrum must satisfy:

b−k = (b+k )∗, C−
k = (C+

k )∗, M−
k = (M+

k )∗, (6.59a)
η+

k = (η−k )∗, κ+
k = −(κ−k )∗ . (6.59b)

We deduce that the minimal sets of scattering data consist of twice less
elements (compare with (3.68)):

T1 ≡
{

ρ+(t, λ), λ ∈ R, λ+
k , C

+
k (t), k = 1, . . . , N

}

, (6.60a)
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T2 ≡
{

τ+(t, λ), λ ∈ R, λ+
k , M

+
k (t), k = 1, . . . , N

}

, (6.60b)

T ≡
{

η(λ), κ(t, λ), λ ∈ R, η±k , κ
±
k , k = 1, . . . , N

}

, (6.60c)

where η(λ), η±k take real values, while κ(λ), κ±k are purely imaginary.
As mentioned above, the reduction has an effect also on the dispersion

laws. Indeed, combining (6.51) and the generic evolution equation for T (λ):

i
dT

dt
+ f(λ)[σ3, T (t, λ)] = 0 , (6.61)

we easily find that both are consistent only if f(λ) satisfies:
∑

p

fpλ
p = f(λ) = (f(λ∗))∗ =

∑

p

f∗
pλ

p , (6.62)

that is, if the coefficients fp are real.
Let us now consider the second involution (6.48). Then U(x, t, λ) satisfies:

U(x, t, λ) = σU(x, t,−λ)σ−1, σ =
(

0 1
η0 0

)

. (6.63)

Consequently, the FAS and T (t, λ) satisfy:

χ±(x, t,−λ) = σ−1χ∓(x, t, λ)σ , (6.64)
T (t,−λ) = σ−1T (t, λ)σ , (6.65)

or by components:

a−(λ) = a+(−λ) , (6.66a)
b+(t, λ) = −η0b

−(t,−λ) , (6.66b)

ρ+(t, λ) = −η0ρ
−(t,−λ) , (6.67a)

τ+(t, λ) = −η0τ
−(t,−λ) , (6.67b)

η(λ) = η(−λ), κ(λ) = −κ(−λ) . (6.67c)

From (6.66) it also follows that

λ+
k = −λ−k , ȧ−k = −ȧ+

k , ä−k = ä+
k , (6.68a)

b+k (t) = −η0b
−
k (t) , (6.68b)

C+
k (t) = η0C

−
k (t), M+

k (t) = η0M
−
k (t) , (6.68c)

η+
k = η−k , κ+

k = −κ−k . (6.68d)

Therefore, the minimal sets of scattering data formally look precisely like
(6.60a) and (6.60b).

The involution (6.48), just like (6.47), restricts the possible dispersion laws
by requiring them to be odd functions of λ:

f(λ) = −f(−λ) (6.69)

i.e., f2p = 0.
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6.4 Fundamental Properties of the Soliton Solutions

The properties of the scattering data related to the discrete spectrum of L
allow to describe the general structure of the soliton solutions of the corre-
sponding NLEEs. Note that generically each soliton solution of the NLEEs
(6.7) is parametrized by four complex parameters: λ+

k , λ−k , C+
k and C−

k . Con-
sidered as dynamical system such soliton has four degrees of freedom.

When an involution is imposed the situation changes. First, we consider
the involution (6.47) with ε0 = 1. Then due to (6.59), we find that the soliton
solution is parametrized by two complex parameters λ+

k and C+
k ; this means

that these solitons have two degrees of freedom. The first degree of freedom
corresponds to the overall motion of the soliton, while the second describes
the internal motion. The same holds true when only (6.48) is imposed.

Note that the involutions restrict also the possible dispersion laws. As
a consequence of (6.62) only real fp are possible, while (6.69) allows only
odd functions as dispersion laws. Indeed, we see that (6.18) and (6.19) are not
compatible with the involution (6.47) if c2 is a complex constant. Analogously
(6.23) is not compatible with the involution (6.48).

The most interesting situation is when the involutions (6.47) with ε0 = 1
and (6.48) are imposed simultaneously. The NLEEs, compatible with both
involutions, must have dispersion laws which are odd functions of λ with
real coefficients fp. The most famous examples of such equations are the s-G
equation (6.45) and the mKdV equation (6.22). Let us now take a generic
soliton solution and see what will happen to its parameters when both invo-
lutions are present. Due to (6.58) and (6.68a) each soliton is characterized by
a quadruplet of eigenvalues:

λ+
k , −(λ+

k )∗, −λ+
k , (λ+

k )∗, λ±k = λ0,k ± iλ1,k, (6.70a)
C+

k , η0(C+
k )∗, η0C

+
k , (C+

k )∗ , (6.70b)

or equivalently

M+
k , η0(M+

k )∗, η0M
+
k , (M+

k )∗, M+
k = eξ0+iϕ0 , (6.70c)

where

C±
k =

±i
ȧ±k

e−zk±iφk , M±
k =

∓i
ȧ±k

ezk∓iφk , ȧ±k �
±1

2iλ1,k

∏

j 
=k

λ±k − λ±j

λ∓k − λ∓j
.

(6.70d)

Here, we have used the convenient parametrization of the one-soliton solutions,
which allows one to identify the center of mass position, the amplitude, the
velocity, and the phase of the soliton; see (4.96). Such soliton is described
by two complex parameters and again has two degrees of freedom. In the
literature, this type of soliton solutions for the s-G equation are known as the
breather solutions.
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There is also a special case, when λ+
k is taken to be purely imaginary:

λ+
k = isk. Such soliton is parametrized only by a pair of eigenvalues:

λ+
k = isk λ−k = −isk , (6.71a)
C+

k = η0(C+
k )∗ , (6.71b)

or

M+
k = η0(M+

k )∗ . (6.71c)

In other words, the eigenvalues are determined by one real parameter; another
real parameter is needed for C+

k (or M+
k ), which must be either real (for

η0 = 1) or purely imaginary (for η0 = −1). Such soliton has only one degree
of freedom, which describes the overall motion.

The two types of soliton solutions for the s-G equation differ also by their
topological properties: The soliton with one degree of freedom has a nontrivial
topological charge (equal to 1), while the breather has vanishing topological
charge and may be viewed as a bound state of two solitons with opposite
topological charges. These otherwise intriguing properties of the s-G solitons
come out of the context of the present monograph; the interested reader is
referred to the literature, e.g. [6] and the references therein.

6.4.1 The M-Operators in Terms of Λ±.

Since the dispersion law determines uniquely the NLEEs, it must determine
also the M -operator. In Sect. (2.2), we showed how the M -operators of the
NLEEs can be evaluated explicitly. In this subsection, we derive a compact
expression for the M -operators in terms of Λ± and establish its relation to
the diagonal of the resolvent of the ZS system.

Let us first consider the case when the dispersion law is f (N)(λ) = cNλ
N .

Using formulae (2.40), after some calculations we get:

V (N)(x, t, λ) = −cN
N
∑

k=0

λN−k
(

V f
k (x, t) + wk(x, t)σ3

)

= cNλ
Nσ3 − cN

N
∑

k=1

λN−k

(

Λk−1
± q(x, t)

+
i

2
σ3

∫ x

±∞
dy tr

(

σ3

[

q(y, t), Λk−1
± q(y, t)

])

)

. (6.72)

It is easy to check that formally:

N
∑

k=1

λN−kΛk−1
± = λN−1

N
∑

k=1

(Λ±/λ)k−1 =
ΛN
± − λN

Λ± − λ
. (6.73)
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Therefore from (6.72) follows:

V (N)(x, t, λ) = cnλ
Nσ3 − cN

(

F (N)(Λ±, λ)q(x, t)

+
i

2
σ3

∫ x

±∞
dy tr

(

σ3

[

q(y, t), F (N)(Λ±, λ)q(y, t)
])

)

,(6.74a)

where

F (N)(Λ, λ) =
ΛN − λN

Λ− λ
. (6.74b)

For generic dispersion law f(λ) =
∑

p≥0 cpλ
p we have:

V (x, t, λ) = f(λ)σ3 −
(

F (Λ±, λ)q(x, t)

+
i

2
σ3

∫ x

±∞
dy tr (σ3 [q(y, t), F (Λ±, λ)q(y, t)])

)

, (6.75a)

where

F (Λ, λ) =
∑

p≥0

cpF
(p)(Λ, λ) =

f(Λ)− f(λ)
Λ− λ

. (6.75b)

Note that for polynomial dispersion laws the functions F (Λ, λ) are also poly-
nomial in Λ. From Proposition 5.4, we conclude that for polynomial dispersion
laws the M -operators obtained through Λ+ coincide with the ones obtained
through Λ− or Λ.

Another method to obtain the explicit form of the M -operators is based
on the diagonal of the resolvent R(x, y, t, λ) (3.35). From (3.35), one can see
that the diagonal of the resolvent R(x, x, t, λ) involves the function θ(x − y)
which is discontinuous for x = y. Assuming that θ(x) is defined, as in (3.36),
the diagonal of the resolvent is given by the following regular expression:

R(x, t, λ) =
i

2
χ±(x, t, λ)σ3χ̂

±(x, t, λ), λ ∈ C± , (6.76)

which obviously satisfies:

i
dR

dx
+ [q(x, t)− λJ,R(x, t, λ)] = 0 . (6.77)

Besides, R(x, t, λ) is piecewise analytic function of λ, bounded for λ → ∞.
Using the asymptotics of χ±(x, t, λ) for λ→∞ we get the following expansion
for R(x, t, λ) over the inverse powers of λ:

R(x, t, λ) =
i

2

(

σ3 +
∞
∑

k=1

Rk(x, t)λ−k

)

. (6.78)
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Following Gel’fand, we shall demonstrate that the coefficients Vk(x, t) of
the M -operators are simply expressed through Rk(x, t). Let us first consider
the case with dispersion law f (N)(λ) = cNλ

N and introduce the splitting of
λNR(x, t, λ) into “positive” and “negative” parts:

− 2iλNR(x, t, λ) = R̃
(N)
+ (x, t, λ) + R̃

(N)
− (x, t, λ) , (6.79)

where

R̃
(N)
+ (x, t, λ) = σ3 +

N
∑

k=1

λN−kRk(x, t) , (6.80a)

R̃
(N)
− (x, t, λ) =

∞
∑

k=N+1

λN−kRk(x, t) . (6.80b)

Let us now insert (6.79) into (6.77) and split the left-hand side into “positive”
and “negative” parts which must vanish independently. Thus we find:

i
R̃

(N)
+

dx
+
[

q(x, t)− λσ3, R̃
(N)
+ (x, t, λ)

]

=
[

σ3, ˜RN+1(x, t)
]

, (6.81)

which provides us with the following expression for V (N)(x, t, λ):

V (N)(x, t, λ) = cN R̃
(N)
+ (x, t, λ)

= cN

(

σ3λ
N +

N
∑

k=1

λN−kRk(x, t)

)

, (6.82)

and for generic dispersion laws we get:

V (x, t, λ) =
∑

p≥0

cpR̃
(p)
+ (x, t, λ) . (6.83)

From this equation and from the fact that limx→±∞Rk(x, t) = 0 we derive:

lim
x→±∞

V (x, t, λ) = f(λ)σ3 , (6.84)

i.e. the asymptotics of V (x, t, λ) are determined by the dispersion law. The
inverse is also true: Knowing the dispersion law we are able to recover V (x, t, λ)
by the formulae (6.75) above.

6.4.2 The Trace Identities and Λ–Operators

In Sect. 3.4, we have obtained the dispersion relation (3.66):

A(λ) =
1

2πi

∫ ∞

−∞

dμ

μ− λ
ln(a+(μ)a−(μ)) +

N
∑

k=1

ln
λ− λ+

k

λ− λ−k
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=
i

2

∫ ∞

−∞

dμ

μ− λ
η(μ) +

N
∑

k=1

ln
2iλ+ η+

k

2iλ− η−k
, (6.85)

where

A(λ) =

⎧

⎨

⎩

ln a+(λ), λ ∈ C+ ,
1
2 ln(a−(λ)/a−(λ)), λ ∈ R ,
− ln a−(λ), λ ∈ C− ,

(6.86)

and for λ ∈ R the integrals are understood in the principal value sense.
We showed also that A(λ) is the generating functional of the integrals of

motion; the integrals themselves are obtained expanding A(λ) in Taylor series,
in the neighborhood of any point λ ∈ C±. Let us assume that we have (at
least asymptotically) the expansions over the negative (positive) powers of λ:

A(λ) = i
∞
∑

p=1

Cpλ
−p, A(λ) = −i

∞
∑

p=0

C−pλ
p (6.87)

As we shall see below, the densities of the integrals Cp depend only on
q and its derivatives with respect to x. This usually is referred saying that
Cp, p = 1, 2, . . . are local integrals of motion. We shall also see that C−p,
p = 1, 2, . . . are the nonlocal integrals of motion.

In order to express the integrals Cp through the scattering data, we expand
the right-hand side of (6.85) over the negative and positive powers of λ:

1
μ− λ

= −
∞
∑

p=1

μp−1

λp
,

1
μ− λ

=
∞
∑

p=0

λp

μp+1
. (6.88)

We shall need also the expansions of

ln
λ− λ+

k

λ− λ−k
= ln

λ+
k

λ−k
−

∞
∑

p=1

λp

p

(

(λ+
k )−p − (λ−k )−p

)

= −
∞
∑

p=1

1
pλp

(

(λ+
k )p − (λ−k )p

)

.

(6.89)

As a result for Cp we find:

Cp = −1
2

∫ ∞

−∞
dμμp−1η(μ) +

i

p

N
∑

k=1

(

(

iη+
k

2

)p

−
(

η−k
2i

)p
)

, (6.90)

C0 = −1
2

∫ ∞

−∞

dμ

μ
η(μ) + i

N
∑

k=1

ln
(

−η
+
k

η−k

)

, (6.91)

C−p = −1
2

∫ ∞

−∞

dμ

μp+1
η(μ)− i

p

N
∑

k=1

(

(

iη+
k

2

)−p

−
(

η−k
2i

)−p
)

, (6.92)
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where p = 1, 2, . . .. The convergence of the integrals defining Cp, p > 0 is a
consequence of condition C1 (see p. 71), which ensures that the reflection coef-
ficients ρ±(t, λ), τ±(t, λ) and the action variables η(λ) (6.5) are Schwartz–type
functions of λ for λ ∈ R. The integrals defining C0 and C−p, p = 1, . . . , N1 are
convergent due to the constraint (6.26), characteristic for singular dispersion
laws.

6.4.3 Recurrent Relations for the Densities of Cp

There are several ways of deriving the recurrent relations for the densities of
Cp. Here, we shall display one of them, proposed in [6]. The idea is to start
with a special solution of the L–operator:

Y +(x, y, t, λ) = χ+(x, t, λ)χ̂+(y, t, λ), x ≥ y , (6.93)

which is obviously normalized by the condition Y +(x, t, λ)|x=y = 1l, and to
write it down in the form:

Y +(x, y, t, λ) = (1l +W (x, t, λ))eZ(x,y,t,λ)(11 +W (y, t, λ))−1 , (6.94)

where Z(x, y, t, λ) is a diagonal matrix and

W (x, t, λ) =
(

0 W+(x, t, λ)
W−(x, t, λ) 0

)

. (6.95)

The solution (6.93) is an analytic function of λ ∈ C+. This follows2 im-
mediately from the analytic properties of χ+(x, t, λ). For W (x, t, λ) and
Z(x, y, t, λ), there exist the following expansions over the negative powers of λ:

W (x, t, λ) =
∞
∑

n=1

Wn(x, t)λ−n ,

Z(x, y, t, λ) = −iλ(x− y)σ3 +
∞
∑

p=1

Zn(x, y)λ−p . (6.96)

Next, we insert (6.94), (6.95) into (5.1a). The common factor (1 +W (y, t,
λ))−1 can be dropped, and the rest can be split into diagonal

i
dZ

dx
+ q(x, t)W (x, t, λ)− λσ3 = 0 , (6.97)

and off-diagonal parts:

i
dW

dx
+ iW (x, t, λ)

dZ

dx
+ q(x, t)− λσ3W (x, t, λ) = 0 . (6.98)

2 Due to the special normalization condition there follows that Y +(x, y, t, λ) is a
meromorphic function of λ; in what follows we shall not need these properties.
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Taking into account (6.97), we rewrite (6.98) as:

i
dW

dx
− W (x, t, λ)q(x, t)W (x, t, λ)

+ q(x, t)− λ[σ3,W (x, t, λ)] = 0 , (6.99)

Then the expansion (6.96) leads to the recurrent relations:

[σ3,Wn+1] = i
dWn

dx
−

∑

k+p=n

k,p≥1

Wk(x, t)q(x, t)Wp(x, t) , (6.100)

with the initial condition:

W1(x, t) =
1
4
[σ3, q(x, t)] . (6.101)

Since W (x, t, λ) is off-diagonal Wn+1(x, t) is obtained by applying to the right-
hand side of (6.100) ad−1

σ3
. Then the fact that Wn+1(x, t) is local in q(x, t)

follows from the fact that W1(x, t), . . . , Wn(x, t) are.
Knowing Wn(x, t) from (6.97) and (6.96), we can recover the expansion

coefficients Zn(x, y) through:

dZn

dx
= iq(x, t)Wn(x, t) , (6.102)

or

Zn(x, y, t) = i

∫ x

y

dx′ q(x′)Wn(x′) . (6.103)

The next step will be to show how Zn(x, y) and Wn(x, t) are related to the
densities of Cn. To this end, we shall take the limits x → ∞, and y → −∞,
and making use of the asymptotics of χ+(x, t, λ) (3.25), we find that:

lim
x→∞

y→−∞

χ+(x, t, λ)χ̂+(y, t, λ) = lim
x→∞

y→−∞

e−iλσ3xT (t, λ)eiλσ3y , (6.104)

lim
x→−∞
y→∞

χ+(x, t, λ)χ̂+(y, t, λ) = lim
x→−∞
y→∞

e−iλσ3xT̂ (t, λ)eiλσ3y , (6.105)

From the other side, the anzats (6.94) means that we may look for
χ+(x, t, λ) in the form:

χ+(x, t, λ) = (1l +W (x, t, λ))eZ̃(x,t,λ) , (6.106)

where the diagonal matrix Z̃(x, t, λ) is related to Z(x, y, t, λ) through:
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Z(x, y, t, λ) = Z̃(x, t, λ)− Z̃(y, t, λ) . (6.107)

We can plug (6.106) into (3.25) and take the limits x → ∞ and x → −∞ to
find:

lim
x→−∞

(Z̃(x, t, λ) + iλσ3x) =
(

0 0
0 ln a+(λ)

)

, (6.108)

lim
x→∞

(Z̃(x, t, λ) + iλσ3x) =
(

ln a+(λ) 0
0 0

)

, (6.109)

for λ ∈ C+. Thus from (6.108), (6.109) and (6.107) we find:

lim
x→∞

y→−∞

(Z̃(x, t, λ)− Z̃(y, t, λ) + iλσ3(x− y)) = ln a+(λ)σ3 . (6.110)

Analogously, starting from Y −(x, y, t, λ) = χ−(x, t, λ)χ̂−(y, t, λ) for
λ ∈ C− we find that:

lim
x→∞

y→−∞

(Z(x, y, t, λ) + iλσ3(x− y)) = − ln a−(λ)σ3 . (6.111)

The main conclusion from (6.110), (6.111) and (6.96) is that

A(λ) = lim
x→∞

y→−∞

(

iλ(x− y) +
1
2

tr (Z(x, y, t, λ)σ3

)

=
1
2

lim
x→∞

y→−∞

∞
∑

p=1

λ−ptr (Zp(x, t, y)σ3) , (6.112)

i.e.

Cp =
1
2i

lim
x→∞

y→−∞

tr (Zp(x, t, y)σ3) . (6.113)

Finally, taking into account (6.103) we get:

A(λ) =
i

2

∫ ∞

−∞
dx tr (q(x, t)W (x, t, λ)σ3) , (6.114)

or

Cp =
1
2

∫ ∞

−∞
dx tr (q(x, t)Wp(x, t)σ3) . (6.115)
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The first four of them have the form:

C1 = −1
4

∫ ∞

−∞
dx tr (q2) = −1

2

∫ ∞

−∞
dx q+q−(x) , (6.116)

C2 =
i

8

∫ ∞

−∞
dx tr (qqx) =

i

8

∫ ∞

−∞
dx (q+q−x − q+x q

−) , (6.117)

C3 =
1
16

∫ ∞

−∞
dx tr (−qxqx + q4)

=
1
8

∫ ∞

−∞
dx (−q+x q−x + (q+q−)2) , (6.118)

C4 =
i

32

∫ ∞

−∞
dx tr (qxqxxσ3 − 3q3qxσ3)

=
i

32

∫ ∞

−∞
dx (q+x q

−
xx − q+xxq

−
x − 3q+q−(q+q−x − q+x q

−)) . (6.119)

The so-called trace identities are obtained by equating the two expressions
for Cp: those expressed in terms of the scattering data (6.90) with the ones
expressed in terms of the potential q(x) (6.116). For example, the first three
trace identities are:

∫ ∞

−∞
dμ η(μ) +

N
∑

k=1

(η+
k + η−k ) =

∫ ∞

−∞
dx q+q−(x) , (6.120)

∫ ∞

−∞
dμμη(μ)+

i

4

N
∑

k=1

((η+
k )2− (η−k )2) = − i

4

∫ ∞

−∞
dx (q+q−x − q+x q−) , (6.121)

∫ ∞

−∞
dμμ2η(μ)− 1

12

N
∑

k=1

((η+
k )3 + (η−k )3) =

1
4

∫ ∞

−∞
dx (q+x q

−
x − (q+q−)2) ,

(6.122)

∫ ∞

−∞
dμμ3η(μ)− i

32

N
∑

k=1

((η+
k )4 − (η−k )4)

=
i

16

∫ ∞

−∞
dx (−q+x q−xx + q+xxq

−
x + 3q+q−(q+q−x − q+x q

−)).

(6.123)

Now, we see that the recurrent relations (6.100), (6.115) allow one to
evaluate the densities of the integrals Cp, considered as functionals of the
potential q(x, t). Obviously from (6.100) there follows that all the densities
Cp with p ≥ 1 are local, i.e. depend only on q(x, t) and its x-derivatives;
the ones with p ≤ −1 are generically nonlocal. Sometimes, after a change of
variables C−1 may become local, as in the s-G case.
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6.4.4 Generating Operators and the Integrals of Motion

Now, we demonstrate that there is close relation between the densities of Cp

and the diagonal of the resolvent of L. As a result, we shall derive a compact
expressions for Cp through the generating operators Λ±.

To this end, we remind the Wronskian relations (5.34), (5.35) and use also
the diagonal of the resolvent (6.76):

dA
dλ

= − i

2

∫ ∞

−∞
dx
(

tr
(

χ±σ3χ̂
±(x, t, λ)σ3

)

− 2
)

= ∓
∫ ∞

−∞
dx
(

tr (R±(x, x, t, λ)σ3)− 1
)

= − 1
2a±(λ)

∫ ∞

−∞
dx

∫ x

±∞
dy tr

(

[q(x, t), σ3]Θ±(y, t, λ)
)

, (6.124)

Thus, we see the relation between the diagonal of the resolvent of the ZS
system and the generating functional of integrals of motion of the NLEEs.

Let us now make use of (5.116)–(5.118b) to express the densities of Cp

through the generating operators Λ±, Λ. To this end, we have to investigate
the asymptotic expansions of the right-hand sides of, say (5.116) and (5.118a):

Θ±(x, t, μ)
a±(μ)

= ±2ρ±(t, μ)Ψ±(x, t, μ) + (Λ+ − μ)−1q(x, t) , (6.125)

where μ ∈ C±, respectively. We recall the definition of Ψ±(x, μ):

Ψ±(x, t, μ) = a±(μ)
(

χ±σ∓χ̂
±(x, t, μ)

)f

= e±2iμxa±(μ)
(

η±σ∓η̂
±(x, t, μ)

)f
. (6.126)

Here, η±(x, t, μ) and its inverse η̂±(x, t, μ) are analytic functions of μ for
μ ∈ C± that allow expansions of the form:

η±(x, t, μ) = χ±(x, t, μ)eiμσ3x = 1l +
∞
∑

k=1

η±k (x, t)μ−k , (6.127a)

η̂±(x, t, μ) = e−iμσ3xχ̂±(x, t, μ) = 1l +
∞
∑

k=1

η̂±k (x, t)μ−k . (6.127b)

Thus, for the expansion of Ψ±(x, t, μ)/a±(μ) we find:

Ψ±(x, t, μ)
a±(μ)

= e±2iμx

(

σ∓ +
∞
∑

s=1

μ−s
∑

k+p=s

k,p≥1

(

η±k (x, t)σ∓η̂±p (x, t)
)f

)

. (6.128)
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We derive the coefficient in front of μs in the expansion of Ψ±(x, t, μ)/a±(μ)
using the well-known formula:

1
2πi

∮

C±,∞

dμμ−s+1 Ψ±(x, t, μ)
a±(μ)

= 0 , (6.129)

for all s; this result is due to the presence of the exponential factor in
the right-hand side of (6.128). In other words, we find that the first term
in the right-hand side of (6.125) does not contribute to the expansion of
Θ±(x, t, μ)/a±(μ).

Analogously, we can treat also (5.117) and (5.118b) to prove that the first
term in the right-hand side of

Θ±(x, t, μ)
a±(μ)

= ∓2τ±(t, μ)Φ±(x, t, μ) + (Λ+ − μ)−1q(x, t) , (6.130)

is irrelevant for the expansion of Θ±(x, t, μ)/a±(μ).
As a result, we see that it is enough to expand formally (Λ± − μ)−1q(x, t)

in power series in μ; the result is given by the right hand side of (6.88) with λ
replaced by Λ+ and Λ−, respectively. Comparing this with (6.87) and (6.124)
we get:

Cp =
1
ip

∫ ∞

−∞
dx

∫ x

±∞
dy tr

(

[σ3, q(y, t)], Λ
p
±q(y, t)

)

(6.131a)

for p = 1, 2, . . . and

C−p =
i

p

∫ ∞

−∞
dx

∫ x

±∞
dy tr

(

[σ3, q(y, t)], Λ
−p
± q(y, t)

)

(6.131b)

for p = 1, 2, . . . .

6.4.5 The Lenard Relation

Analogous expressions exist also for δCp. To derive them, one must insert
(6.125) and (6.88) into the Wronskian relation (5.27)) with the result:

δCp =
1
4
[[

σ3δq(x, t), Λ
p−1
± q(x, t)

]]

= −1
2

∫ ∞

−∞
dxtr

(

δq(x, t), Λp−1
± q(x, t)

)

. (6.132)

This means that their variational derivatives have the form:

δCp

δq(x, t)
= −1

2
Λp−1
± q(x, t), p = 1, 2, . . . (6.133)
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Note that the right-hand side of (6.133) does not depend on the choice of the
generating operator that we use; it will be the same for Λ+, Λ−, and Λ. The
Lenard relation is obtained easily from (6.133):

δCp

δq(x, t)
= Λ±

δCp−1

δq(x, t)
= Λ

δCp−1

δq(x, t)
. (6.134)

Three important facts must be noted here:

1. The variational derivatives of Cp and Cp−1 are related by an Λ-operator,
which is p-independent;

2. As a consequence of (6.133) and (6.134), the nonlinear parts of the NLEEs
(6.7) are in fact variational derivatives of conveniently chosen linear com-
binations of Cps;

They underly the Hamiltonian formulation of the NLEEs, which we shall
display in the next Chapter.

6.5 The Class of Bäcklund Transformations

The proper Bäcklund transformations (BT) is known also as the auto-BT
transform given solution q(x, t) of a NLEE to another solution q′(x, t) of the
same NLEE. The NLEEs we are studying are solvable by the ISM applied
to the Zakharov-Shabat system. Therefore, the BT can be viewed also as an
automorphism of the classes of allowed potentials of L. Note that the BT are
not isospectral; we will come back to this point below.

Remark 6.9. In this section, for notational simplicity, the t-dependence will
be omitted if it does not lead to ambiguity.

We shall describe a large class of BTs using the expansions over the prod-
ucts of solutions of two ZS system: L and L′ (see Sect. 5.6) and the properties
of the generalized recursion operators Λ±. Our considerations will involve also
functions (generically, polynomials) of Λ′

± which act naturally on the “prod-
ucts of solutions”:

g(Λ′
+)Ψ ′,±

j (x, λ) = g(λ)Ψ ′,±
j (x, λ) = 0, λ ∈ R ∪ Z± ∪ Z ′,± ,

g(Λ′
+)Ψ̇

′,±
j (x) = g(λ±j )Ψ̇

′,±
j (x) + ġ(λ±j )Ψ ′,±

j (x), j ∈ N0,
(6.135)

g(Λ′
−)Φ′,±

j (x, λ) = g(λ)Φ′,±
j (x, λ) = 0, λ ∈ R ∪ Z± ∪ Z ′,± ,

g(Λ′
−)Φ̇

′,±
j (x) = g(λ±j )Φ̇

′,±
j (x) + ġ(λ±j )Φ′,±

j (x), j ∈ N0,
(6.136)

where the sets of discrete eigenvalues were introduced in (5.159). Using
these relations, we obtain the following expansions over the “products of
solutions”:
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g(Λ′
+)σ3(q′(x)− q(x))

=
i

π

∫ ∞

−∞
dλ g(λ)

(

(ρ′,+ − ρ+)Ψ ′,+(x, λ) + (ρ′,− − ρ−)Ψ ′,−(x, λ)
)

+ 2
∑±

k∈N0

±g(λ±k )(C ′,±
k − C±

k )Ψ ′,±
k (x) + 2

∑±

k∈N1

±g(λ±k )C±
k Ψ ′,±

k (x)

+ 2
∑±

k∈N2

±g(λ′,±k )C ′,±
k Ψ ′,±

k (x) , (6.137)

=
i

π

∫ ∞

−∞
dλ g(λ)

(

(τ ′,+ − τ+)′Φ+(x, λ) + (τ ′,− − τ−)′Φ−(x, λ)
)

+ 2
∑±

k∈N0

±g(λ±k )(M ′,±
k −M±

k )′Φ±
k (x) + 2

∑±

k∈N1

±g(λ±k )M ′,±
k

′Φ±
k (x)

+ 2
∑±

k∈N2

±g(λ′,±k )M ′,±
k

′Φ±
k (x) , (6.138)

and

h(Λ′
+)(q′(x) + q(x)) =

= − i

π

∫ ∞

−∞
dλh(λ)

(

(ρ′,+ + ρ+)Ψ ′,+(x, λ)− (ρ′,− + ρ−)Ψ ′,−(x, λ)
)

− 2
∑±

k∈N0

h(λ±k )(C ′,±
k + C±

k )Ψ ′,±
k (x)− 2

∑±

k∈N1

h(λ±k )C±
k Ψ ′,±

k (x)

− 2
∑±

k∈N2

h(λ′,±k )C ′,±
k Ψ ′,±

k (x) , (6.139)

=
i

π

∫ ∞

−∞
dλh(λ)

(

(τ ′,+ + τ+)′Φ+(x, λ)− (τ ′,− + τ−)′Φ−(x, λ)
)

+ 2
∑±

k∈N0

h(λ±k )(M ′,±
k +M±

k )′Φ±
k (x) + 2

∑±

k∈N1

h(λ±k )M ′,±
k

′Φ±
k (x)

+ 2
∑±

k∈N2

h(λ′,±k )M ′,±
k

′Φ±
k (x) , (6.140)

In other words, the elements of the two sets of scattering data T and T ′

determine the expansion coefficients of σ3(q′(x)− q(x)) and q′(x) + q(x) over
the products of solutions.

Theorem 6.10. Let the potentials q(x) and q′(x) satisfy conditions C1 and
C2 and let the the functions g(λ) and h(λ) be meromorphic for λ ∈ C with
no singularities on the spectrums of L and L′. Then the BTs:

g(Λ′
+)σ3(q′(x)− q(x)) + h(Λ′

+)(q′(x) + q(x)) = 0 , (6.141a)
g(Λ′

−)σ3(q′(x)− q(x))− h(Λ′
−)(q′(x) + q(x)) = 0 , (6.141b)
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are pairwise equivalent to the following linear relations between the scattering
data T and T ′:

ρ′,±(λ) =
H±(λ)
H∓(λ)

ρ±(λ), H±(λ) = g(λ)± h(λ) , (6.142a)

C ′,±
k =

H±(λ±k )
H∓(λ±k )

C±
k , k ∈ N0 , (6.142b)

H∓(λ′,±k )C ′,±
k = 0, k ∈ N2, H±(λ∓k )C±

k = 0, k ∈ N1 . (6.142c)

τ ′,±(λ) =
H±(λ)
H∓(λ)

τ±(λ), H±(λ) = g(λ)± h(λ) , (6.143a)

M ′,±
k =

H±(λ±k )
H∓(λ±k )

M±
k , k ∈ N0 , (6.143b)

H∓(λ′,±k )M ′,±
k = 0, k ∈ N2, H±(λ±k )M±

k = 0, k ∈ N1 . (6.143c)

Proof. Conditions C1 and C2 ensure the existence of the expansions over the
products of solutions (6.137)–(6.140). Summing the expansions (6.137) and
(6.139), we get the following expansion for the left-hand side of (6.141a):

g(Λ′
+)σ3(q

′(x) − q(x)) + h(Λ′
+)(q′(x) + q(x))

=
i

π

∫ ∞

−∞
dλ
(

g(λ)
(

(ρ′,+(λ) − ρ+(λ))
)

− h(λ)
(

(ρ′,+(λ) + ρ+(λ))
))

Ψ ′,+(x, λ)

+
i

π

∫ ∞

−∞
dλ
(

g(λ)
(

(ρ′,−(λ) − ρ−(λ))
)

+ h(λ)
(

(ρ′,−(λ) + ρ−(λ))
))

Ψ ′,−(x, λ)

+ 2
∑±

k∈N0

(

±H∓(λ±
k )C′,±

k − H±(λ±
k )C±

k )
)

Ψ ′,±
k (x) (6.144)

+2
∑±

k∈N1

∓H±(λ±
k )C±

k Ψ ′,±
k (x) + 2

∑±

k∈N2

±H∓(λ′,±
k )C′,±

k Ψ ′,±
k (x) .

In order to obtain the equivalence between the BT (6.141a) and the set of
eqs. (6.142), it remains to apply Proposition 5.6. The equivalence between the
BT (6.141b) follows analogously from the expansions (6.138) and (6.140) and
Proposition 5.6.

The next lemma clears the relation between the scattering data T and T ′

Lemma 6.11. Let q(x) and q′(x) be the potentials of two ZS system L and
L′ with minimal sets of scattering data T and T ′, respectively. Let also q(x)
and q′(x) satisfy the BT (6.141a) with some given functions g(λ) and h(λ).
Then:
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1. The potentials q(x) and q′(x) are such that

H+(λ) =
∏

k∈N1

(λ− λ−k )
∏

k∈N2

(λ− λ′,+k )H+
0 ,

H−(λ) =
∏

k∈N1

(λ− λ+
k )

∏

k∈N2

(λ− λ′,−k )H−
0 ,

(6.145)

where H±
0 are some constants;

2. The matrix elements of T (λ) (2.48) and T ′(λ) are related by:

a′,+(λ) =
∏

k∈N1

λ− λ−k
λ− λ+

k

∏

k∈N2

λ− λ′,+k

λ− λ′,−k

a+(λ) ,

a′,−(λ) =
∏

k∈N1

λ− λ+
k

λ− λ−k

∏

k∈N2

λ− λ′,−k

λ− λ′,+k

a−(λ) ,

b′,+(λ) =
H+

0

H−
0

b+(λ), b′,−(λ) =
H−

0

H+
0

b−(λ),

(6.146)

Proof. 1. We use (6.142c) and the fact that the normalization constants C±
k ,

C ′,±
k and M±

k , M ′,±
k do not vanish. Therefore, (6.142c) and (6.143c) in

fact mean that

H∓(λ′,±k ) = 0, k ∈ N2, H±(λ±k ) = 0, k ∈ N1 . (6.147)

Therefore,H±(λ) must be of the form (6.145), withH±
0 (λ) being functions

of λ such that they are analytic in the whole complex λ plane and tending
to a constant for λ → ∞. According to Liouville theorem such functions
are in fact constants.

2. From (6.142a), we have that ρ′,+ρ′,− = ρ+ρ−. Inserting that in the dis-
persion relations for a′,±(λ) and a±(λ) (see (3.61) and (3.62)) we re-
cover the first two lines of (6.146). The last line of (6.146) follows from
ρ±(λ) = b±(λ)/a±(λ) and ρ′,±(λ) = b′,±(λ)/a′,±(λ).

Obviously, acting by generic polynomial expressions of Λ′
± on either

σ3(q′(x)−q(x)) or (q′(x)+q(x)), we get highly nonlinear and nonlocal expres-
sions. Below, we demonstrate some simple cases [7, 8], when these nonlocal
expressions can be turned into local. In both examples, the functions g(λ) and
h(λ) will be linear

g(λ) = g1λ+ g0, h(λ) = h1λ+ h0 , (6.148)

where ga, ha, a = 1, 2 are complex constants such that the roots of H±(λ)
are λ′,±k = μk± iνk with μk real and νk > 0. Using the explicit form of Λ′

+ we
get a BT of the form:

g(Λ′
+)σ3(q′(x)− q(x)) + h(Λ′

+)(q′(x) + q(x))
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=
i

2
d

dx
(g1(q′ − q) + h1σ3(q′ + q)) +

i

2
(g1(q′ + q) + h1σ3(q′ − q))Z(x)

+ g0σ3(q′ − q) + h0(q′ + q) = 0 . (6.149)

where

Z(x) =
1
2

∫ x

∞
dy tr

(

q′2 − q2
)

(y) =
∫ x

∞
dy (q′+q

′
− − q+q−) . (6.150)

Let us show that Z(x) can be expressed locally through q′± and q±.
Multiply (6.149) from the left by p1(x) = g1(q′ − q) + h1σ3(q′ + q), take
the trace, and integrate with respect to dx. Thus, we obtain for Z(x) the
quadratic equation:

1
2
(g2

1 − h2
1)Z

2 − 4i(h0g1 − h1g0)Z + tr p2
1 − C1 = 0 , (6.151)

p1(x) = g1(q′ − q) + h1σ3(q′ + q) (6.152)

where C1 is an integration constant which can be fixed up by the condition
limx→∞ Z(x) = 0. This gives C1 = 0 and the following solution for Z(x):

Z1,2(x) = 2iα0 ±
√

tr p2
1(x)

2(h2
1 − g2

1

− 4α2
0, α0 =

g1h0 − g0h1

g2
1 − h2

1

, (6.153)

tr p2
1(x) = 2g2

1(q′+ − q+)(q′− − q−)− 2h2
1)(q

′
+ + q+)(q′− + q−)

− 4g1h1(q′+q− − q′−q+).
(6.154)

With (6.153) the BT (6.141a) becomes local. From the equations (5.94), we
see that this BT adds two new eigenvalues to the spectrum of the ZS system
λ′,±1 = −(f0 ∓ g0)/(f1 ∓ g1). In the examples below, we shall show that the
BT goes into the well-known BT [9, 10]. Before we go into the examples, we
note that in the cases when additional involutions like (6.47) and/or (6.48) are
imposed, one needs to impose the corresponding restrictions on the functions
g(λ) and h(λ). In the case when q− = ±q′,∗− , the compatibility condition for
the system (16.150) requires that

H+(λ) = (H−(λ∗))∗ . (6.155)

If q+ = η0q
− then the functions g(λ) and h(λ) must satisfy:

H+(λ) = H−(−λ) . (6.156)

In case both involutions (6.47) and (6.48) are imposed, the functions g(λ) and
h(λ) must satisfy both restrictions (6.155) and (6.156) simultaneously.

Example 6.12. The BT for the nonlinear Schrödinger equation is obtained
using the involution (6.47) with ε = −1:

g(λ) = −iν1, h(λ) = λ− μ1, q− = −q∗+, q′− = −q′,∗+ , (6.157)
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where μ1 and ν1 are real parameters and ν1 > 0. In that case, Z(x) = 4ν1 +
2
√

4ν2
1 − |v2 − v1|2 and (16.150) goes into the well-known BT [9]:

d(q′+ + q+)

dx
= −2iμ1(q

′
+ + q+)(x) + (q′+ − q+)

√

4ν2
1 − |q′+ − q+|2 . (6.158)

It adds to the spectrum of the ZS system two eigenvalues λ̃±2 = μ1 ± iν1.

Example 6.13. The BT for the sine-Gordon equation is obtained if both
involutions (6.47) and (6.48) are imposed and

g(λ) = −iν1, h(λ) = λ, q+ = −q− = −iwx, q′+ = −q′− = −iw′
x ,

(6.159)

with u(x) and u′(x) being real functions and ν1 > 0. This gives Z(x) =
2ν1 +

√

4ν2
1 − (w′

x + wx)2 and (6.149) goes into

d

dx
(w′

x + wx) + (w′
x − wx)

√

4ν2
1 − (w′

x + wx)2 = 0 . (6.160)

or, equivalently:

d(w′
x + wx)

√

4ν2
1 − (w′

x + wx)2
+ (w′

x − wx)dx = 0 . (6.161)

Integrating once we get:

arcsin
w′

x + wx

2ν1
+ w′(x, t)− w(x, t) = c2 , (6.162)

The integration constant c2 is determined by the asymptotic behavior of w
and w′ as c2 = 2πk, where k is an integer. Finally we get:

w′x+ wx = −2ν1 sin(w′ − w) , (6.163)

which is the x-part of the BT for the sine-Gordon equation.

6.6 Comments and Bibliographical Review

1. A number of papers have approached the complete integrability of the
infinite-dimensional Hamiltonian systems [1, 2, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. They are integrable by the ISM
applied to different Lax operators.

2. By now tens of specific NLEEs are known for their applications in physics.
The list of such NLEEs along with their applications can be found in
[6, 20, 48, 54, 72, 87, 88, 89, 90].
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3. A lot of studies were aimed at finding the integrability criterium, i.e. to
discover a criteria that would ensure the integrability of a given nonlinear
partial differential equation. One of these criteria based on establishing
the existence of a higher integral of motion was proposed in [91]. Thus
Mikhailov, Shabat, and Yamilov [91] were able to classify all integrable
versions of the NLS-type equations. This approach is rigorous and funda-
mental and meets serious difficulties of technical nature when the number
of the fields exceeds 2.

4. Another method is the so-called Painlevé test [57, 70, 92]. If given NLEE
passes the Painlevé test, then there are chances that it may have Lax
representation and so might be integrable through the ISM.

5. The hierarchy of M -operators in the Lax representation are naturally
generated by the recursion operators Λ±. For the ZS system, this has
been shown in [6, 7, 8, 14, 93] and also generalized to several classes of
Lax operators [19, 36, 48, 70, 72, 87, 94, 95]. We also specially note the
relation between the M -operators and the classical r-matrix found in [6].

6. It is well known that the integrals of motion Ck for the ZS system have
local densities, i.e. they are expressed only in terms of q(x, t) and its x-
derivatives [6, 14, 96].

7. The trace identities for the ZS system play an important role in the
analysis of the mapping between the potential and the scattering data
[6, 7, 8, 93, 97].

8. The involutions of the ZS system analyzed above can be viewed as simple
particular realizations of the reduction group Z2 proposed by Mikhailov
[98]. This method is important for deriving new integrable equations from
generic multicomponent NLEE. One of its important consequences was
the discovery of the two-dimensional Toda field theories [54, 98, 99, 100,
101, 102].
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9. G. L. Lamb. Bäcklund transformations for certain nonlinear evolution equa-
tions. J. Math. Phys., 15(12):2157, 1974.

10. F. Calogero and A. Degasperis. Nonlinear evolution equations solvable by the
inverse spectral transform. I. Nuovo Cimento B, 32(2):1–54, 1976.

11. J. L. Lamb Jr. Analytical description of ultra-short optical pulse propagation
in a resonant medium. Rev. Mod. Phys., 43:99–124, 1971.

12. L. A. Takhtadjan. Hamiltonian systems connected with the Dirac equation.
J. Sov. Math., 8(2):219–228, 1973.

13. A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin. The soliton: A new concept
in applied science. Proc. IEEE, 61(10):1443–1483, 1973.

14. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur. The inverse scatter-
ing transform-Fourier analysis for nonlinear problems. Stud. Appl. Math., 53:
249–315, 1974.

15. P. R. Chernoff and J. E. Marsden. Properties of Infinite Dimensional Hamilto-
nian Systems, volume 525 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, New York, 1974.

16. L. A. Takhtadjan. Exact theory of propagation of ultrashort optical pulses in
two-level media. J. Exp. Theor. Phys., 39(2):228–233, 1974.

17. V. E. Zakharov and S. V. Manakov. On the complete integrability of a non-
linear Schrödinger equation. Theoreticheskaya i Mathematicheskaya Fizika,
19(3):332–343, 1974.

18. L. A. Takhtadjan and L. D. Faddeev. Essentially nonlinear one-dimensional
model of classical field theory. Theor. Math. Phys., 21:1046–1057, 1974.

19. H. Flaschka and A. C. Newell. Integrable Systems of Nonlinear Evolution
Equations. Integrable systems of nonlinear evolution equations and dynamical
systems. Theory and applications. Springer Verlag, New York, 1975.

20. Moser, J.: Integrable Systems of Nonlinear Evolution Equations. Dynamical
Systems, Theory and Applications. Lect. Notes Phys. 38. Springer-Verlag,
Berlin (1975)

21. D. J. Kaup, A. Reiman, and A. Bers. Space-time evolution of nonlinear three-
wave interactions. I. Interaction in a homogeneous medium. Rev. Modern Phys.,
51(2):275–309, 1979.

22. D. J. Kaup. The three-wave interaction–a nondispersive phenomenon. Stud.
Appl. Math., 55(9), 1976.

23. N. Y. Reshetikhin and L. D. Faddeev. Hamiltonian structures for integrable
models of field theory. Theor. Math. Phys., 56(3):847–862, 1983.

24. L. A. Takhtadjan and L. D. Faddeev. Hamiltonian system related to the equa-
tion uξ,η + sin u = 0. Sci. Notes LOMI Semin., 142:254–266, 1976.

25. P. P. Kulish, S. V. Manakov, and L. D. Faddeev. Comparison of the exact
quantum and quasiclassical results for a nonlinear Schrödinger equation. The-
oreticheskaya i Mathematicheskaya Fizika, 28(1):38–45, 1976.

26. F. Lund and T. Regge. Unified approach to strings and vortices with soliton
solutions. Phys. Rev. D, 14(6):1524–1535, 1976.



206 6 Fundamental Properties of the Solvable NLEEs

27. A. S. Budagov and L. A. Tahtadjan. A nonlinear one-dimensional model of
classical field theory with internal degrees of freedom. Dokl. Akad. Nauk SSSR,
235(4):805–808, 1977.

28. R. K. Dodd and R. K. Bullough. Polynomial Conserved Densities for the
Sine-Gordon Equations. Proc. R. Soc. Lond. A, Math. Phys. Sci., 352(1671):
481–503, 1977.

29. D. J. Kaup and A. C. Newell. An exact solution for a derivative nonlinear
Schrödinger equation. J. Math. Phys., 19:798, 1978.

30. K. Longren and A. Ed. Scott. Solitons in Action. Academic Press, New York,
1978.

31. F. Lund. Classically solvable field theory model. Ann. Phys., 115(2):251–268,
1978.

32. S. J. Orfanidis. Discrete sine-Gordon equations. Phys. Rev. D, 18(10):
3822–3827, 1978.

33. S. J. Orfanidis. Sine-Gordon equation and nonlinear σ model on a lattice.
Phys. Rev. D, 18(10):3828–3832, 1978.

34. A. C. Newell. The general structure of integrable evolution equations. Proc.
R. Soc. Lond. A, Math. Phys. Sci., 365(1722):283–311, 1979.

35. M. A. Olshanetsky and A. M. Perelomov. Completely integrable Hamiltonian
systems connected with semisimple Lie algebras. Invent. Math., 37(2):93–108,
1976.

36. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. I. Pitaevskii. Theory of
Solitons: The Inverse Scattering Method. Plenum, New York, 1984.

37. M. A. Ol’shanetskii and A. M. Perelomov. The Toda chain as a reduced system.
Theor. Math. Phys., 45(1):843–854, 1980.

38. A. G. Izergin and P. P. Kulish. Inverse scattering problem for systems with
anticommuting variables and the massive Thirring model. Theor. Math. Phys.,
44(2):684–687, 1980.

39. M. Bruschi, S. V. Manakov, O. Ragnisco, and D. Levi. The nonabelian Toda
latticediscrete analogue of the matrix Schrodinger equation. J. Math. Phys.,
21:2749–2753, 1980.

40. W. W. Symes. Systems of Toda type, inverse spectral problems, and represen-
tation theory. Invent. Math., 59(1):13–51, 1980.

41. T. Shimizu and M. Wadati. A new integrable nonlinear evolution equation.
Prog. Theor. Phys., 63(3):808–820, 1980.

42. S. A. Bulgadaev. Two-dimensional integrable field theories connected with
simple Lie algebras. Phys. Lett. B, 96(1–2):151–153, 1980.

43. P. P. Kulish. Classical and quantum inverse problem method and generalized
Bethe ansatz. Physica D: Nonlinear Phenomena, 3(1–2):246–257, 1981.

44. P. P. Kulish and E. K. Sklyanin. O(N)-invariant nonlinear Schrödinger
equation- A new completely integrable system. Phys. Lett. A, 84(7):349–352,
1981.

45. G. Eilemberger. Solitons, volume 9 of Mathematical Methods for Scientists.
Solid State Sciences. Springer-Verlag, Berlin, 1981.

46. H. Segur and M. J. Ablowitz. Solitons and the Inverse Scattering Transform.
Society for Industrial & Applied Mathematics, 1981.

47. A. K. Pogrebkov. Singular solitons: An example of a Sinh-Gordon equation.
Lett. Math. Phys., 5(4):277–285, 1981.



References 207

48. F. Calogero and A. Degasperis. Spectral Transform and Solitons. I. Tools to
Solve and Investigate Nonlinear Evolution Equations, volume 144 of Studies
in Mathematics and its Applications, 13. Lecture Notes in Computer Science.
North-Holland Publishing Co., Amsterdam New York, 1982.

49. M. Bruschi and O. Ragnisco. The Hamiltonian structure of the nonabelian
Toda hierarchy. J. Math. Phys., 24:1414, 1983.

50. M. A. Olshanetsky and A. M. Perelomov. Quantum integrable systems related
to lie algebras. Phys. Rep., 94(6):313–404, 1983.

51. V. O. Tarasov, L. A. Takhtajan, and L. D. Faddeev. Local hamiltonians for
integrable quantum model on a lattice. Theor. Math. Phys., 57:163–181, 1983.

52. J. J-P. Leon. Integrable sine-Gordon model involving external arbitrary field.
Phys. Rev. A, 30(5):2830–2836, 1984.

53. B. G. Konopelchenko and V. G. Dubrovski. General N -th order differential
spectral problem: General structure of the integrable equations, nonuniqueness
of the recursion operator and gauge invariance. Ann. Phys., 156(2):256–302,
1984.

54. V. G. Drinfeld and V. V. Sokolov. Lie Algebras and Korteweg-de Vries Type
Equations. VINITI Series: Contemporary problems of mathematics. Recent
developments. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1985.

55. J. Hietarinta. Quantum Integrability and Classical Integrability. Turku Univer-
sity, Finland, 1984.

56. P. P. Kulish and V. N. Ed. Popov. Problems in Quantum Field Theory and
Statistical Physics. Part V. , volume 145 (in russian). Notes of LOMI Seminars,
1985.

57. A. C. Newell. Solitons in Mathematics and Physics. Regional Conf. Ser. in
Appl. Math. Philadelphia, 1985.

58. R. J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic Press,
New York, 1982.

59. D. H. Sattinger and O. L. Weaver. Lie Groups and Algebras with Applications
to Physics, Geometry and Mechanics. Springer Verlag, Berlin, 1986.

60. F. Calogero. A class of solvable dynamical systems. Physica D, 18:280–302,
1986.

61. A. M. Bloch. An infinite-dimensional classical integrable system and the
Heisenberg and Schrödinger representations. Phys. Lett. A, 116(8):353–355,
1986.

62. G. P. Jordjadze, A. K. Pogrebkov, M. K. Polivanov, and S. V. Talalov. Liouville
field theory: Inverse scattering transform and Poisson bracket structure. J.
Phys. A: Math. Gen., 19(1):121–139, 1986.

63. D. Olive and N. Turok. The Toda lattice field theory hierarchies and zero-
curvature conditions in Kac-Moody algebras. Nucl. Phys. B, 265(3):469–484,
1986.

64. R. Yordanov and E. Kh. Christov. On the Cauchy problem for the linearized
nonlinear Schrödinger equation. Annuaire de l’Université de Sofia “Kliment
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7

Hierarchies of Hamiltonian Structures

In this chapter, we explain how the NLEEs analyzed above can be viewed as
infinite dimensional Hamiltonian systems. We start by several basic examples.
Next, we go to the generic NLEE, whose phase space MC is equivalent to the
space of pairs of smooth complex-valued functions {q+(x), q−(x)}. This phase
space and the Hamiltonian dynamics on it can be viewed as a complexifica-
tion of the standard Hamiltonian dynamics, and the well-known Hamiltonian
systems come up as different real forms of them. In Sect. 7.3, using the expan-
sion of σ3δq(x) over the symplectic basis, we derive the action-angle variable
for the generic NLEE. In the next section we demonstrate that each generic
NLEE allows a hierarchy of compatible Hamiltonian structures generated by
the recursion operator Λ. The different real forms of these Hamiltonian struc-
tures are derived in Sect. 7.5. These are obtained from the generic ones by
imposing additional involutions. Using the additional symmetry properties
that the scattering data acquire due to the involution we demonstrate that in
some cases “half” of the Hamiltonian structures become degenerated.

7.1 Hamiltonian Properties: Basic Examples

The Hamiltonian properties of some particular equations have been well
known for a long time. For example, the NLS equation

i
∂u

∂t
+
∂2u

∂x2
+ 2|u|2u(x, t) = 0 , (7.1)

can be written down as

∂u

∂t
= {HNLS, u}(0),

∂u∗

∂t
= {HNLS, u

∗}(0) , (7.2)

where
HNLS =

∫ ∞

−∞
dx (|ux|2 − |u(x, t)|4) . (7.3)
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The phase space MNLS is the infinite dimensional manifold of all complex-
valued functions u(x, t), which are smooth and fall off fast enough for |x| → ∞.
The Poisson brackets on MNLS are introduced by:

{u(x), u(y)}(0) = 0, {u∗(x), u∗(y)}(0) = 0 ,
{u(x), u∗(y)}(0) = iδ(x− y) . (7.4)

Then it easy to check that the Hamiltonian equations (7.2) coincide with the
NLS (7.1) and its complex conjugate.

The phase space MNLS can be viewed equivalently as the space of pairs
of real-valued functions u0(x) and u1(x) satisfying u(x) = u0(x) + iu1(x) and

{u0(x), u0(y)}(0) = 0, {u1(x), u1(y)}(0) = 0 ,

{u0(x), u1(y)}(0) = −1
2
δ(x− y) . (7.5)

The Hamiltonian formulation of the mKdV and sine-Gordon equations

∂w

∂t
+
∂3w

∂x3
+ 6κ1

∂w

∂x
w2(x, t) = 0, κ1 = ±1; (7.6)

∂2w

∂x∂t
+ sin(w(x, t)) = 0 , (7.7)

require different construction.1 The corresponding phase space MmKdV is the
space of real-valued functions w(x, t), which are smooth and fall off fast enough
for |x| → ∞. The Poisson brackets on MmKdV are introduced by:

{w(x), w(y)}(1) =
∂

∂x
δ(x− y) , (7.8)

and the Hamiltonian is given by:

HmKdV =
∫ ∞

−∞
dx

(

1
2
wwxx +

κ1

2
w4

)

, (7.9)

The phase space for the s-G equation is the same as MmKdV, but the
Poisson brackets on it are introduced by:

{w(x), w(y)}(1) = ∂−1
x δ(x− y) , (7.10)

where ∂−1
x · = 1/2

(

∫ x

−∞ dy +
∫ x

∞ dy
)

· and the Hamiltonian is given by:

HsG =
∫ ∞

−∞
dx (1− cosw(x, t)) . (7.11)

1 For the moment, we leave aside the problems related to the topological charge of
the sine-Gordon equation.
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One can also use an alternative way to describe the Hamiltonian dynamics
which makes use of symplectic forms rather than of Poisson brackets. The
symplectic form corresponding to the Poisson brackets (7.4), (7.5):

Ω0 =
1
i

∫ ∞

−∞
dx δu(x) ∧ δu∗(x) = 2

∫ ∞

−∞
dx δu1(x) ∧ δu0(x) , (7.12)

is called canonical symplectic form.

Remark 7.1. In this Chapter, in order to avoid unnecessary complications of
the notations by δu(x), we shall denote the infinite-dimensional analog of
the 1-form; then δu(x) ∧ δu∗(x) will be the infinite-dimensional analog of
the canonical 2-form on MNLS. For more precise definitions, notations, and
explanations see the Second part.

To each pair of symplectic form Ω and a Hamiltonian H, one can put into
correspondence a Hamiltonian vector-field XH . By definition it satisfies the
relation:

iXH
Ω0 + δH ≡ Ω0(XH , ·) + δH = 0 . (7.13)

The infinite-dimensional analog of the Hamiltonian vector-field XNLS cor-
responding to Ω0 (7.12) and HNLS (7.3) is given by:

XH · ≡ XNLS· = i

∫ ∞

−∞
dx

(

δH

δu∗(x)
δ

δu(x)
· − δH

δu(x)
δ

δu∗(x)
·
)

, (7.14)

Then, the Hamiltonian equation of motion (7.2) can be rewritten as:

∂u

∂t
+ (XNLS, δu(x)) = 0 , (7.15)

where by (XNLS, δu(x)) we mean the result of evaluation of the vector field
XNLS on the 1-form δu(x). Obviously, with XNLS as in (7.14) and H as in
(7.3), we find that (7.15) coincides with the NLS equation (7.1).

The symplectic form corresponding to the Poisson brackets (7.8) for mKdV
equals:

ΩmKdV =
∫ ∞

−∞
dx ∂−1

x δw(x) ∧ δw(x) , (7.16)

where ∂−1
x · was introduced above. The relevant Hamiltonian vector field for

ΩmKdV and HmKdV is:

XmKdV = −
∫ ∞

−∞
dx

∂

∂x

(

δHmKdV

δw(x)

)

δ

δw(x)
· (7.17)

Again, one can check that the Hamiltonian equation of motion

∂w

∂t
+ (XmKdV, δw(x)) = 0 , (7.18)
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provides the mKdV equation (7.6).
The third example is the symplectic form related to the sine-Gordon equa-

tion. The corresponding phase space is MmKdV, but the Poisson brackets
(7.10) are different and so are the symplectic forms:

ΩsG =
∫ ∞

−∞
dx ∂xδw(x) ∧ δw(x) . (7.19)

The Hamiltonian vector field XsG corresponding to ΩsG and HsG (7.7) is:

XsG =
∫ ∞

−∞
dx ∂−1

x

(

δHsG

δw(x)

)

δ

δw(x)
· (7.20)

so that the equation of motion

∂w

∂t
+ (XsG, δw(x)) ≡ ∂w

∂t
+ ∂−1

x sinw(x, t) = 0 , (7.21)

after differentiating both sides with respect to x, provides the sine-Gordon
equation (7.7).

The phase spaces MsG and MmKdV are isomorphic, but the symplectic
structures introduced above are substantially different. One can viewMmKdV

as a subspace of MNLS obtained with the reduction u = u∗ = w. However,
on MNLS one can use the canonical Poisson brackets (7.5) and the relevant
canonical symplectic form ΩNLS, but these become degenerate under the re-
duction u = u∗ = w. So, it is not accidental that the symplectic forms ΩmKdV

and Ωsg are both noncanonical.
At the same time, the NLS, mKdV, and sG-equations are particular mem-

bers of the class of generic NLEEs:

i

2

[

σ3,
∂q

∂t

]

+ 2f(Λ)q(x, t) = 0, q(x, t) =
(

0 q+

q− 0

)

, (7.22)

with specifically chosen dispersion laws f(λ) and reductions (or involution)
chosen among:

(α) q−(x) = ε0(q+(x))∗, where ε0 = ±1 ;
(β) q−(x) = ε1q

+(x) where ε1 = ±1; and
(γ) both (α) and (β) hold.

The examples above illustrate the general fact that on the same phase
space, one can introduce different Poisson brackets and symplectic forms. It
also raises the questions:

• Do the generic NLEEs allow Hamiltonian formulation and in what sense;
• Can one view the Hamiltonian formulations of NLS, sG and mKdV equa-

tions as particular cases of the generic ones obtained with the proper in-
volution;

• Are all these Hamiltonian formulations compatible and in what sense.
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The answer to these questions will be given later in this Chapter. It is
based on the fact that the generic NLEEs allow not just one but a hierarchy
of Hamiltonian structures generated by the recursion operator Λ.

To describe the simplest of them, one needs properly chosen phase space
MC and Hamiltonian HC. A natural candidate forMC is the manifold of pairs
of complex-valued functions {q+(x), q−(x),−∞ ≤ x ≤ ∞} with the following
Poisson brackets:

{q+(x), q+(y)}C

(0) = 0, {q−(x), q−(y)}C

(0) = 0 ,

{q−(x), q+(y)}C

(0) = iδ(x− y) . (7.23)

They can be viewed as generalizations of the canonical Poisson brackets (7.4).
Obviously, if we impose the constraint q−(x) = (q+(x))∗, the phase spaceMC

will reduce toMNLS. Using the additional involution (β), one can consider also
MmKdV as a subspace of MC. As it is, MC can be viewed as complexification
of MNLS.

What we shall do now is the following: taking as HamiltoniansHC properly
chosen linear combination of the integrals of motion Ck, we shall describe the
Hamiltonian properties of the generic NLEEs (7.22). Note that such HC are
analytic functionals of q±(x).

We shall see that the Hamiltonian formulations of NLS, mKdV, and sG
equations can be understood as real Hamiltonian forms obtained from the
complexified ones with one of the above mentioned involutions onMC. Special
attention will be paid to the degeneracy of some of the Hamiltonian structures
which the involution (β) induces.

Similar constructions are possible also for finite-dimensional systems. One
can complexify also a dynamical systems with n degrees of freedom. As a re-
sult, one obtains dynamical systems with 2n degrees of freedom. After that, us-
ing involutive automorphisms, one can extract the corresponding real Hamil-
tonian forms, which are new dynamical systems with n degrees of freedom;
for details see Chap. 12 of the second part.

7.2 Complexified Phase Spaces and Hamiltonians

The canonical Poisson brackets between any two functionals on MC are given
by:

{F,G}C

(0) = i

∫ ∞

−∞
dx

(

δF

δq−(x)
δG

δq+(x)
− δF

δq+(x)
δG

δq−(x)

)

. (7.24)

where both F and G are complex-valued functionals on MC depending ana-
lytically on q±(x).

Then, the corresponding canonical symplectic form can be written as:

ΩC

(0) =
1
i

∫ ∞

−∞
dx δq−(x) ∧ δq+(x) . (7.25)
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Next, we need to specify the Hamiltonian as a functional over MC. A
generic functional on MC, analytic with respect to both q+ and q−, has the
form:

HC = c+
∑

k+m≥1

∫ ∞

−∞
dx1 . . . dxkdy1 . . . dymH

(k,m)(x1, . . . , xk|y1, . . . , yk)

q+(x1) . . . q+(xk)q−(y1) . . . q−(ym) , (7.26)

where for simplicity we assume that the kernels H(k,m)(x1, . . . , xk|y1, . . . , yk)
are distributions symmetric with respect to each of the sets of arguments
{x1, . . . , xk} and {y1, . . . , ym}. In our case, these kernels will be products of
Dirac δ-functions and their derivatives. Condition C1 on p.73 ensures that
HC is properly defined along with all functionals of the type (7.26).

Let us illustrate this construction. For example, choosing:

H(1,1)(x1|y1) = c0δ(x1 − y1) + c1

(

∂δ(x1 − y1)
∂x1

− ∂δ(x1 − y1)
∂y1

)

+c2
∂2δ(x1 − y1)

∂x2
1

, (7.27)

H(2,2)(x1, x2|y1, y2) = h2δ(x1 − y1)δ(x2 − y2)δ(x1 − x2) , (7.28)

and setting all other kernel functions equal to zero, we see that the functionals
defined by H(1,1)(x1|y1) and H(2,2)(x1, x2|y1, y2) are equal to:

H(1,1) = c0

∫ ∞

−∞
dx q+(x)q−(x)− c1

∫ ∞

−∞
dx

(

∂q+

∂x
q−(x)− q+

∂q−(x)
∂x

)

+c2
∫ ∞

−∞
dx

∂2q+(x)
∂x2

q−(x) , (7.29)

H(2,2) = h2

∫ ∞

−∞
dx (q+(x)q−(x))2 , (7.30)

where c0, c1, c2 and h2 are some constants. Functionals whose densities depend
only on q±(x) and their x-derivatives are called local functionals.

In what follows, we shall need also the variational derivatives of H with
respect to q±(x), which are evaluated using the standard rules:

δq+(x)
δq+(y)

= δ(x− y),
δq−(x)
δq−(y)

= δ(x− y) ,

δq+(x)
δq−(y)

= 0,
δq−(x)
δq+(y)

= 0 , (7.31)

where δ(x− y) is the Dirac delta-function.
In order to treat adequately the complexified Hamiltonian structures, we

have to be more specific in defining the Poisson brackets (7.23), namely, we
shall use:
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{q+α (x), q+β (y)}C

(0) = 0, {q−α (x), q−β (y)}C

(0) = 0, α, β = 0, 1;

{q−0 (x), q+0 (y)}C

(0) = 0; {q−1 (x), q+1 (y)}C

(0) = 0; (7.32)

{q−0 (x), q+1 (y)}C

(0) =
1
2
δ(x− y), {q−1 (x), q+0 (y)}C

(0) =
1
2
δ(x− y).

The generic Hamiltonian equations of motion generated by HC and the
Poisson brackets (7.24) are the following:

∂q+

∂t
= {HC, q+(x, t)}C

(0) = i
δHC

δq−(x)
, (7.33a)

−∂q
−

∂t
= −{HC, q−(x)}C

(0) = i
δHC

δq+(x)
, (7.33b)

They are equivalent to a standard Hamiltonian system, provided HC is ana-
lytic with respect to q+ and q−. The analyticity of HC means that its real and
imaginary parts HC

0 and HC
1 satisfy the analog of Cauchy–Riemann equations:

δHC
0

δq±0 (x)
=

δHC
1

δq±1 (x)
,

δHC
1

δq±0 (x)
= − δHC

0

δq±1 (x)
, (7.34)

where q±α , α = 0, 1 are the real and imaginary parts of q±(x):

q±(x) = q±0 (x) + iq±1 (x) . (7.35)

Inserting (7.34), (7.32) into (7.33) we get the system:

∂q+0
∂t

=
δHC

(0)

δq−1 (x)
, (7.36a)

∂q+1
∂t

=
δHC

(0)

δq−0 (x)
, (7.36b)

∂q−0
∂t

= −
δHC

(0)

δq+1 (x)
, (7.36c)

∂q−1
∂t

= −
δHC

(0)

δq+0 (x)
, (7.36d)

which can be viewed as the equation of motion of an infinite-dimensional
Hamiltonian system with real-valued Hamiltonian HC

(0). The elements of
the phase space MC can be viewed also as the 4-tuples of real functions
{q+0 , q+1 , q−0 , q−1 } vanishing fast enough for x → ±∞. We designate the space
of such 4-tuples by MR.

The Poisson brackets on MR are introduced by (7.32). We shall use also
the symplectic form on MR, which is defined by the real part of ΩC

(0):

ReΩC

(0) =
∫ ∞

−∞
dx
(

δq+0 ∧ δq−1 + δq+1 ∧ δq−0
)

. (7.37)
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Remark 7.2. If we impose on ΩC

(0) the involution α), then q+0 = ε0q
−
0 , q+1 =

−ε0q−1 , which means that ImΩC

(0) = 0 and ReΩC

(0) becomes proportional Ω0

from (7.12).

In what follows, we shall use the formal Hamiltonian formulation of the
generic NLEEs with complex-valued Hamiltonian HC and complex valued dy-
namical fields q±(x) as in (7.33). Those who prefer the standard Hamiltonian
formulations using real-valued Hamiltonians and dynamical fields can always
rewrite the generic NLEEs in its equivalent form (7.36).

7.3 The Generic NLEEs as Completely Integrable
Complex Hamiltonian System

For the sake of compactness, we shall use the gauge-covariant formulation of
the generic NLEEs. The usefulness of this formulation will become clear in the
next Chapter, dedicated to the gauge-equivalent NLEE and their Hamiltonian
properties.

So, below we shall view the phase space MC as the space of 2 × 2 off-

diagonal matrices q(x) =
(

0 q+

q− 0

)

. The variational derivatives (or the “gra-

dients”) of the functional HC then will be written as:

∇qH
C ≡ δHC

δqT (x)
=

(

0 δHC

δq−(x)
δHC

δq+(x) 0

)

. (7.38)

It remains to recall the definition of the skew-scalar product
[[

· , ·
]]

, and
after simple calculation one is able to write down the canonical Poisson brack-
ets (7.24) as follows:

{F,G}C

(0) =
i

2

∫ ∞

−∞
tr (∇qF, [σ3,∇qG]) dx

= i
[[

∇qF,∇qG
]]

. (7.39)

The corresponding canonical symplectic form ΩC
0 and Hamiltonian vector

field XHC become:

ΩC

0 = i

∫ ∞

−∞
dx
(

δq+(x) ∧ δq−(x)
)

≡ i

4

∫ ∞

−∞
tr
(

σ3δq(x)∧
′
[σ3, σ3δq(x)]

)

=
i

2
[[

σ3δq ∧′ σ3δq
]]

. , (7.40)

XHC · = −i
[[

∇qH
C,∇q ·

]]

= −{HC, ·}C

(0) . (7.41)

Above, by the symbol ∧
′
, we mean that we first perform the matrix mul-

tiplication keeping the order of the factors and then replace the standard
multiplication by an exterior product ∧.
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With all these notations we can write down (7.33) in the form:

iσ3
∂q

∂t
+∇qH

C = 0 . (7.42)

The system (6.18), (6.19) generalizing the NLSE can be written down as
complex Hamiltonian system (7.42) with HC chosen to be:

HC =
∫ ∞

−∞
dx
[

q−x q
+
x − (q+q−)2

]

= −8C3 . (7.43)

Quite analogously, one may check that all the other examples of NLEEs
also allow complex Hamiltonian structures with the symplectic structure in-
troduced on MC by (7.23).

Each of the generic NLEE (7.22) with dispersion law f(λ) can be written
down in the form (7.42). It is only natural to expect that the corresponding
Hamiltonian H should be expressed in terms of the integrals of motion Cp.
Indeed, (6.133) can be written down as:

∇qCp = −1
2
Λp−1q(x) . (7.44)

Then if we choose
HC =

∑

k

4fkCk+1 , (7.45)

we get:
∇qH

C = −2f(Λ)q(x) . (7.46)

Thus (7.42) coincides with the NLEEs (7.22) with dispersion law f(λ) =
∑

k fkλ
k.

The next step in studying the Hamiltonian properties of (6.7) is to check
whether the integrals of motion Cp are in involution. A bit more general is the
problem to evaluate the Poisson brackets between the entries in the minimal
sets of scattering data T1, T2 and T . To do this, we use the compact expression
(7.39) for the Poisson brackets through the skew-scalar product on MC and
the inversion formulae (5.81), (5.83), (5.85). Thus:

δτ±(t, λ)
δq(x)

≡ ∇qτ
±(t, λ) =

∓i
(a±(λ))2

Ψ±(x, λ) , (7.47a)

∇qλ
±
k = ∓iC±

k Ψ±
k (x) , (7.47b)

∇qM
±
k =

∓i
(ȧ±k )2

(

Ψ̇
±
k (x)− ä±k

ȧ±k
Ψ±

k (x)
)

, (7.47c)

Analogously:

∇qρ
±(t, λ) =

±i
(a±(λ))2

Φ±(x, λ) , (7.48a)
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∇qλ
±
k = ±iM±

k Φ±
k (x) , (7.48b)

∇qC
±
k =

±i
(ȧ±k )2

(

Φ̇
±
k (x)− ä±k

ȧ±k
Φ±

k (x)
)

(7.48c)

and

∇qη(λ) = iP (x, λ), ∇qη
±
k = iP±

k (x) , (7.49a)

∇qκ(t, λ) = iQ(x, λ), ∇qκ
±
k = iQ±

k (x) , (7.49b)

where P (x, λ), Q(x, λ) etc. are the elements of the symplectic basis (5.61)
introduced in Sect. 5.2.1.

From the above relations, there follows that the Poisson brackets between
the scattering data are expressed through the skew-scalar products of the
corresponding “squared” solutions. So, in order to evaluate them, we need to
recall the results from Sect. 5.5.1 and Table 5.2. Indeed:

{ρ+(t, λ), τ+(t, μ)}(0) = −
i
[[

Φ+(x, λ),Ψ+(x, μ)
]]

(a+(λ))2(a+(μ))2
,

= −iπδ(λ− μ) , (7.50a)

{ρ−(t, λ), τ−(t, μ)}(0) = −
i
[[

Φ−(x, λ),Ψ−(x, μ)
]]

(a−(λ))2(a−(μ))2
.

= iπδ(λ− μ) . (7.50b)

and

{η(λ), κ(μ)}C

(0) = iδ(λ− μ), {η(λ), κ±k }C

(0) = 0 ,

{κ(λ), η±k }C

(0) = 0, {η±k , κ±m}C

(0) = iδkm,
(7.51a)

{η(λ), η(μ)}C

(0) = 0, {η±k , η±m}C

(0) = 0, {η(λ), η±k }C

(0) = 0 , (7.51b)

{κ(λ), κ(μ)}C

(0) = 0, {κ±k , κ±m}C

(0) = 0, {κ(λ), κ±k }C

(0) = 0 . (7.51c)

So, the orthogonality properties of the symplectic basis with respect to the
skew-scalar product are directly related to the fact that the set of variables
{η(λ), κ(λ), η±k , κ

±
k } satisfy canonical Poisson brackets.

We just proved that {η(λ), η±k } are in involution (see (7.51b) above). They
are also time independent due to (7.22). The variables {κ(t, λ), κ±k (t)} are also
in involution but depend on time linearly; see (6.10). Thus, these two sets of
variables have all the necessary properties to be global “action-angle” variables
for the LEES (6.7).

Here our notion of complete integrability is a bit broader than usual. By
action-angle variables we understand a complete canonical basis in MC which
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is such that the Hamiltonian depends only on the action variables. We do not
necessarily require that the range of the angle variables is [0, 2π]; for us it is
enough that they depend linearly on time, thus allowing to solve exactly the
dynamical equations.

From the trace identities (3.72), we know that the integrals of motion Ck

are expressed in terms of η(λ) and η±k only; therefore, they are in involution.
Another way to prove that any two of the integrals of motion Cp are in

involution is based on the relation:
[[

Θ+(x, λ),Θ+(x, μ)
]]

a+(λ)a+(μ)
= 0 , (7.52)

which is derived in complete analogy with relations (5.121). Since from (5.27)
we get Θ(x, λ) = ∇qA(λ) and A(λ) is analytic with respect to λ ∈ C±, we
can rewrite (7.52) into the form:

[[

∇qA(λ),∇qA(μ)
]]

= {A(λ),A(μ)}C

(0)

=
∞
∑

n,m=1

{Cn, Cm}C

(0)

λmμn
= 0 . (7.53)

for all complex λ and μ. As this relation must hold identically with respect
to λ and μ, one concludes that

{Cn, Cm}C

(0) = 0 , (7.54)

for n,m = 1, 2, . . . ,.
Thus we conclude that the NLEE (6.7) are infinite dimensional completely

integrable complex Hamiltonian systems with respect to the canonical Poisson
brackets (7.24) defined on MC.

When treating the complete integrability of an infinite-dimensional system,
the most difficult point is to ensure that the action-angle variables really span
the whole phase spaceMC. We are now going to present a more rigorous proof
of this fact based on the completeness relation for the symplectic basis.

The most straightforward way to derive the action-angle variables of the
NLEE (6.7) is to insert into the right-hand side of (7.40) the expansion (5.86)
for σ3δq(x). This gives:

ΩC

(0) =
i

2

[[

σ3δq(x)∧
′

(

i

∫ ∞

−∞
dλ (δη(λ)Q(x, λ)− δκ(t, λ)P (x, λ))

+ i
N
∑

k=1

(δη+
k Q+

k (x)− δκ+
k P +

k (x) + δη−k Q−
k (x)− δκ−k P−

k (x))

)]]

= −1
2

∫ ∞

−∞
dλ
(

δη(λ) ∧
[[

σ3δq(x),Q(x, λ)
]]

− δκ(t, λ) ∧
[[

σ3δq(x),P (x, λ)
]])
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− 1
2

N
∑

k=1

(δη+
k ∧

[[

σ3δq(x),Q+
k (x)

]]

− δκ+
k ∧

[[

σ3δq(x),P +
k (x)

]]

+
1
2
δη−k ∧

[[

σ3δq(x),Q−
k (x)

]]

− δκ−k ∧
[[

σ3δq(x),P−
k (x))

]]

= i

∫ ∞

−∞
dλ δκ(t, λ) ∧ δη(λ) + i

∑

k=1

(δκ+
k ∧ δη

+
k + δκ−k ∧ δη

−
k ) . (7.55)

In the above calculation, we made use of the inversion formulae for the
symplectic basis (5.85) and identified the skew-symmetric scalar products of
σ3δq(x) with the elements of the symplectic basis with the variations of δη(λ),
δκ(t, λ), etc.

From (7.55), we see also that the 2-form ΩC
0 expressed by the variables

η(λ), κ(λ), η±k and κ±k has a canonical form. Recall now the trace identities
(6.131). From them it follows that the Hamiltonian HC of the NLEE depends
only on the variables η(λ), η±k :

HC = −2
∫ ∞

−∞
dμ f(μ)η(μ) + 4i

N
∑

k=1

(

F+
k − F−

k

)

, (7.56)

where

F±
k = F (λ±k ), F (λ) =

∫ λ

dλ′f(λ′) . (7.57)

Remark 7.3. The variables η(λ), κ(λ), η±k and κ±k are indeed the analogs
of the action-angle variables for the complex Hamiltonian systems (6.7) in
the sense that they form a canonical basis in MC, and the Hamiltonian
depends only on “half” of them. They satisfy the following equations of
motion:

dη

dt
= 0,

dη±k
dt

= 0, i
dκ

dt
−2f(λ) = 0, i

dκ±k
dt
−2f(λ±k ) = 0 , (7.58)

from which we see that the “action” variables are time-independent, while
the “angle” variables are linear functions of t. However, here both types of
variables are complex-valued. In addition, the “angle” variables κ(λ), κ±k (see
eq. (5.87b)) can be written as:

κ(λ) =
1
2

ln
∣

∣

∣

∣

b+(λ)
b−(λ)

∣

∣

∣

∣

+
i

2
arg

b+(λ)
b−(λ)

, κ±k = ± ln |b±k | ± i arg b±k , (7.59)

from which we find that only their imaginary parts can be viewed as angles
taking values in the range [0, 2π].

Note that the derivation of this result is based on the completeness relation
of the symplectic basis. This ensures: (i) the uniqueness and the invertibility
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of the mapping from {q±(x)} to T ; (ii) the nondegeneracy of the 2-form ΩC

(0)

on MC.
One can view q±(x) as local coordinates on MC; any functional F or G

on MC can be expressed in terms of q±(x). The variations δF and δG of
the functionals F and G are the analogs of 1-forms over MC. They can be
expressed in terms of the “gradients” by:

δF =
[[

∇qF, σ3δq
]]

, δG =
[[

∇qG, σ3δq
]]

, (7.60)

The “gradients” ∇qF and ∇qG are elements of the space TqMC tangential to
MC.

At the same time, the mapping to T is one-to-one, therefore it is possible
to express F and G in terms of the scattering data. To this end, we consider
the expansions of ∇qF and ∇qG over the symplectic basis:

∇qF = i

∫ ∞

−∞
(ηF (λ)Q(x, λ)− κF (λ)P (x, λ)) dλ

+i
N
∑±

k=1

(

η±F,kQ±
k (x)− κ±F,kP±

k (x)
)

, (7.61)

ηF (λ) = i
[[

P (x, λ),∇qF
]]

, κF (λ) = i
[[

Q(x, λ),∇qF
]]

,

η±F,k = i
[[

P±
k (x),∇qF

]]

, κ±F,k = i
[[

Q±
k (x),∇qF

]]

. (7.62)

Similar expansion for ∇qG is obtained from (7.61) by changing F to G. Such
expansions will hold true provided F and G are restricted in such a way that
the expansion coefficients ηF (λ) and κF (λ) are smooth and fall off fast enough
for λ→ ±∞. In what follows, we shall assume that the functionals F and G
satisfy the following

Condition C4. The functionals F and G are restricted by the following
implicit condition: the expansion coefficients ηF (λ) and κF (λ) and ηG(λ) and
κG(λ) are Schwartz-type functions of λ for real λ.

Using the biquadratic relations satisfied by the elements of the symplectic
basis (5.121), we can express the Poisson brackets between F and G in terms
of their expansion coefficients as follows:

{F,G}C

(0) = −i
[[

∇qF,∇qG
]]

(7.63)

=
∫ ∞

−∞
dλ (ηFκG − κF ηG) (λ) +

N
∑±

k=1

(

η±F,kκ
±
G,k − κ±F,kη

±
G,k

)

.

In particular, if we choose F = HC, then from (5.136) we find that
ηHC(λ) = 0, η±

HC,k
= 0 and
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κHC(λ) = −2f(λ), κ±
HC,k

= −2f(λ±k ),

which gives:

{H,G}C

(0) = 2
∫ ∞

−∞
dλ f(λ)ηG(λ) + 2

N
∑

k=1

(f(λ+
k )η+

G,k + f(λ−k )η−G,k) . (7.64)

Equation (7.64) allows us to describe inexplicitly the set of functionals G that
are in involution with all integrals of motion of the generic NLEE. Indeed, the
right-hand side of (7.64) will vanish identically for all choices of the dispersion
law f(λ) only if the expansion coefficients of ∇qG satisfy:

ηg(λ) = 0, λ ∈ R; η±G,k = 0, ∀k = 1, . . . , N . (7.65)

One can also describe the Hamiltonian vector fields in terms of the sym-
plectic basis:

XHC · ≡ −{HC, ·}C

(0) (7.66)

= −2i
∫ ∞

−∞
dλ f(λ)

[[

P (x, λ),∇q ·
]]

− 2i
N
∑±

k=1

f(λ±k )
[[

P±
k (x),∇q ·

]]

,

where f(λ) is the dispersion law of the generic NLEE with Hamiltonian HC.
We end this subsection by noting the special role of the subspace LC ⊂MC

spanned by P (x, λ) and P±
k (x), k = 1, . . . , N , i.e. by “half” of the elements

of the symplectic basis. Obviously, all Hamiltonian vector fields with Hamil-
tonians of the form (7.45) induce dynamics which is tangent to LC. This is
a maximal subspace of MC on which the symplectic form ΩC

(0) is degener-
ate. Therefore, LC is the Lagrange submanifold of MC. Dynamics defined by
Hamiltonian vector field that are not tangential violates the complete inte-
grability [1].

7.4 The Hierarchy of Hamiltonian Structures

The complete integrability of the generic NLEE makes them rather special.
They have an infinite number of integrals of motion Cn, which are in involution
and moreover satisfy the relation:

∇qCn+m = Λm∇qCn , (7.67)

which generalizes the Lenard relation (6.133). The important fact here is that
the recursion operator Λ is universal one and does not depend on either n or
m. This has far-reaching consequences which we outline below.

The first one consists of the possibility of introducing a hierarchy of Poisson
brackets:
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{F,G}C

(m) =
1
i

[[

∇qF,Λ
m∇qG

]]

. (7.68)

Below, we shall show that these Poisson brackets satisfy all the necessary
properties.

First, using the fact that Λ is “self-adjoint” with respect to the skew-
symmetric scalar product (5.109b), we easily check that the Poisson bracket
defined by (7.68) is skew-symmetric. Indeed:

{F,G}C

(m) =
1
i

[[

∇qF,Λ
m∇qG

]]

= −1
i

[[

Λm∇qG,∇qF
]]

= −1
i

[[

∇qG,Λ
m∇qF

]]

= −{G,F}C

(m) . (7.69)

We have also the Leibnitz rule:

{FG,H}C

(m) =
1
i

[[

∇q(FG), Λm∇qH
]]

=
1
i
F
[[

∇qG,Λ
m∇qH

]]

+
1
i

[[

∇qF,Λ
m∇qH

]]

G

= F{G,H}C

(m) + {F,H}C

(m)G , (7.70)

since ∇q(FG) = F∇qG+ (∇qF )G.
Using the expansion (7.61) of ∇qF , an analogous one for ∇qG and the fact

that the elements P (x, λ) and Q(x, λ) are eigenfunctions of Λ (see (5.104)),
we find:

{F,G}C

(m) = −i
[[

∇qF,Λ
m∇qG

]]

(7.71)

=
∫ ∞

−∞
dλλm (ηFκG − κF ηG) (λ) +

N
∑±

k=1

(λ±k )m
(

η±F,kκ
±
G,k − κ±F,kη

±
G,k

)

.

The Jacobi identity is far from trivial to check in these terms. This will be
done using the corresponding symplectic form and for that reason we postpone
the proof until later.

The existence of a hierarchy of Poisson brackets entails that there must
exist also hierarchy of vector fields, symplectic forms etc.

Let us define:

ΩC

(m) =
i

2
[[

σ3δq(x)∧
′
Λmσ3δq(x)

]]

. (7.72)

These 2-forms are not canonical. The proof of the fact that δΩC

(m) = 0 is
performed by recalculating them in terms of the “action-angle” variables. For
this, we follow the same idea as in the calculation of ΩC

(0); see (7.55). We
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insert the expansion for σ3δq(x) over the symplectic basis and then act on
this expansion by Λm. This is easy to do because of (5.133) and the result is:

Λmσ3δq(x) = i

∫ ∞

−∞
dλλm (δη(λ)Q(x, λ)− δκ(t, λ)P (x, λ))

+ i

N
∑

k=1

(

(λ+
k )m

(

δη+
k Q+

k (x)− δκ+
k P +

k (x)
)

+ (λ−k )m
(

δη−k Q−
k (x)− δκ−k P−

k (x)
))

. (7.73)

Calculating the skew-symmetric scalar products of σ3δq(x) with the right-
hand side of (7.73), we again obtain the variations of the η and κ-variables.
Finally we get:

ΩC

(m) = i

∫ ∞

−∞
dλλmδκ(t, λ) ∧ δη(λ)

+i
∑

k=1

((λ+
k )mδκ+

k ∧ δη
+
k + (λ−k )mδκ−k ∧ δη

−
k ) . (7.74)

Remark 7.4. The right-hand sides of (7.74) are well defined for all m ≥ 0 for
potentials q(x) satisfying condition C1. This condition ensures that κ(t, λ)
and η(λ) are Schwartz-type functions of λ.

Remark 7.5. For negative values of m, the existence of the integrals in (7.74)
is ensured only provided we put additional restrictions on q(x), which would
ensure that limλ→0 λ

mδκ(t, λ) ∧ δη(λ) exist for all m < 0.

Now it is easy to prove.

Proposition 7.6 Let the potential q(x) satisfy condition C1 on p. 73. Then
each of the symplectic forms ΩC

(m) for m ≥ 0 is closed, i.e.

δΩC

(m) = 0, m = 0, 1, 2, . . . . (7.75)

If in addition q(x) satisfies the condition in Remark 7.5, then each of the
symplectic forms ΩC

(m) is closed also for m < 0.

Proof. Indeed, the conditions in Proposition 7.6 is such that the integral in the
right-hand side of (7.74) is well defined, so we can interchange the integration
with the operation of taking the external differential δ. Therefore, we have:

δΩC

(m) = i

∫ ∞

−∞
dλλmδ (δκ(t, λ) ∧ δη(λ))

+ i
∑

k=1

δ
(

(λ+
k )mδκ+

k ∧ δη
+
k + (λ−k )mδκ−k ∧ δη

−
k )
)

= 0 , (7.76)

where we used the simple fact that δ(δg(λ)) ≡ 0 for any g(λ).
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Corollary 7.7 Direct consequence of Proposition 7.6 is that the Poisson
brackets { ·, ·}C

(m) satisfy Jacobi identity.

Now with respect to the symplectic form ΩC

(m) to HC there corresponds
the following Hamiltonian vector field:

X
(m)

HC · ≡ −{HC, ·}C

(m) (7.77)

= −2i
∫ ∞

−∞
dλλmf(λ)

[[

P (x, λ),∇q ·
]]

− 2i
N
∑±

k=1

(λ±k )mf(λ±k )
[[

P±
k (x),∇q ·

]]

,

The corresponding equation of motion is one of the higher generic NLEEs,
namely:

i
∂q

∂t
+ 2Λmf(Λ)q(x, t) = 0 . (7.78)

The same NLEE (7.78) can be obtained also using the canonical Poisson
brackets {· , ·}C

(0) with the Hamiltonian HC

(m) given by:

HC

(m) =
∑

k

4fkCk+m+1 . (7.79)

Indeed, from the Lenard relation and from (7.46) there follows that

∇qH
C

(m) = 2Λmf(Λ)q(x) . (7.80)

It is also easy to check using (7.67) that we have the infinite chain of
relations:

· · · = Λ−1∇qH
C

(m+1) = ∇qH
C

(m) = Λ∇qH
C

(m−1)

= · · · = Λm∇qH
C

(0) = Λm+1∇qH
C

(−1) = · · · , (7.81)

where we have put HC

(0) = HC. The elements of this infinite chain are well
defined only if the potential q(x) satisfies conditions C1 and C4.

Using the “self-adjoint” properties of Λ with respect to the skew-symmetric
scalar product, we can write down formally:

X
(m)

HC · ≡ −i
[[

∇qH
C

(0), Λ
m∇q ·

]]

= −i
[[

Λp∇qH
C

(0), Λ
m−p∇q ·

]]

= {∇qH
C

(p), ·}C

(m−p) , (7.82)

for all p = ±1,±2, . . . . But each Hamiltonian vector field determines uniquely
the corresponding equations of motion. Therefore, the chain of relations (7.81)
shows that each generic NLEE allows a hierarchy of Hamiltonian formulations:

∂q+

∂t
= {HC

(p), q
+(x)}C

(−p) , (7.83)
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− dq−

dt
= −{HC

(p), q
−(x)}C

(−p) , (7.84)

One can also explain that the Hamiltonian vector field obtained through
ΩC

(m) and HC

(m) is in fact independent of m, provided of course ΩC

(m) is well
defined. It is given by (7.41), which means (as one could expect) that the
NLEE generated by the pair ΩC

(m) and HC

(m) does not depend on m and
coincides with (7.22).

One can relate the existence of the hierarchy of Hamiltonian structures to
the simple fact that the generic NLEE:

Λm

(

iσ3
∂q

∂t
+ 2f(Λ)q(x, t)

)

= 0 , (7.85)

are equivalent to the NLEE (7.22). In terms of the “action–angle” variables
we get

iλmηt = 0, λm(iκt − 2f(λ)) = 0 ,
i(λ±k )mη±k = 0, (λ±k )m(iκ±k,t − 2f(λ±k )) = 0 . (7.86)

For m = 0, we recover the equations from Chap. 7. For m 	= 0 see Remarks
7.4 and 7.5.

7.5 Involutions and Hierarchies

7.5.1 The Involution q− = (q+)∗ = u(x)

This involution applied to the system (6.18), (6.19) allows one to get the
NLS equation. Applied to the system (6.21), it gives us the complex mKdV
equation.

The involution q+ = (q−)∗ = u is a consequence of (6.47) with ε0 = 1. Its
effects on the action–angle variables are as follows. From (5.87) and (6.52)–
(6.59) we find:

η(λ) = 1
π ln(1 + |ρ+(t, λ)|2), κ(λ) = i arg b+(t, λ), λ ∈ R,

η±k = 2λ1,k ∓ 2iλ(0),k, κ±k = ln |b+k | ± i arg b+k , (7.87)

where k = 1, . . . , N, and

λ±k = λ0,k ± iλ1,k, λ1,k > 0 . (7.88)

Thus, we conclude that Ω(0) becomes purely real and has the form:

Ω(0) =
∫ ∞

−∞
dλ δη(λ) ∧ δ arg b+(t, λ)
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+ 4
N
∑

k=1

(

δλ0,k ∧ δ ln |b+k (t)| − δλ1,k ∧ δ arg b+k (t)
)

. (7.89)

As regards the integrals of motion, they become real valued. (see (6.90)):

Cp = −1
2

∫ ∞

−∞
dλλp−1η(λ)− 2

p

N
∑

k=1

Im (λ+
k )p . (7.90)

The Hamiltonian H(0) also becomes real:

H(0) = 4
∑

p

fpCp+1

= −2
∫ ∞

−∞
dμ f(μ)η(μ)− 8

N
∑

k=1

Im (F+
k ) , (7.91)

where f(λ) is the dispersion law and F (λ) and F+
k are introduced in (7.57).

Analogously, for the symplectic forms of the hierarchy Ω(m) we get:

Ω(m) =
∫ ∞

−∞
dλλmδη(λ) ∧ δ arg b+(t, λ) (7.92)

+
4

m+ 1

N
∑

k=1

(

δ ln |b+k (t)| ∧ δRe (λ+
k )m+1 − δ arg b+k (t) ∧ δIm (λ+

k )m+1
)

.

The hierarchy of Hamiltonians is provided by:

H(m) = 4
∑

p

fpCp+m+1

= −2
∫ ∞

−∞
dμμmf(μ)η(μ)− 8

N
∑

k=1

Im (F (m),+
k ) . (7.93)

where

F (m),+(λ) =
∫ λ

dλ′ f(λ′)λ′,m, F
(m),+
k = F (m),+(λ+

k ) . (7.94)

Thus, we see that the overall effect of the reduction is to decrease “twice”
the number of the dynamical variables both on the continuous and discrete
spectrum. Now two of the three types of action variables, arg b+(t, λ) and
arg b+k , are real and take values in the interval [0, 2π]; the third type ln |b+k |
are also real but may take arbitrary values.

The reduction imposes also restrictions on the dispersion law of the NLEE,
see (6.62). In other words, the reduction (6.47) admits only dispersion laws
whose expansion coefficients are real:
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f(λ) =
∑

p

fpλ
p, fp = f∗

p . (7.95)

Some of the most important examples of NLEE obtained by this reduction
are the NLS equation, the complex mKdV equation, and a combination of
both NLS-cmKdV (u = q+(x, t)):

NLS iut + uxx + 2|u|2u(x, t) = 0 , (7.96)

cmKdV: ut + uxxx + 6|u|2ux(x, t) = 0 (7.97)

NLS-cmKdV: iut + uxx + 2|u|2u(x, t)

+ic0(uxxx + 6|u2|ux) = 0 . (7.98)

Their dispersion laws are given by:

fNLS(λ) = −2λ2, fcmKdV(λ) = −4λ3 ,

fNLS−cmKdV(λ) = −2λ2 − 4c0λ3 . (7.99)

7.5.2 The Involution q− = −(q+)∗ = u(x)

This involution is obtained from (6.47) when ε0 = −1. Applied to systems
(6.18), (6.19) and (6.21), it allows one to get different versions of the NLS and
cmKdV equations:

iut + uxx − 2|u|2u(x, t) = 0 , (7.100)

ut + uxxx − 2|u|2ux(x, t) = 0 , (7.101)

with “wrong” signs of the nonlinearity; compare with (7.96) and (7.97). How-
ever, this involution changes drastically the class of all solutions of these
NLEE, in particular it makes impossible the existence of soliton solutions.

Indeed, as was explained in Sect. 6.3 above, this involution makes the
Zakharov–Shabat system equivalent to a self-adjoint eigenvalue problem (6.54)
which has no discrete eigenvalues.

Therefore, we have scattering data only on the continuous spectrum given
by (6.52) with ε0 = −1, and the action-angle variables are provided by:

η(λ) = 1
π ln(1− |ρ+(t, λ)|2), κ(λ) = i arg b+(t, λ), λ ∈ R.(7.102)

From (6.55b), it follows that |ρ+(t, λ)| < 1 and, therefore, the action variables
are well defined.

As in the previous Subsection, we conclude that Ω(0) becomes purely real
and has the form:

Ω(0) =
∫ ∞

−∞
dλ δη(λ) ∧ δ arg b+(t, λ) , (7.103)
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Analogously, for Ωm we get:

Ω(m) =
∫ ∞

−∞
dλλmδη(λ) ∧ δ arg b+(t, λ) . (7.104)

The integrals of motion remain purely real, (see (6.90)):

Cp = −1
2

∫ ∞

−∞
dλλp−1η(λ) , (7.105)

and the Hamiltonian becomes:

H(0) = 4
∑

p

fpCp+1 = −2
∫ ∞

−∞
dμ f(μ)η(μ) , (7.106)

where f(λ) is the dispersion law.
The overall effect of the reduction is to decrease twice the number of

the dynamical variables. Now, we have truly action-angle variables: η(μ) and
arg b+(t, λ) taking values in the interval [0, 2π]. Therefore, in some sense the
phase space M must be isomorphic to an infinite-dimensional torus.

7.5.3 The Involution q+ = ±q− = u(x)

This involution is obtained from (6.48) with ε1 = ±1. Its consequences on
the Hamiltonian structures and on the conservation laws are more serious
now. Indeed, from (6.48) it is obvious that the canonical symplectic form Ω(0)

becomes identically zero: Ω0 ≡ 0. In fact, from (7.74) and (6.67), (6.68), we
find that for all symplectic forms with even indices:

Ω(2p) ≡ 0 . (7.107)

As for the symplectic forms with odd indices we get:

Ω(2p+1) = 2i
∫ ∞

0

dλλ2p+1δ ln
b+(t, λ)
b+(t,−λ)

∧ δη(λ)

+
2

p+ 1

N
∑

k=1

δκ+
k ∧ δ(λ

+
k )2p+2 . (7.108)

The reason for (7.107) is that due to (6.67) for m = 2p the integrand be-
comes an odd function of λ, and the terms under the summation sign pairwise
cancel each other. For odd values of m = 2p+ 1 these terms add up.

We have a similar situation for the integrals of motion. From (6.66), (6.67)
and (6.68) it follows that:

C2p = 0 , (7.109)
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C2p+1 = −
∫ ∞

0

dλλ2pη(λ)− 2
2p+ 1

N
∑

k=1

Im (λ+
k )2p+1 . (7.110)

Like before, the reduction imposes restriction on f(λ), which now must be
odd function of λ:

f(λ) = −f(−λ), or f(λ) =
∑

p

f2p−1λ
2p−1 ; (7.111)

however, the coefficients f2p−1 may take complex values. As a result, equations
of NLS type (i.e. containing second derivatives with respect to x) are not
allowed.

As examples of interesting NLEE related to this reduction, we point out
the mKdV and sG. For instance, the dispersion law of mKdV equation (see
(7.99)) is fmKdV = −4λ3 , and the equation itself reads (q+ = q− = v(x)):

vt + vxxx + 6v2vx = 0 . (7.112)

As mentioned above, Ω(0) ≡ 0 and H(0) =
∑

p f2p−1C2p ≡ 0, i.e. the
canonical Hamiltonian formulation is degenerate. Luckily, we have a whole
hierarchy of Hamiltonian structures, e.g.:

Ω(1), H(1) =
∑

p

f2p−1C2p+1 , (7.113)

Ω(−1), H(−1) =
∑

p

f2p−1C2p−1 , (7.114)

which provide us with a Hamiltonian formulation of these equations.
It takes some additional effort to see that the s-G equation is also a member

of this hierarchy. Indeed, it is known that its dispersion law is:

fsG(λ) = − 1
2λ

. (7.115)

The corresponding NLEE (6.7a) is of the form:

iσ3qt − Λ−1
± q(x, t) = 0 , (7.116)

which requires the calculation of the operators (Λ±)−1 inverse to Λ±. Gener-
ically the evaluation of (Λ±)−1 explicitly through q(x) is not possible. But
under the reduction (6.48), the matter is simplified and this becomes possi-
ble. If we denote Z±(x) = Λ−1

± q(x) then obviously:

q(x) ≡ Λ±Z±(x) =
i

4

[

σ3,
dZ±
dx

]

− iq(x)
∫ x

±∞
dy 〈σ3, [q(y), Z±(y)]〉 , (7.117)

and due to the reduction, the matrix q(x) has only one independent entry:
q(x) = q+(x)σ where
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σ =
(

0 1
ε1 0

)

. (7.118)

From (7.117), there follows that Z±(x) also has just one independent matrix
element and Z±(x) = z±(x)σ3σ. Inserting these expressions into (7.117) we
get the following relation:

q+(x) =
i

2
dz±(x)
dx

+ 2iε1q+(x)
∫ x

±∞
dy q+(y)z±(y) , (7.119)

which must be treated as an integral equation for z±(x). Now we choose q+(x)
in the form:

q+(x) = R(z±)
dz±(x)
dx

, (7.120)

which leads to the following integral equation for the function R(z±):

R(z±) =
i

2
+ 2iε1R(z±)

∫ z±

±∞
dzzR(z) . (7.121)

If we divide by R(z±) and differentiate with respect to z± we get:

dR(z±)
R3(z±)

= 2ε1d(z±)2 , (7.122)

which has the solution:

R2(z±) =
1

c20 − 4ε1(z±)2
, ε1 = ±1 , (7.123)

where c0 is an integration constant. Next, we insert (7.123) into (7.120) and
integrate over z±. The result depends on the choice of the sign ε1, namely:

q+(x) =
d

dx

(

1
2

arcsin
2z±
c0

)

, ε1 = 1 , (7.124)

q+(x) =
d

dx

(

1
2
arcsinh

2z±
c0

)

, ε1 = −1 , (7.125)

or equivalently

z±(x) =
c0
2

sin
(

2
∫ x

±∞
dy q+(y) + c1

)

, ε1 = 1 , (7.126)

z±(x) =
c0
2

sinh
(

2
∫ x

±∞
dy q+(y) + c1

)

, ε1 = −1 . (7.127)

Therefore, we get:

Λ−1
± q(x) ≡ Z±(x) =

c0
2
σ3σ (sin(2w(x) + c′0)) , ε1 = 1 , (7.128)
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Λ−1
± q(x) ≡ Z±(x) =

c0
2
σ3σ (sinh(2w(x) + c′0)) , ε1 = −1 , (7.129)

where we introduced the notation

w(x) =
∫ x

±∞
dy q+(y) + c1 , (7.130)

which means that
q+(x) = wx . (7.131)

Finally, the NLEE (7.116) with the dispersion law (7.115) is cast into one
of the forms:

∂2w

∂x∂t
+
c0
2

sin(2w(x, t)) = 0, ε1 = 1 , (7.132)

∂2w

∂x∂t
+
c0
2

sinh(2w(x, t)) = 0, ε1 = −1 , (7.133)

which are known as the sine-Gordon and the sinh-Gordon equations, respec-
tively.

7.5.4 Applying Both Involutions (6.47) and (6.48) with ε0 = 1

It is natural to ask whether it is possible to impose both involutions we con-
sidered simultaneously. The answer is positive only if they commute. Indeed,
we can calculate the interrelation between U(x,−λ∗) and U(x, λ) in two ways:
(i) first applying involution (6.47) and then (6.48) and (ii) first applying (6.48)
then (6.47). The two results will be identical, if the matrices ε and σ commute,
i.e. the involutions are compatible provided:

ε0 = −ε1 . (7.134)

Again, we can consider two possibilities. The first one:

ε0 = 1, ε1 = −1 , (7.135)

means that
(q+(x))∗ = q−(x) = −q+(x) , (7.136)

or equivalently
q±(x) = ±iu(x) , (7.137)

where u(x) is a real-valued function.
The second possibility is

ε0 = −1, ε1 = 1 , (7.138)



7.5 Involutions and Hierarchies 235

which means that
(q+(x))∗ = −q−(x) = q+(x) , (7.139)

or equivalently
q±(x) = ±v(x) , (7.140)

where v(x) is a real-valued function.
Let us start with the first case and impose on the scattering data both

sets of restrictions (6.52), (6.58), (6.59) and (6.66), (6.68) at the same time.
This has to be done with special care for the discrete spectrum.

Indeed, the discrete spectrum of L may contain two types of eigenvalues:

1. pairs of purely imaginary eigenvalues:

λ±k = ±isk, k = 1, . . . , N0 , (7.141)

2. quadruplets of complex eigenvalues, lying on the vertices of a rectangle in
the complex λ-plane:

λ±k = λ0,k±iλ1,k, λ±k+N1
= −λ0,k±iλ1,k, k = N0+1, . . . , N0+N1 .

(7.142)

The functions η(λ) and κ(t, λ) retain the properties:

κ(t, λ) = κ(−λ), η(λ) = −η(−λ) , (7.143)

(compare (6.66) and (5.87)) so that only the 2-forms Ω(2p+1) are nondegen-
erate. A bit more care is needed to calculate the contribution of the dis-
crete spectrum to Ω(2p−1). Skipping the details we present only the final
result:

Ω(2p−1)

= −2
∫ ∞

0

dλλ2p−1δ arg b+(t, λ) ∧ δη(λ) +
2(−1)p

p

N0
∑

k=1

δ ln |b+k | ∧ δs
2p
k

+
4
p

N0+N1
∑

k=N0+1

(

δ(ln |b+k |) ∧ δ(Re (λ+
k )2p − δ arg b+k ∧ δ(Im (λ+

k )2p
)

,

(7.144)

for p = 1, 2, . . .. Of course, these formulae are not valid for p = 0. In this case
we have:

Ω(−1) = −2
∫ ∞

0

dλ

λ
δ arg b+(t, λ) ∧ δη(λ) + 2

N0
∑

k=1

δ ln |b+k | ∧ δ ln sk

+ 4
N0+N1
∑

k=N0+1

(

δ(ln |b+k |) ∧ δ ln |λ+
k | − δ arg b+k ∧ δ arg λ+

k

)

. (7.145)
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The 2-form Ω(−1) is well defined only for the class of potentials for which the
reflection coefficients ρ±(0) = 0 and τ±(0) = 0.

Analogously, for the integrals of motion we get:

C2p+1 = −
∫ ∞

0

dλλ2pη(λ)− 4
2p+ 1

N0
∑

k=1

(−1)ps2p+1
k

− 8
2p+ 1

N0+N1
∑

k=N0+1

Im (λ+
k )2p+1 . (7.146)

The constraints on the dispersion laws are provided by both (7.95) and
(7.111), i.e. f(λ) must be odd function of λ with real coefficients. As al-
ready shown above, the simplest nontrivial choices for dispersion laws com-
patible with both reductions are 1/λ and λ3; they lead to the sine-Gordon
and mKdV equations, respectively. The choice f(λ) = λ leads to trivial linear
equation.

Analyzing the second possibility (7.138) and (7.139) does not involve any
difficulties. As mentioned above, the Zakharov–Shabat system in this case
does not have discrete eigenvalues. So, we can apply the considerations from
Sect. 7.5.2 taking into account that the additional involution forces η(λ) to be
even function and κ(λ) to be odd function of λ. Therefore, the action-angle
variables are uniquely specified by:

η(λ) =
1
π

ln(1− |ρ+(t, λ)|2), κ(λ) = i arg b+(t, λ), 0 ≤ λ . (7.147)

Then the symplectic forms Ω(2p) vanish identically and Ω(2p−1) reduce to

Ω(2p−1) = 2
∫ ∞

0

dλλ2p−1δη(λ) ∧ δ arg b+(t, λ) . (7.148)

The integrals of motion C2p become identically zero while C2p+1 remain
nontrivial and purely real (see (7.105)):

C2p−1 = −1
2

∫ ∞

−∞
dλλ2p−2η(λ) . (7.149)

The relevant Hamiltonians H(2p−1) must be linear combinations of C2p−1 only.
From (7.106) we see that they are real:

H(2p−1) = 4
∑

p

f2pC2p−1 = −2
∫ ∞

0

dμμ2p−2f(μ)η(μ) , (7.150)

where f(λ) is the dispersion law which must be odd function of λ.
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7.6 Comments and Bibliographical Review

1. Generically the NLEE of soliton type are infinite-dimensional Hamilto-
nian systems. These facts have been extensively studied [2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57]. A new important trend that started with
the development of the ISM consists in constructing the complete integra-
bility and explicitly constructing their action-angle variables. In fact, this
amounts to generalizing the Liouville theorem for infinite-dimensional sys-
tems. The rigorous proof uses the completeness of the squared solutions,
in order to prove that the number of integrals of motion is sufficient to
ensure integrability.

2. There is a natural way to complexify the Hamiltonian systems [58, 59, 60,
61]. Generalizing the dynamical variables to take complex values results
in a new Hamiltonian system having twice more degrees of freedom. Using
involutions (i.e. automorphisms second order) of the corresponding sym-
plectic structure, it is possible also to extract different real Hamiltonian
forms of the complexified systems [60, 62].

3. An important step in the Hamiltonian theory of NLEEs has been started
by Magri [63], who discovered that the KdV equation allows a second
Hamiltonian formulation. Soon after that it was realized that in fact all
soliton equation possess a hierarchy of Hamiltonian structures generated
by the recursion operators [64, 65, 66].

4. A number of papers have approached the complete integrability of the
infinite-dimensional Hamiltonian systems[3, 4, 10, 26, 27, 31, 33, 34, 37,
47, 49, 50, 57, 59, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130]

5. More refined methods for deriving new soliton equations are based on
the use of the so-called reduction group. The method was proposed by
Mikhailov [131, 132] and allowed to prove the integrability of the two-
dimensional affine Toda field theories related to the simple Lie algebras
[110, 131, 133, 134, 135, 136]. Mikhailov’s method was generalized also for
the class of N -wave equations and their gauge-equivalent ones [137, 138].
The study of the ISP for the relevant Lax operator (2.136) with complex-
valued J is technically rather complicated (see [139, 140, 141, 142]) and
requires good knowledge of graded and Kac-Moody algebras, which are out
of the scope of the present monograph. These studies have been developed
in [32, 48, 56, 92, 123, 124, 131, 132, 136, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159]. More recently, an attempt
to classify all inequivalent reductions of theN -wave-type equations related
to low rank Lie algebras was done in [62, 160, 161]. Another important
trend here is to construct new classes of infinite-dimensional Lie algebras
[159, 162].
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8

The NLEEs and the Gauge Transformations

In this Chapter, we show that all the results obtained up to now for the NLEEs
(6.7) can be reformulated in a natural way for the gauge-equivalent NLEEs.
In fact, this was the reason for what we called explicitly gauge-covariant for-
mulation of the results in the Chaps. 5, 6, and 7.

In order to demonstrate that this is not a problem of pure academic in-
terest, we mention the most famous examples of gauge-equivalent NLEEs.
The first one is the equivalence between the KdV and the mKdV equations;
the corresponding relation is provided by the so-called Miura transformation.
The second such example relates the NLS equation with the Heisenberg fer-
romagnet (HF) equation in the semiclassical approximation. In terms of the
2× 2 matrix-valued function S(x, t) this equation reads:

i
∂S

∂t
+
[

S(x, t),
∂2S

∂x2

]

= 0 . (8.1)

where S(x, t) satisfies:

trS(x, t) = 0, S2(x, t) = 11 , (8.2a)

and
lim

x→±∞
S(x, t) = σ3 . (8.2b)

One convenient way to parametrize S(x, t) is to use the Pauli matrices:

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

, (8.3)

and put:

S(x, t) =
3
∑

a=1

Sa(x, t)σa =
(

S3(x, t) S+(x, t)
S−(x, t) −S3(x, t)

)

. (8.4)

where S±(x, t) = S1(x, t)∓ iS2(x, t). If Sa(x, t) are real-valued then S†(x, t) =
S(x, t) is hermitian. Equation (8.4) shows that instead of 2×2 matrices S(x, t)
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one may use the real vector S(x, t) = (S1(x, t), S2(x, t), S3(x, t))T . We shall
need the commutation relations:

[σa, σb] = 2iεabcσc , (8.5)

where a, b, and c take the values 1, 2, 3, and εabc is the completely antisym-
metric tensor. Taking into account (8.5), one can rewrite the HF equation
(8.1) in the form:

∂S
∂t

+ 2S(x, t)× ∂2S
∂x2

= 0 , (8.6)

where × means the vector product of two vectors. The conditions (8.2) in
terms of the vector S(x, t) mean:

(S(x, t),S(x, t)) = 1, lim
x→±∞

S(x, t) =

⎛

⎝

0
0
1

⎞

⎠ . (8.7)

Equation (8.6) with real-valued vector-function S(x, t) is the best known
form of the HF equation in the continuous limit.

Along with it, we shall consider also the complexified HF (CHF) equa-
tion, which has the same form (8.6) constrained by (8.7), but the components
of S(x, t) are complex-valued. Then the corresponding matrix S(x, t) is not
hermitian.

In what follows, we shall prefer the formulation in terms of matrix S(x, t).
All our results can be immediately reformulated in terms of S(x, t) using
simple rules. If A(x, t) and B(x, t) are 2 × 2 matrices satisfying (8.2) and
A(x, t), B(x, t) are the corresponding vectors (see (8.4)), then

[A(x, t), B(x, t)] ↔ 2iA(x, t)×B(x, t) ,

〈A(x, t), B(x, t)〉 ≡ 1
2
tr (A(x, t), B(x, t)) ↔ (A(x, t),B(x, t)) . (8.8)

In this Chapter, we analyze also the group of gauge transformations of
the Lax equation. It is well known that the gauge degrees of freedom have no
physical meaning. A natural way to avoid them is to fix the gauge, and we
shall demonstrate different possible ways of fixing it. The first one takes us
back to the Zakharov–Shabat system and to the class of NLS-type equations.
More attention will be paid to the second possibility known as the pole gauge,
which allows one to solve the class of Heisenberg ferromagnet type of NLEEs
and their complexified versions.

We shall show the complexified NLS-type equations are gauge equivalent
to the complexified HF-type equations. The latter are solved by the ISM for
the operator L̃ (8.34). As a consequence of these results, we shall recover the
well-known equivalence between the NLS equation and the HF equation. The
gauge-covariant formulation of the generalized Fourier transforms developed
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earlier will allow transfer of all fundamental properties of the NLS-type equa-
tions into the corresponding properties for the HF-type equations. We estab-
lish also the interrelations between their hierarchies of Hamiltonian structures.

8.1 The Group of the Gauge Transformations

The Lax representation written in the form:

[L,M ] = 0 , (8.9)

provides the compatibility condition of the linear operators:

Lψ(x, t, λ) ≡ i
∂ψ

∂x
+ U(x, t, λ)ψ(x, t, λ) = 0 , (8.10a)

Mψ(x, t, λ) ≡ i
∂ψ

∂t
+ V (x, t, λ)ψ(x, t, λ) = ψ(x, t, λ)C(λ) , (8.10b)

Here, U(x, t, λ), V (x, t, λ) and C(λ) take values in the simple Lie alge-
bra g. The compatibility condition for L and M in (8.10) is purely algebraic
in nature:

−i∂U
∂t

+ i
∂V

∂x
+ [U(x, t, λ), V (x, t, λ)] = 0 , (8.11)

and holds true for any x-independent C(λ). As explained in Chap. 2 for further
convenience we specify

C(λ) = lim
x→±∞

V (x, t, λ) . (8.12)

If given L and M satisfy (8.9), then ˜L and ˜M defined by:

L→ L̃ = g−1Lg(x, t), M → M̃ = g−1Mg(x, t) , (8.13)

are also compatible, i.e. [˜L,˜M ] = 0. Here, g(x, t) is a nondegenerate matrix-
valued function of x and t. The transformed Lax pair is:

˜L ˜ψ(x, t, λ) ≡ i
∂ ˜ψ

∂x
+ ˜U(x, t, λ) ˜ψ(x, t, λ) = 0 , (8.14a)

˜M ˜ψ(x, t, λ) ≡ i
∂ ˜ψ

∂t
+ ˜V (x, t, λ) ˜ψ(x, t, λ) = ˜ψ(x, t, λ)C(λ) , (8.14b)

where ˜ψ(x, t, λ) = g−1(x, t)ψ(x, t, λ) and

˜U(x, t, λ) = g−1(x, t)U(x, t, λ)g(x, t) + ig−1(x, t)
∂g

∂x
, (8.15a)

˜V (x, t, λ) = g−1(x, t)V (x, t, λ)g(x, t) + ig−1(x, t)
∂g

∂t
. (8.15b)
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Equation (8.15) is known as the gauge transformation that leaves invariant
the compatibility condition (8.11). The function g(x, t) specifies the gauge
degrees of freedom. We shall see that there are more than one natural ways to
fix it up. To each of these choices of g(x, t) there corresponds a specific form
of the Lax operator L (or, equivalently, of U(x, t, λ)) and a class of NLEE
written in terms of Ua(x, t), a = 0, 1:

U(x, t, λ) = U0(x, t) + λU1(x, t) , (8.16)

In order to be more specific in what follows, we shall consider L to be of
Zakharov–Shabat type, where both U0(x, t) and U1(x, t) are 2 × 2 matrix-
valued functions. The space U of pairs of matrix-valued functions U0(x, t),
U1(x, t) splits into subspaces invariant with respect to the dynamics of the
NLEE. Fixing the gauge g(x, t) corresponds to a specific choice of one of
these subspaces, as well as to a convenient choice of the local coordinates
on it.

For example, trU0(x, t) and trU1(x, t) can be used to define one such
invariant subspace. Indeed, taking the trace of the compatibility condition
(8.11) we get:

−i ∂
∂t

trU(x, t, λ) + i
∂

∂t
trV (x, t, λ) = 0 . (8.17)

If

V (x, t, λ) =
N
∑

k=0

λN−kVk(x, t) , (8.18)

then from (8.17) we find:

∂

∂x
trVk(x, t) = 0 , (8.19a)

for k = 0, 1, . . . , N − 2 and

− ∂

∂t
trU1(x, t) +

∂

∂x
trV1(x, t) = 0 , (8.19b)

− ∂

∂t
trU0(x, t) +

∂

∂x
trV0(x, t) = 0 . (8.19c)

The last two equations allow one to conclude that both trU0(x, t) and
trU1(x, t) are densities of conserved quantities of all the NLEE related to
L. Fixing up their values:

∫ ∞

−∞
dx trU0(x, t) = I(0),

∫ ∞

−∞
dx trU1(x, t) = I(1) , (8.20)

means that we have determined the subspace of U on which these two integrals
are constants. Since the traces satisfy the linear Equation (8.17), they can be
easily “separated” from the other degrees of freedom. Putting
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trUa(x, t) = 0, trVk(x, t) = 0 , (8.21)

for a = 0, 1 and k = 0, . . . , N means that our Lax pair is restricted to the
simple Lie algebra g � sl(2).

The next supposition that simplifies our task is to assume that the eigen-
values of U1(x, t) are constants, i.e. do not depend on x and t. Then, rescaling
the spectral parameter λ with this constant, we can consider U1(x, t) to have
as eigenvalues ±1, that is, U1 is of the form:

U1(x, t) = −g1(x, t)σ3g
−1
1 (x, t) . (8.22)

where g1(x, t) is an unknown 2× 2 matrix function. The compatibility condi-
tion (8.11) must hold identically with respect to λ. In particular, this means
that the coefficient at λN+1 must vanish, i.e.:

[U1(x, t), V0(x, t)] = 0 . (8.23)

Therefore, V0(x, t) must also be of the form

V0(x, t) = f0g1(x, t)σ3g
−1
1 (x, t) . (8.24)

Let us assume in addition that the eigenvalues ±f0 of V0(x, t) are constants.
Finally, let us apply the gauge transformation (8.13) with g = g1(x, t) to

our linear problems. Then the Lax pair simplifies to:

L(1)ψ(1) ≡ i
∂ψ(1)

∂x
+
(

U
(1)
0 (x, t)− λσ3

)

ψ(1)(x, t, λ) = 0 , (8.25a)

M (1)ψ(1) ≡ i
∂ψ(1)

∂t
+

(

N
∑

k=1

λN−kV
(1)
k (x, t) + f0λ

Nσ3

)

ψ(1)(x, t, λ)

= ψ(1)(x, t, λ)C(λ) , (8.25b)

where

U
(1)
0 (x, t) = g−1

1 U0(x, t)g1(x, t) + ig−1
1 (x, t)

∂g1
∂x

, (8.25c)

V
(1)
N (x, t) = g−1

1 VN (x, t)g1(x, t) + ig−1
1 (x, t)

∂g1
∂t

, (8.25d)

V
(1)
k (x, t) = g−1

1 Vk(x, t)g1(x, t), k = 1, . . . , N − 1 . (8.25e)

One possible way to fix the gauge is to choose the leading terms of L(1) and
M (1) as constant diagonal traceless matrices. The gauge transformation (8.25)
that allowed us to do this “hides” the gauge variables g1(x, t) in U

(1)
0 (x, t).

Also by “eliminating” the x and t-dependence of U1(x, t), we reduced the space
U to U (1), which is parametrized by U

(1)
0 (x, t) only. Since trU (1)

0 (x, t) = 0, it
contains only three independent complex-valued functions.
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However, there are still gauge degrees of freedom that can be fixed. Indeed,
one can use the gauge transformations that preserve the leading terms of L(1)

and M (1), i.e. one that commutes with σ3, in order to eliminate the diagonal
terms in U

(1)
0 (x, t) and V

(1)
0 (x, t). Let us make gauge transformation with

g = g2(x, t), where
g2(x, t) = eig02(x,t)σ3 . (8.26)

and g02(x, t) is a scalar function. It transforms the Lax pair (8.25) into:

L(2)ψ(2) ≡ i
∂ψ(2)

∂x
+
(

U
(2)
0 (x, t)− λσ3

)

ψ(2)(x, t, λ) = 0 , (8.27a)

M (2)ψ(2) ≡ i
∂ψ(2)

∂t
+

(

N
∑

k=1

λN−kV
(2)
k (x, t) + f0λ

Nσ3

)

ψ(2)(x, t, λ)

= ψ(2)(x, t, λ)C(λ) , (8.27b)

where

U
(2)
0 (x, t) = g−1

2 U
(1)
0 (x, t)g2(x, t) + ig−1

2 (x, t)
∂g2
∂x

, (8.27c)

V
(2)
N (x, t) = g−1

2 V
(1)
N (x, t)g2(x, t) + ig−1

2 (x, t)
∂g2
∂t

, (8.27d)

V
(2)
k (x, t) = g−1

2 V
(1)
k (x, t)g2(x, t), k = 1, . . . , N − 1 . (8.27e)

Since g2(x, t) is diagonal:

ig−1
2 (x, t)

∂g2
∂x

= −σ3
∂g02
∂x

, ig−1
2 (x, t)

∂g2
∂t

= −σ3
∂g02
∂t

, (8.28)

We can choose g02(x, t) to satisfy:

∂g02
∂x

=
1
2
tr (σ3U

(1)
0 (x, t)), (8.29)

which means that the diagonal elements of U (2)
0 (x, t) vanish. The constraints

(8.29) together with the assumptions we made already eliminate all gauge
degrees of freedom. Imposing them on the Lax pair L(2) and M (2) give us the
Zakharov–Shabat system:

Lψ = i
∂ψ

∂x
+ (q(x, t)− λσ3)ψ(x, t, λ) = 0 , (8.30a)

Mψ = i
∂ψ

∂t
+

(

N
∑

k=1

λN−kVk(x, t) + f0λ
Nσ3

)

ψ(x, t, λ)

= ψ(x, t, λ)C(λ) , (8.30b)
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where

q(x, t) = q+(x, t)σ+ + q−(x, t)σ− =
(

0 q+(x, t)
q−(x, t) 0

)

, (8.30c)

V1(x, t) = −f0q(x, t) . (8.30d)

The functions Vk(x, t) cannot be simplified further; they are generic functions
satisfying the condition C1 and taking values in the algebra sl(2). As ex-
plained in Chap. 2, they can be expressed through q(x, t) and its x-derivatives
using the recurrent relations.

The arguments above demonstrate that the Zakharov–Shabat system is in
fact one of the generic systems related to the sl(2) algebra. It also demon-
strates that the space of functions U parametrizing the Lax operator L after
eliminating the gauge variables shrinks into the phase space M studied in the
previous Chapter. This way of fixing the gauge is called canonical.

The second way to fix up the gauge for the system (8.25) is known in the
literature as the pole gauge. Using the same arguments as above, we impose
conditions (8.22) and (8.24) to get:

L(3)ψ(3) ≡ i
∂ψ(3)

∂x
+
(

U
(3)
0 (x, t) − λg−1(x, t)σ3g(x, t)

)

ψ(3)(x, t, λ) = 0 , (8.31a)

M (3)ψ(3) ≡ i
∂ψ(3)

∂t
+

(

N
∑

k=1

λN−kV
(3)

k (x, t) + f0λ
Ng−1(x, t)σ3g(x, t)

)

ψ(3)(x, t, λ)

= ψ(3)(x, t, λ)C(λ) . (8.31b)

The alternative way to eliminate the gauge degrees of freedom from (8.31)
consists in restricting g(x, t) in such a way that U0(x, t) and VN (x, t) given by
(8.25c), (8.25d) vanish, i.e.:

U
(3)
0 ≡ i

∂g

∂x
+ U0(x, t)g(x, t) = 0 , (8.32a)

V
(3)
0 ≡ i

∂g

∂t
+ VN (x, t)g(x, t) = 0 , (8.32b)

In what follows, we shall denote by g(x, t) the special solution of the system
(8.32) satisfying:

lim
x→∞

g(x, t) = 11 . (8.33)

In fact g(x, t) is the Jost solution taken at λ = 0. Then the corresponding Lax
operators L and M take the form:

L̃ ˜ψ(x, t, λ) ≡ i
∂ ˜ψ

∂x
− λS(x, t) ˜ψ(x, t, λ) = 0 , (8.34a)
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M̃ ˜ψ(x, t, λ) ≡ i
∂ ˜ψ

∂t
+

(

N−1
∑

k=1

λN−k
˜Vk(x, t) + f0λ

NS(x, t)

)

˜ψ(x, t, λ)

= ˜ψ(x, t, λ)C(λ) , (8.34b)

where

S(x, t) = g−1(x, t)σ3g(x, t), ˜ψ(x, t, λ) = g−1(x, t)ψ(x, t, λ)g0 . (8.34c)

Obviously the Zakharov–Shabat system (8.30) and the pole-gauge system
(8.34) are related by a gauge transformation (8.13), with g(x, t) fixed up by
conditions (8.32), (8.33), i.e. g(x, t) is the Jost solution of L for λ = 0:

g(x, t) = ψ(x, t, λ = 0) . (8.35)

The gauge transformation taking the ZS system from the canonical to the
pole gauges can be viewed as an implicit change of variables for the NLEEs.
Indeed, given the potential q(x, t) of the Zakharov–Shabat system one de-
termines uniquely the Jost solution ψ(x, t, λ), which in turn provides g(x, t)
(8.35) and S(x, t) (8.34c). If, on the other hand, we are given S(x, t) satis-
fying S2(x, t) = 11, then we have to find the matrix g(x, t) that diagonalizes
it. This procedure is not unique; it will rather give h(x, t)g(x, t) where h(x, t)
is a diagonal matrix-valued function. This function is determined from the
condition that

itr (σ3
∂g

∂x
g−1(x, t)) = −tr (σ3q(x, t)) = 0 (8.36)

i.e., q(x, t) is off-diagonal.

8.2 Gauge-Equivalent NLEE

It is natural to apply the AKNS method, in order to obtain the Lax pairs
for the generic NLEEs of Heisenberg ferromagnet (HF) type. Below, we show
how it can be done. If we insert the explicit form of ˜L and ˜M (8.34) into the
compatibility condition

[

˜L,˜M
]

= 0 we get:

iλ
∂S

∂t
+ i

∂ ˜V

∂x
− λ

[

S(x, t), ˜V (x, t, λ)
]

= 0 . (8.37)

This equation holds identically with respect to λ which leads to the set of
relations:

λN : if0
∂S

∂x
− [S(x, t), ˜V1(x, t)] = 0 , (8.38a)

λN−k : i
∂ ˜Vk

∂x
− [S(x, t), ˜Vk+1(x, t)] = 0 , (8.38b)
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λ : i
∂S

∂t
+ i

∂ ˜VN−1

∂x
= 0 . (8.38c)

We see that the HF-type NLEE come up as the coefficient proportional to λ
in the Lax representation and take the form of a conservation law.

In order to derive the explicit form of these NLEEs in terms of S(x, t), we
have to view (8.38a) and (8.38b) for k = 1, . . . , N − 2 as recurrent relations
and solve them to find ˜Vk(x, t) in terms of S(x, t) and its derivatives.

The method of solving is similar to the AKNS method explained in
Chap. 2. In fact, there we introduced a grading in the algebra sl(2) com-
patible with the eigenspaces of ad σ3 ·. Now, as the linear in λ term in the Lax
operator instead of the constant element σ3, we encounter its image after the
gauge transformation S(x, t). Therefore, now we need a different grading of
sl(2), one that is according to the eigenspaces of ad S ·.

In what follows, we shall introduce also the projector πS · = ad−1
S ad S ·. It

splits the algebra sl(2) considered as linear space into g̃(0) ⊕ g̃(1). The first
space g̃(0) is the eigenspace of πS corresponding to the eigenvalue 0, and g̃(1)

is the eigenspace corresponding to the eigenvalue 1. Then, πS projects on g̃(1)

parallel to g̃(0).
The subspace of elements ˜X = πS

˜X is called the orbit of g � sl(2) passing
through S(x, t). This splitting has the grading property, namely:

[g̃(0), g̃(0)] = 0, [g̃(0), g̃(1)] ∈ g̃(1), [g̃(1), g̃(1)] ∈ g̃(0) . (8.39)

In fact, g̃(0) is isomorphic to the Cartan subalgebra of sl(2), which with our
choice of basis is one-dimensional and spanned by S(x, t).

In order to apply effectively the AKNS method, it is convenient to intro-
duce a special x and t-dependent basis in the algebra sl(2):

σ̃3(x, t) = g−1(x, t)σ3g(x, t) ≡ S(x, t) ,
σ̃±(x, t) = g−1(x, t)σ±g(x, t) , (8.40)

and the covariant derivatives:

∇x· ≡ g−1(x, t)
(

∂

∂x
·
)

g(x, t) =
∂

∂x
· −
[

g−1gx, ·
]

, (8.41)

∇t· ≡ g−1(x, t)
(

∂

∂t
·
)

g(x, t) =
∂

∂t
· −
[

g−1gt, ·
]

. (8.42)

Obviously the covariant derivatives and σ̃α satisfy:

∇xσ̃α = 0, ∇tσ̃α = 0, α = 3,± . (8.43)

After these preliminaries the first step is to split ˜Vk(x, t) into “diagonal”
and “off-diagonal” parts:

˜Vk(x, t) = ˜V d
k (x, t) + ˜V f

k (x, t) , (8.44)
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where

˜V d
k (x, t) = (11− πS)˜Vk(x, t) ∈ g̃(0), ˜V f

k (x, t) = πS
˜Vk(x, t) ∈ g̃(1) . (8.45)

Using the invariance properties of the trace, we derive the following
compact expression for ˜V d

k (x, t):

˜V d
k (x, t) = S(x, t)〈˜Vk(x, t)S(x, t)〉 , (8.46)

where we remind that 〈X,Y 〉 = 1
2 tr (XY ). Now the recurrent relations (8.38)

can be written as follows:

˜V0(x, t) ≡ ˜V d
0 (x, t) = f0S(x, t) , (8.47a)

i∇x
˜V d
k (x, t) +

[

g−1gx, ˜V
f
k (x, t)

]

= 0 , (8.47b)

i∇x
˜V f
k (x, t) +

[

g−1gx, ˜V
d
k (x, t)

]

= [S(x, t), ˜V f
k+1(x, t)] . (8.47c)

In what follows, we need to express g−1gx and g−1gt in terms of the dynam-
ical variables S(x, t) and its derivatives. This is achieved using the relations:

Sx = [S, g−1gx] ∈ g̃(1), St = [S, g−1gt] ∈ g̃(1) . (8.48)

Since ad S · is invertible on g̃(1) we find:

iq̃(x) ≡ g−1gx = ad−1
S

∂S

∂x
=

1
4

[

S(x, t),
∂S

∂x

]

, g−1gt =
1
4

[

S(x, t),
∂S

∂t

]

.

(8.49)
Next, we integrate (8.47b) using the properties of the “moving frame”

(8.40) with the result:

˜V d
k (x, t) = iS(x, t)

∫ x

±∞
dy 〈Sy, ˜V

f
k (y, t)〉+ S(x, t) lim

y→±∞
〈˜V d

k (y, t), S(y)〉 .

(8.50)
Inserting this result into the recurrent relation (8.47c), we can rewrite

them in the following compact form:

˜V f
k+1(x, t, λ) = ˜Λ± ˜V

f
k (x, t, λ) +

i

4
fk[S, Sx] , (8.51)

where the recursion operator ˜Λ± is defined by:

˜Λ± ˜X =
i

4

([

S(x, t),
d ˜X

dx
+ Sx

∫ x

±∞
dy〈Sy

˜X(y, t)〉
])

. (8.52)

and fk = limy→±∞〈˜V d
k (y, t)S(y)〉 is an integration constant. The solution of

this recursion is given by:
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˜V f
k+1 =

i

4

k
∑

p=0

fp
˜Λk−p
± [S, Sx] . (8.53)

It remains to insert into (8.38c) the expression for VN−1(x, t) following
from (8.53) to get the HF-type NLEEs in terms of S(x, t) and the recursion
operator ˜Λ±:

i
∂S

∂t
+ i

∂

∂x
˜f (1)( ˜Λ±)[S, Sx] = 0 , (8.54)

where ˜f (1)(λ) =
∑N−2

p=0 fpλ
N−p−2 determines the dispersion law of the NLEE.

In this form, the NLEE takes a form of a conservation law.
Another equivalent form of the generic NLEE of HF type can be obtained

by applying the operator ad S · to both sides of (8.38c) and then apply the
splitting procedure into “diagonal” and “off-diagonal” parts to ∂VN−1

∂x , which
we used in solving the recurrent relations. As a result, we obtain:

i
∂S

∂t
+ i

[

S(x, t), f( ˜Λ±)[S, Sx]
]

= 0 , (8.55)

where f(λ) =
∑N−1

p=0 fpλ
N−p−1 describes the dispersion law of the NLEE.

In order to derive examples of HF-type generic NLEE, we need to evaluate
the first few powers of ˜Λ± on [S, Sx]. It is easy to see that:

˜Λ±[S, Sx] =
i

4
[S, [S, Sxx]]

=
i

4
(Sxx − S(x, t)〈SxxS(x, t)〉) . (8.56)

In deriving the second line of (8.56), we used the fact that 1/4[S, [S, Sxx]] ≡
(Sxx)f = Sxx − (Sxx)d, and (8.46) for (Sxx)d. Applying ˜Λ± to the second line
of (8.56), we get:

˜Λ2
±[S, Sx] = − 1

16
{[S, Sxxx]− Sx〈Sxx, S〉+ 2[S, Sx]〈Sx, Sx〉} . (8.57)

Therefore, if we choose the dispersion law f(λ) = f0λ
2 + f1λ, we get the

following generic NLEE:

i
∂S

∂t
− f1

[

S(x, t),
∂2S

∂x2

]

(8.58)

− if0
8

{[

S,
∂3S

∂x3

]

− ∂S

∂x
〈Sxx, S(x, t)〉+ 2

[

S(x, t),
∂S

∂x

]

〈Sx, Sx〉
}

= 0.

Choosing f1 = c2, f0 = 0, we get that the complexified HF equation is gauge
equivalent to the GNLS system (6.18), (6.19).

The NLEE (8.58) with f1 = 0, f0 = −8 gives a complexification of one
of the higher HF-type NLEE; it is gauge equivalent to the GmKdV system
(6.21).
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The generic NLEE with f0f1 	= 0 is gauge equivalent to the mixed GNLS-G
mKdV (6.23).

We have already outlined several possible reductions, which can be applied
to the Zakharov–Shabat system L. Using them, one is able to study also the
important reductions of the above-mentioned systems such as NLS equation,
mKdV equation, s-G equation etc. Therefore, one of our tasks will be to find
out what would be the corresponding reductions on ˜L (i.e. on S(x, t)) and
how one can derive the properties of the corresponding HF-type NLEEs.

The compatibility condition of ˜L and ˜M means that these linear systems
have common set of eigenfunctions, or a common fundamental solution. As
such one can use the Jost solutions ψ̃(x, t, λ) and φ̃(x, t, λ)

L̃ψ̃(x, t, λ) ≡ i
d ˜ψ

dx
− λS(x, t)ψ̃(x, t, λ) = 0, L̃φ̃(x, t, λ) = 0 ,(8.59a)

M̃ψ̃(x, t, λ) ≡ i
d ˜ψ

dt
+ ˜V (x, t, λ)ψ̃(x, t, λ) = ψ̃(x, t, λ)C(λ) , (8.59b)

M̃φ̃(x, t, λ) ≡ i
d˜φ

dt
+ ˜V (x, t, λ)φ̃(x, t, λ) = φ̃(x, t, λ)C(λ), (8.59c)

˜V (x, t, λ) =
N−1
∑

k=1

λN−k
˜Vk(x, t) + f0λ

NS(x, t) , (8.59d)

defined by:

lim
x→∞

ψ̃(x, t, λ)eiλσ3x = 11, lim
x→−∞

φ̃(x, t, λ)eiλσ3x = 11 , (8.60)

The asymptotic behavior of the Jost solutions for x→ ±∞ is determined by
(8.2b). Using the freedom to choose C(λ), we can define it by:

C(λ) = lim
x→±∞

Ṽ (x, t, λ) = f(λ)σ3 ; (8.61)

then the definitions (8.60) are valid for any t.
The next step is to introduce the scattering matrix ˜T (λ, t):

T̃ (t, λ) = ψ̃−1(x, t, λ)φ̃(x, t, λ) =
(

ã+(λ) −b̃−(t, λ)
b̃+(t, λ) ã−(λ)

)

. (8.62)

and determine its t-dependence. To do this, we evaluate the limit x → ∞ in
(8.59c) and making use of (8.60), (8.61), and (8.62) we get:

i
d ˜T

dt
+ C(λ) ˜T (λ, t) = ˜T (λ, t)C(λ) , (8.63a)

or

i
d ˜T

dt
+ f(λ)

[

σ3, ˜T (λ, t)
]

= 0 . (8.63b)
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In particular, from (8.59c), there follows that ˜V (x, t, λ = 0) = 0 and, therefore,
f(0) = 0 (see (8.61)) and

i
d ˜T

dt

∣

∣

∣

∣

∣

λ=0

= 0 . (8.64)

Thus the problem of solving the nonlinear Cauchy problem reduces to a
sequence of three linear problems, each of which have unique solution. First,
given the initial condition S(0)(x) = S(x, t = 0) of the NLEE, one solves the
direct scattering problem for ˜L and determines ˜T (λ, 0). Next, one solves the
evolution equation (8.63) and finds ˜T (λ, t). The third step consists in solving
the ISP for ˜L, thus reconstructing the solution S(x, t).

8.3 Direct and Inverse Scattering Problem for ˜L

Before going into the discussion of the scattering problem for L̃, we show the
close relation between the solutions of the inverse scattering problems for the
gauge-equivalent systems L and L̃. From now on, most of the notations con-
cerning the system L̃, such like the scattering matrix and its matrix elements,
“squared” solutions etc. will be denoted by the same letters as for L but with
additional “tilde”.

We already introduced the Jost solutions ψ̃(x, t, λ) and φ̃(x, t, λ), as well
as the scattering matrix T̃ (t, λ) of L̃. Their properties depend very much on
the class of functions to which the potential S(x, t) belongs. For the sake of
simplicity, we determine this class by a condition analogous to C1 on p. 71:

Condition ˜C1. The matrix-valued function S(x, t)−σ3 is complex-valued
Schwartz-type function of x for all t.

An important consequence of (8.2b) and (8.34c) is:

lim
x→±∞

[g(x, t), σ3] = 0 , (8.65)

or, since limx→−∞ g(x, t) = ̂T (0), we also find:

[

̂T (0), σ3

]

= 0, i.e., T (0) =
(

a+
0 0
0 a−0

)

, a±0 = a±(0) , (8.66)

and b±(0) = 0.
In order to avoid technicalities in analyzing the discrete spectrum of ˜L and

possible singularities at λ = 0, we adopt the following two conditions, which
may be considered as implicit constraints on the potential S(x).

Condition ˜C2. The functions ã±(λ) have at most finite number of simple
zeroes at λ = λ±j ∈ C±.

Condition ˜C3. The functions ˜b±(λ) are smooth functions of λ in the
neighborhood of λ � 0, more specifically:
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dkb+(t, λ)
dλk

∣

∣

∣

∣

λ=0

=
dkb−(t, λ)

dλk

∣

∣

∣

∣

λ=0

= 0 , (8.67)

for k = 1, . . . , N3. For most of our purposes, we shall need only N3 = 2.
The Jost solutions of L̃ are related to those of L by:

ψ̃(x, t, λ) = g−1(x, t)ψ(x, t, λ) , (8.68a)

φ̃(x, t, λ) = g−1(x, t)φ(x, t, λ) ̂T0 , (8.68b)

where T0 = T (t, λ = 0). To show this, it is enough to use the definitions of the
Jost solutions and the scattering matrix (8.62), keeping in mind that (8.68)
taken for λ = 0 gives:

lim
x→−∞

g(x, t) = ̂T0 . (8.69)

Then the relation between T̃ (t, λ) and T (t, λ) is

T̃ (t, λ) = T (t, λ) ̂T (0) , (8.70)

where we also took into account that a±0 (and consequently, T (0)) are
t-independent.

With the condition ˜C2 (8.70) in components reads:

ã±(λ) =
a±(λ)
a±0

, b̃±(t, λ) =
b±(t, λ)
a±0

, (8.71)

The approach developed up to now had its deep roots in the possibility
to introduce the fundamental analytic solutions of L. In order that the gauge
transformation preserves these properties, we need condition ˜C3. Writing the
Jost solutions into pairs of columns:

˜ψ(x, t, λ) = | ˜ψ−(x, t, λ), ˜ψ+(x, t, λ)|, ˜φ(x, t, λ) = |˜φ+(x, t, λ), ˜φ−(x, t, λ)| ,
(8.72)

one is able to prove that each of the columns is analytic in the corresponding
half-plane λ ∈ C±. The simplest way to demonstrate this fact is to establish
the relations between the Jost solutions of L and ˜L:

˜ψ±(x, t, λ) = g−1(x, t)ψ±(x, t, λ), ˜φ±(x, t, λ) = g−1(x, t)φ±(x, t, λ)/a±0 ,
(8.73)

Thus, the FAS of both systems are related through:

χ̃+(x, t, λ) ≡ |˜φ+(x, t, λ), ˜ψ+(x, t, λ)| = g−1(x, t)χ+(x, t, λ) ̂A+(0), (8.74a)

χ̃−(x, t, λ) ≡ | ˜ψ−(x, t, λ), ˜φ−(x, t, λ)| = g−1(x, t)χ−(x, t, λ) ̂A−(0),(8.74b)

A+(0) =
(

a+
0 0
0 1

)

, A−(0) =
(

1 0
0 a−0

)

.

Thus, we find that χ̃±(x, t, λ) satisfy the RHP
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χ̃+(x, t, λ) = χ̃−(x, t, λ) ˜G0(t, λ), ˜G0(t, λ) = A−(0)G0(t, λ) ̂A+(0) .
(8.75)

In order to impose correctly the normalization condition on this RHP, we
rewrite it in terms of η̃±(x, t, λ), defined as:

η̃±(x, t, λ) = χ̃±(x, t, λ)eiλσ3x (8.76)

and we obtain

η̃+(x, t, λ) = η̃−(x, t, λ) ˜G(x, t, λ) , (8.77)

˜G(x, t, λ) = e−iλσ3x
˜G0(t, λ)eiλσ3x ,

lim
λ→0

η̃±(x, t, λ) = 11 . (8.78)

Remark 8.1. We shall call the FAS η̃±(x, t, λ) regular, if the functions

ã±(λ) = det η̃±(x, t, λ) , (8.79)

have no zeroes for λ ∈ C±.

Remark 8.2. Note that one of the effects of the gauge transformation consists
of the shift of the normalization point of the RHP. Here, we have it at λ = 0
while for the Zakharov–Shabat system it was at λ =∞.

The method of RHP is very effective both for solving the ISP and for
constructing the soliton solutions. Therefore, our next step will be to show that
if η̃±(x, t, λ) is a solution of the RHP (8.77) with sewing function ˜G(x, t, λ),
then η̃±(x, t, λ) are FAS of ˜L. To this end, we consider the functions:

˜h±(x, t, λ) = i
∂η̃±

∂x
̂η̃
±

(x, t, λ) + λη̃±(x, t, λ)σ3
̂η̃
±

(x, t, λ) . (8.80)

Assuming that η̃±(x, t, λ) are regular solutions, then ˜h±(x, t, λ) are analytic
for λ ∈ C±. Next, we use the (8.77) to show that:

˜h+(x, t, λ) = i
∂(η̃− ˜G)
∂x

̂

˜Ĝη̃
−

(x, t, λ) + λη̃−(x, t, λ) ˜Gσ3
̂

˜Ĝη̃
−

(x, t, λ)

= i
∂η̃−

∂x
̂η̃
−

(x, t, λ) + λη̃−(x, t, λ)σ3
̂η̃
−

(x, t, λ)

= ˜h−(x, t, λ) . (8.81)

Therefore, ˜h+(x, t, λ) and ˜h−(x, t, λ) are the two “halfs” of one functions which
is analytic in the whole complex λ-plane. In order to find out more about it,
we evaluate its limit for λ→∞. To do this, we use the asymptotic expansion
of χ±(x, t, λ) and (8.74a), (8.75) to get:
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η̃±(x, t, λ) = g−1(x, t)χ±(x, t, λ)eiλσ3x
̂A±(0)

= g−1(x, t)
(

11 +
1
λ
χ(1)(x, t) +O(λ−2)

)

̂A±(0) , (8.82)

where we recall that both g(x, t) and χ(1)(x, t) are expressed by the potential
q(x, t) of the Zakharov–Shabat system as follows:

χ(1)(x, t) =
1
4
[σ3, q(x, t)], i

∂g

∂x
+ q(x, t)g(x, t) = 0 , (8.83)

and, therefore,

lim
λ→∞

˜h±(x, t, λ) = lim
λ→∞

{

i
∂g−1

∂x
g(x, t)

+ λg−1(x, t)(11 + λ−1χ(1)(x, t) + · · · )σ3(11− λ−1χ(1)(x, t) + · · · )g(x, t)
}

= i
∂g−1

∂x
g(x, t) + g−1(x, t)

(

λσ3 + [χ(1)(x, t), σ3]
)

g(x, t)

= −ig−1(x, t)
∂g

∂x
+ λS(x, t)− g−1(x, t)q(x, t)g(x, t)

= λS(x, t) . (8.84)

Thus, we have proved that the function ˜h±(x, t, λ) − λS(x, t) is analytic
for all λ and tends to 0 for λ → ∞. Applying the Liouville’s theorem, we
conclude that this function is identically equal to 0, i.e.

˜h±(x, t, λ)− λS(x, t) = 0 , (8.85)

i.e.

i
∂η̃±

∂x
− λS(x, t)η̃±(x, t, λ) + λη̃±(x, t, λ)σ3 = 0 . (8.86)

Combining this with (8.76), we deduce that χ̃±(x, t, λ) are FAS of the Lax
operator ˜L.

Let us assume now that we know the regular FAS η̃±(x, t, λ) satisfying the
linear system (8.86). Taking into account the normalization condition (8.78),
we find the following Taylor series expansion for it:

η̃±(x, t, λ) = η±0 +
∞
∑

p=1

λpη̃±p (x, t) , (8.87)

Inserting (8.87) into (8.86) and taking the coefficient linear in λ we get:

i
∂η̃±1 (x, t)

∂x
− S(x, t)η±0 + η±0 σ3 = 0 , (8.88a)
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i.e.

S(x, t) = η±0 σ3η̂
±
0 + i

∂η̃±1 (x, t)
∂x

η̂±0 . (8.88b)

This formula allows us to recover the potential S(x, t) of ˜L from the FAS of
the RHP (8.77).

The FAS of ˜L can be used to construct the kernel of the resolvent of ˜L.
Skipping the details which are the same as for the ZS system L, we just give
the result:

˜R+(x, y, λ) =
1
i
χ̃+(x, λ)

(

−θ(y − x), 0
0, θ(x− y)

)

ˆ̃χ
+
(y, λ) , (8.89a)

˜R−(x, y, λ) =
1
i
χ̃−(x, λ)

(

θ(x− y), 0
0, −θ(y − x)

)

ˆ̃χ
−

(y, λ) , (8.89b)

where θ(x−y) is the step-function. The kernels ˜R±(x, y, λ) define the integral
operator ˜R which acts on two-component vector functions ˜f(x) as follows:

˜Rλ
˜f =

∫ ∞

−∞
dy ˜R±(x, y, λ)˜f(y), for λ ∈ C± . (8.90)

Theorem 8.3. Let S(x) satisfy conditions ˜C.1 and ˜C.2 and let λ±j be the
simple zeroes of ã±(λ). Then

1. ˜R±(x, y, λ) is an analytic function of λ for λ ∈ C± having pole singulari-
ties at λ±j ∈ C±;

2. ˜R±(x, y, λ) is a kernel of a bounded integral operator for Imλ 	= 0;
3. ˜R(x, y, λ) is uniformly bounded function for λ ∈ R and is a kernel of an

unbounded integral operator;
4. ˜R±(x, y, λ) satisfy the equation:

˜L(λ) ˜R±(x, y, λ) = 11δ(x− y) . (8.91)

Proof (Idea of the proof).

1. is obvious from the fact that χ̃±(x, λ) are the FAS of ˜L(λ);
2. Assume that Imλ > 0 and consider the asymptotic behavior of ˜R+(x, y, λ)

for x, y →∞. From (8.74), we find that

˜R+(x, y, λ) = g−1(x)e−λσ3xT−(λ)Θ+(x− y)T̂−(λ)eiλσ3y, (8.92)
Θ+(x− y) = diag (−θ(y − x), θ(x− y)) .

Due to the fact that

χ̃+(x, λ) = ˜ψ(x, λ) ˜T−(λ) �
x→∞

e−iλσ3x
˜T−(λ) , (8.93)
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˜T−(λ) =
(

ã+(λ) 0
˜b+(λ) 1

)

, (8.94)

with the lower triangular matrix ˜T−(λ) (compare with (3.40)), and due
to the choice of Θ+(x− y), one can check that for λ ∈ C+ the right-hand
side of (8.92) falls off exponentially for x→∞ and arbitrary choice of y.
All other possibilities are treated analogously.

3. For λ ∈ R the arguments of (2) cannot be applied because the exponentials
in the right-hand side of (8.92) Imλ = 0 only oscillate. Thus, we conclude
that the kernel ˜R±(x, y, λ) for λ ∈ R is only a bounded function, and the
corresponding integral operator ˜Rλ is unbounded. This is consistent with
the fact that the continuous spectrum of ˜L fills up the real λ-axis.

4. The proof of (8.91) follows from the fact that ˜L(λ)χ̃+(x, λ) = 0 and

dΘ±(x− y)
dx

= ±11δ(x− y) . (8.95)

Corollary 8.4. Let η̃±0 (x, λ) be regular solutions of the RHP (8.78) and let
S(0)(x) be the corresponding potential of the operator ˜L0. Then, the operator
˜L0 has no discrete eigenvalues.

Proof. If η̃±0 (x, λ) are regular solutions then det η̃±0 (x, λ) = det χ̃±
0 (x, λ) =

ã±(λ) have no zeroes and therefore the kernels of the resolvent ˜R±(x, y, λ)
have no poles for λ ∈ C+.

The explicit form of the resolvent allows to derive the completeness relation
of the Jost solutions. It can be obtained by applying the gauge transformation
to (3.111). We get:

δ(x− y)1l =
1
2π

∫ ∞

−∞
dλ

⎛

⎝

˜φ+(x, λ)ˆ̃ψ
+

(y, λ)
ã+(λ)

+
˜φ−(x, λ)ˆ̃ψ

−
(y, λ)

ã−(λ)

⎞

⎠

+ i

N
∑

k=1

⎛

⎝

˜φ+
k (x)ˆ̃ψ

+

k (y)
˙̃a
+

k

−
˜φ−

k (x)ˆ̃ψ
−
k (y)

˙̃a
−
k

⎞

⎠ . (8.96)

The last remark is that from the above results it follows that the gauge
transformations are isospectral.

8.4 The Dressing Method and Soliton Solutions

The contour integration method applied in Chap. 4 to the FAS of the
Zakharov–Shabat system can be extended also to the gauge-equivalent sys-
tem ˜L. Indeed, the gauge transformation is λ-independent. This allows us
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to apply it directly to the final result, namely, to the spectral expansions of
η+(x, t, λ) (4.72) and η−(x, t, λ) (4.73). Making use of (8.74) and (8.71), after
some calculations, we get for η+(x, λ) with λ ∈ C+:

η̃+(x, λ) = g−1(x) +
1

2πi

∫ ∞

−∞

dμ

μ− λ

η̃−(x, μ)
ã−(μ)

˜K(x, μ)−
N
∑

k=1

η̃−k (x)
λ−k − λ

˜K−
k (x) ,

(8.97a)
and for η−(x, λ) with λ ∈ C−:

η̃−(x, λ) = g−1(x) +
1

2πi

∫ ∞

−∞

dμ

μ− λ

η̃+(x, μ)
ã+(μ)

˜K(x, μ)−
N
∑

k=1

η̃+
k (x)

λ+
k − λ

˜K+
k (x) ,

(8.97b)
where we have used the notations:

˜K(x, λ) =

⎛

⎝

0 ˜b−(λ)e−2iλx

˜b+(λ)e2iλx 0

⎞

⎠ , (8.98a)

η̃+
k (x) = ˜ξ+

k (x)(˜b+
k e2iλ+

k
x, 1), η̃−

k (x) = ˜ξ−k (x)(1,−˜b−k e−2iλ−
k

x) , (8.98b)

η̃±
k (x) = η̃±(x, λ±

k ), ˜C±
k =

˜b±k
˙̃a
±
k

, ˜M±
k =

1

˜b±k
˙̃a
±
k

, (8.98c)

˜K+
k (x) =

⎛

⎝

0 ˜M+
k e−2iλ+

k
x

˜C+
k e2iλ+

k
x 0

⎞

⎠ , ˜K−
k (x) =

⎛

⎝

0 ˜C−
k e−2iλ−

k
x

˜M−
k e2iλ−

k
x 0

⎞

⎠ .

(8.98d)

We also used the simple fact that the zeroes of the functions ã±(λ) due to
(8.71) coincide with λ±k , the zeroes of a±(λ).

The system of (8.97) cannot be treated directly as system of singular
linear integral equations allowing one to solve the RH problem (8.77) and
recover η̃±(x, λ) in their whole regions of analyticity. The reason for this is
that they contain g−1(x), which is not explicitly given. However, we also know
that the solutions η̃±(x, λ) are such that for λ = 0 they become equal to 11.
Therefore, we can put λ = 0 in (8.97), which will provide us with the spectral
decompositions of g−1(x):

g−1(x) = 11− 1
2πi

∫ ∞

−∞

dμ

μ

η̃−(x, μ)
ã−(μ)

˜K(x, μ) +
N
∑

k=1

η̃−k (x)
λ−k

˜K−
k (x) , (8.99a)

g−1(x) = 11− 1
2πi

∫ ∞

−∞

dμ

μ

η̃+(x, μ)
ã+(μ)

˜K(x, μ) +
N
∑

k=1

η̃+
k (x)
λ+

k

˜K+
k (x) . (8.99b)

It remains to insert these expressions for g−1(x) back into (8.97) to get the
system:



266 8 The NLEEs and the Gauge Transformations

η̃+(x, λ) = 11 +
1

2πi

∫ ∞

−∞

dμ λ

μ(μ− λ)
η̃−(x, μ)
ã−(μ)

˜K(x, μ)−
N
∑

k=1

λη̃−k (x)
λ−k (λ−k − λ)

˜K−
k (x) ,

(8.100a)

η̃−(x, λ) = 11 +
1

2πi

∫ ∞

−∞

dμ λ

μ(μ− λ)
η̃+(x, μ)
ã+(μ)

˜K(x, μ)−
N
∑

k=1

λη̃+
k (x)

λ+
k (λ+

k − λ)
˜K+

k (x) ,

(8.100b)
These system of singular integral equations can be treated in exactly the same
way like (4.72), (4.73) in Chap. 4.

Again, of special interest here is the reflectionless case: ˜K(x, λ) = 0. Then
the integral terms in the right-hand sides of (8.100) vanish, and we find that in
this case the FAS η̃±(x, λ) are rational functions of λ. An important feature of
(8.100) is that the poles of η̃+(x, λ) (resp. η̃−(x, λ)) lie in the lower half-plane
C− (resp. upper half-plane C+). Then the systems of (8.100) simplify and are
transformed into:

˜ξ−Ns(x, λ) =
(

1
0

)

−
N
∑

k=1

λ ˜C+
k

λ+
k (λ+

k − λ)
e2iλ+

k x
˜ξ+k , λ ∈ C− , (8.101)

˜ξ+Ns(x, λ) =
(

0
1

)

+
N
∑

k=1

λ ˜C−
k

λ−k (λ−k − λ)
e−2iλ−

k x
˜ξ−k , λ ∈ C+ , (8.102)

and

ϕ̃+
Ns(x, λ) =

(

1
0

)

+
N
∑

k=1

λ˜M−
k

λ−k (λ−k − λ)
e2iλ−

k xϕ̃−
k , λ ∈ C+ , (8.103)

ϕ̃−
Ns(x, λ) =

(

0
1

)

−
N
∑

k=1

λ˜M+
k

λ+
k (λ+

k − λ)
e−2iλ+

k xϕ̃+
k , λ ∈ C− . (8.104)

In order to solve the system (8.101), (8.102) (or (8.103), (8.104)), it is
enough to calculate ˜ξ±k (x) (or ϕ̃±

k (x)). This can be done by putting λ = λ−p
in (8.101) (resp. (8.104)) and λ = λ+

p in (8.102) (resp. (8.103)).

˜ξ−p (x) =
(

1
0

)

−
N
∑

k=1

λ−p ˜C
+
k

λ+
k (λ+

k − λ−p )
e2iλ+

k x
˜ξ+k , λ ∈ C− , (8.105)

˜ξ+p (x) =
(

0
1

)

+
N
∑

k=1

λ+
p
˜C−

k

λ−k (λ−k − λ+
p )
e−2iλ−

k x
˜ξ−k , λ ∈ C+ , (8.106)

and

ϕ̃+
p (x) =

(

1
0

)

+
N
∑

k=1

λ+
p
˜M−

k

λ−k (λ−k − λ+
p )
e2iλ−

k xϕ̃−
k , λ ∈ C+ , (8.107)
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ϕ̃−
p (x) =

(

0
1

)

−
N
∑

k=1

λ−p ˜M
+
k

λ+
k (λ+

k − λ−p )
e−2iλ+

k xϕ̃+
k , λ ∈ C− . (8.108)

Solving this system using, e.g., Kramer’s rules, we find η̃±k as rational
functions of the exponentials exp(±2iλ±j x). Then, we insert the results back
into the spectral decompositions (8.101)–(8.104), and we obtain explicitly the
reflectionless FAS.

Thus, we have the following linear algebraic equations for ˜ξ±k (x) and ϕ̃±
k (x):

(

˜ξ
−

(x), ˜ξ+(x)
)

(

1l ˜D−(x)
˜D+(x) 1l

)

=
(

e+, e−
)

, (8.109a)

˜D+
kp(x) =

˜l+kp
˜b+k (x)

lkp
˙̃a
+

k

, ˜D−
kp(x) =

˜l−kp
˜b−k (x)

lpk
˙̃a
−
k

, (8.109b)

˜l+kp =
λ+

k (λ+
k − λ−p )

λ+
k

, ˜l−kp =
λ−k (λ+

p − λ−k )

λ+
p

,

and

(

ϕ̃+(x), ϕ̃−(x)
)

(

1l ˜F+

˜F− 1l

)

=
(

e+, e−
)

, (8.110a)

˜F+
kp(x) =

1

l+kp
˜b−k (x) ˙̃a

−
k

, ˜F−
kp(x) =

1

l−pk
˜b+k (x) ˙̃a

+

k

, (8.110b)

where we used the notations:

˜ξ±(x) =
(

˜ξ±1 (x), . . . , ˜ξ±N (x)
)

, ϕ̃±(x) =
(

ϕ̃±
1 (x), . . . , ϕ̃±

N (x)
)

,

e± =
(

e±, . . . , e±
)

︸ ︷︷ ︸

N−times

, e+ =
(

1
0

)

, e− =
(

0
1

)

, (8.111a)

˜b±k (x) = ˜b±k e
±2iλ±

k x = e−zk±iφk , (8.111b)

zk = 2νk(x− ξ0,k), φk =
μk

νk
zk + δk . (8.111c)

The relations (8.38) show that the systems of (8.109) and (8.110) are equiv-
alent. Therefore, it will be enough to consider only one of them. For example,
the solution of (8.109) can be calculated by inverting the block matrix in the
left-hand side of (8.109). Since
(

1l ˜D−

˜D+ 1l

)−1

=

(

(1l− ˜D−
˜D+)−1 − ˜D−(1l− ˜D+

˜D−)−1

− ˜D+(1l− ˜D−
˜D+)−1 (1l− ˜D+

˜D−)−1

)

, (8.112)

we can obtain explicit expressions for ˜ξ±k (x) and ϕ̃±
k (x).
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The next step is to insert the results for ˜ξ±k (x) and ϕ̃±
k (x) into the right-

hand side of (8.101)–(8.104). This gives us immediately the explicit formulae
for the Jost solutions and for the FAS. They are meromorphic functions of λ,
and so is the corresponding scattering matrix:

˜TNs(λ) =
(

ã+
Ns(λ) 0
0 ã−Ns(λ)

)

, ã+
Ns(λ)ã−Ns(λ) = 1 , (8.113)

where

ã+
Ns(λ) =

1
ã−Ns(λ)

=
N
∏

k=1

(λ− λ+
k )λ−k

(λ− λ−k )λ+
k

. (8.114)

More specifically, we get:

˜φ+
Ns(x, λ) = ˜ψ−

Ns(x, λ)ã+
Ns(λ), ˜φ−

Ns(x, λ) = ˜ψ+
Ns(x, λ)ã−Ns(λ) , (8.115)

and
χ̃+

Ns(x, λ) = ã+
Ns(λ)χ̃−

Ns(x, λ) . (8.116)

The corresponding reflectionless potential can be recovered using (8.34c),
together with the fact that in the reflectionless case the decompositions for
g−1(x, t) (8.99) is given by any of the expressions:

g−1
Ns (x) = 11 +

N
∑

k=1

η̃−k (x)
λ−k

˜K−
k (x) , (8.117a)

g−1
Ns (x) = 11 +

N
∑

k=1

η̃+
k (x)
λ+

k

˜K+
k (x) . (8.117b)

Since we already know the explicit formulae for η̃±k (x), all we need to do
is to insert them into the right-hand sides of (8.117), thus getting g−1(x, t)
explicitly. If we denote it by:

g−1
Ns (x, t) =

(

ĝNs,11(x, t) ĝNs,12(x, t)
ĝNs,21(x, t) ĝNs,22(x, t)

)

, (8.118)

then its inverse g(x, t) will be equal to:

gNs(x, t) =
(

ĝNs,22(x, t) −ĝNs,12(x, t)
−ĝNs,21(x, t) ĝNs,11(x, t)

)

. (8.119)

In deriving (8.119), we made use of the fact that det gNs(x, t) = 1. Then,

SNs(x) = g−1
Ns σ3gNs(s, t) (8.120)

= σ3 (ĝNs,11ĝNs,22 + ĝNs,12ĝNs,21) + 2
(

0 −ĝNs,11ĝNs,12

ĝNs,21ĝNs,22 0

)

.
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From (8.120), one can also easily derive the N -soliton solutions of the
HF-type NLEE. To this end, it is enough to insert the explicit t-dependence
into the scattering data, i.e. we have to change ˜b±(x) to ˜b±(x, t):

˜b±(x, t) = b±k exp(±2iλ±k x∓ 2iλ±k ˜f
±
k t), ˜f±

k = ˜f(λ±k ) , (8.121)

where ˜f(λ) is the dispersion law of the corresponding NLEE.
In the simplest one-soliton case, the solution of the (8.101), (8.102),

(8.104), (8.103) is given by:

˜ξ−1 (x) =
1

˜A1(x, t)

(

1
−˜b+1 (x, t)

)

, ˜ξ+1 (x) =
1

˜A1(x, t)

(

˜b−1 (x, t)
1

)

,

(8.122a)

ϕ̃+
1 (x, t) =

˜b+1 (x, t)
˜A1(x, t)

(

˜b−1 (x, t)
1

)

, ϕ̃−
1 (x, t) =

˜b−1 (x, t)
˜A1(x, t)

( −1
˜b+1 (x, t)

)

,

(8.122b)
where

˜A1(x, t) = 1 +˜b+1 (x, t)˜b−1 (x, t) , (8.122c)

These formulae can be written in compact form as follows:

η̃+
1 (x, t) = 1l− ˜P1(x, t), η̃−1 (x, t) = ˜P1(x, t) , (8.123a)

˜P1(x, t) =
|ñ1(x, t)〉〈m̃1(x, t)|
〈m̃1(x, t)|ñ1(x, t)〉

=
1

1 +˜b+(x, t)˜b−(x, t)

(

1 −˜b−1 (x, t)
−˜b+1 (x, t) ˜b+1 (x, t)˜b−1 (x, t)

)

, (8.123b)

|ñ1(x)〉 = e−iλ+
k σ3x+i ˜f+

1 σ3t|ñ10〉, |ñ10〉 =
(

1
−˜b+10

)

, (8.123c)

〈m̃1(x)| = 〈m̃10|eiλ−
k σ3x−i ˜f−

1 σ3t, 〈m̃10| =
(

1,−˜b−10
)

, (8.123d)

Inserting (8.122) into (8.97) and (8.97b), we get the following explicit
expressions for the FAS:

η̃+
1s(x, t, λ) = 1l + (c̃1(λ)− 1) ˜P1(x, t), c̃1(λ) =

λ−1
λ+

1

λ− λ+
1

λ− λ−1
, (8.124a)

η̃−1s(x, t, λ) = 1l +
(

1
c̃1(λ)

− 1
)

(1l− ˜P1(x, t)) , (8.124b)

or

η̃+
1s(x, t, λ) = η̃−1s(x, t, λ)c̃1(λ) . (8.125)

The new potential S1s(x, t) is related to the old one S(x, t) by:
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S1s(x) =
(

11 +
(

λ−1
λ+

1

− 1
)

˜P1(x, t)
)

S(x, t)
(

11 +
(

λ+
1

λ−1
− 1
)

˜P1(x, t)
)

.

(8.126)
In the 1-soliton case we have

ã+
1s(λ) =

1
ã−1s(λ)

= c̃1(λ) ; (8.127)

see formula (8.114) with ν = 1. From (8.116), we find that in the reflec-
tionless case G(x, λ) is proportional to the unit matrix; consequently it is
x-independent. Another important fact illustrated by (8.124) and generic for
the N -soliton case is the following. Both η̃+(x, λ) and η̃−(x, λ) are meromor-
phic functions of λ (fraction-linear in our case). In fact, they can be extended
to the whole λ-plane with the exception of their pole-singularities, located
at λ±1 .

8.5 The Wronskian Relations and the Gauge Equivalence

We can derive the Wronskian relations for the system ˜L in two independent
but equivalent ways.

First of all, we remark that with ˜L one can associate the following systems:

i
d
̂

˜ψ

dx
+ λ

̂

˜ψ(x, t, λ)S(x, t) = 0 , (8.128)

i
dδ ˜ψ

dx
− λδS(x, t) ˜ψ(x, t, λ)− λS(x, t)δ ˜ψ(x, t, λ) = 0 , (8.129)

i
d

˙̃
ψ

dx
− λS(x, t) ˜ψ(x, t, λ)− S(x, t) ˙̃

ψ(x, t, λ) = 0 , (8.130)

where δ ˜ψ corresponds to a given variation δS(x, t) of the potential, while by
dot we denote the derivative with respect to the spectral parameter.

We start with the identity:
(

ˆ̃χσ3χ̃(x, λ)− σ3

)∣

∣

∣

∞

−∞
= i

∫ ∞

−∞
dx

d

dx

(

iˆ̃χσ3χ̃
)

(x, λ)

= iλ

∫ ∞

−∞
dx χ̂[S(x, t), σ3]χ̃(x, λ) , (8.131)

where χ̃(x, λ) can be any fundamental solution of ˜L. For convenience, we
choose them to be the FAS introduced above.

The left-hand side of (8.131) can be calculated explicitly by using the
asymptotics of χ̃±(x, λ) for x → ±∞. It would be expressed by the matrix
elements of the scattering matrix ˜T (λ), i.e. by the scattering data of ˜L as
follows:
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(

ˆ̃χ
+
σ3χ̃

+(x, λ)− σ3

)∣

∣

∣

∞

−∞
= −2

(

0 ˜b−(λ)

˜b+(λ) 0

)

(8.132)

(

ˆ̃χ
−
σ3χ̃

−(x, λ)− σ3

)∣

∣

∣

∞

−∞
= −2

(

0 ˜b−(λ)
˜b+(λ) 0

)

. (8.133)

It is well known that there exist two independent sets of scattering data
˜T1 and ˜T2, which contain the two sets of reflection coefficients:

˜T1 ≡ {ρ̃±(λ), λ ∈ R;λ±k , ˜C
±
k }, ˜T2 ≡ {τ̃±(λ), λ ∈ R;λ±k , ˜M

±
k } ,
(8.134)

where k = 1, . . . , N . Here and below:

ρ̃±(λ) ≡
˜b±(λ)
ã±(λ)

= ρ±(λ), ˜C±
k = C±

k ,

τ̃±(λ) ≡
˜b∓(λ)
ã±(λ)

= (a±0 )2τ±(λ), ˜M±
k = (a±0 )2M±

k . (8.135)

We now use the invariance of the Killing form under the group of gauge
transformations. Then the analogs of (5.16)–(5.19) acquire the form:

ρ̃±(λ) =
iλ

(ã±(λ))2
[[

πSσ3, ˜Φ
±

(x, λ)
]]

˜

, (8.136)

τ̃±(λ) =
iλ

(ã±(λ))2
[[

πSσ3, ˜Ψ
±

(x, λ)
]]

˜

, (8.137)

where we recall that πSσ3 = 1/4[S(x), [S(x), σ3]]. The skew-symmetric scalar
product

[[

· , ·
]]

˜

is given by:

[[

˜X, ˜Y
]]

˜

=
∫ ∞

−∞
〈 ˜X(x), [S(x), ˜Y (x)]〉 dx . (8.138)

Note the additional factor λ in the right-hand sides of (8.136), (8.137) com-
pared to (5.16) and (5.17).

The “squared” solutions ˜Φ
±

(x, λ) and ˜Ψ
±

(x, λ) are

˜E±α (x, λ) = ã±(λ)χ̃±(x, λ)σα
ˆ̃χ
±

(x, λ), α = 3,±; (8.139a)

˜Ψ
±

(x, λ) =
(

˜E±∓ (x, λ)
)f

= g−1(x)Ψ±(x, λ)g(x), (8.139b)

˜Φ
±

(x, λ) =
(

˜E±± (x, λ)
)f

= (a±0 )2g−1(x)Φ±(x, λ)g(x) , (8.139c)

˜Θ
±

(x, λ) =
(

˜E±3 (x, λ)
)f

= a±0 g
−1(x)Θ±(x, λ)g(x) . (8.139d)
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Here and below, the superscript “f” is understood in the sense of the split-
ting (8.44). Indeed, due to the definition of

[[

·, ·
]]

˜

the “diagonal” parts of

˜E±α (x, λ)d do not contribute to the right-hand sides of the Wronskian relations.
One can introduce also the symplectic basis by the following linear com-

binations of the “squared” solutions (compare with (5.61)):

˜P (x, λ) =
1
π

(

τ̃+(λ)˜Φ
+

(x, λ)− τ̃−(λ)˜Φ
−

(x, λ)
)

= − 1
π

(

ρ̃+(λ)˜Ψ
+

(x, λ)− ρ̃−(λ)˜Ψ
−

(x, λ)
)

, (8.140a)

˜P
±
k (x) = 2i ˜C±

k
˜Ψ
±
k (x) = −2i˜M±

k
˜Φ
±
k (x) , (8.140b)

˜Q(x, λ) =
τ̃+(λ)˜Φ

+
(x, λ) + ρ̃+(λ)˜Ψ

+
(x, λ)

2˜b+(λ)˜b−(λ)

=
ρ̃−(λ)˜Ψ

−
(x, λ) + τ̃−(λ)˜Φ

−
(x, λ)

2˜b+(λ)˜b−(λ)
, (8.140c)

˜Q
±
k (x) =

1
2

(

˜C±
k

˙̃
Ψ

±
k (x) + ˜M±

k
˙̃
Φ

±
k (x)

)

. (8.140d)

Taking into account (8.139) we get that

˜P (x, λ) = g−1(x)P (x, λ)g(x), ˜P
±
k (x) = g−1(x)P±

k (x)g(x) , (8.141a)

˜Q(x, λ) = g−1(x)Q(x, λ)g(x), ˜Q
±
k (x) = g−1(x)Q±

k (x)g(x) . (8.141b)

for k = 1, . . . , N and the gauge analogs of (5.79)

[[

πSσ3, ˜P (x, λ)
]]

˜

= 0,
[[

πSσ3, ˜Q(x, λ)
]]

˜

= − i

λ
, (8.142a)

[[

πSσ3, ˜P
±
k (x)

]]

˜

= 0,
[[

πSσ3, ˜Q
±
k (x)

]]

˜

= − i

λ±k
, (8.142b)

The second type of Wronskian relations, which we shall consider, relate
the variation of the potential δS(x) to the corresponding variations of the
scattering data. To this purpose, we start with the identity:

ˆ̃χδχ̃(x, λ)
∣

∣

∣

∞

−∞
= −iλ

∫ ∞

−∞
dx ˆ̃χδS(x)χ̃(x, λ) . (8.143)

For the left-hand side of (8.143) we find:

ˆ̃χ
+
δχ̃+(x, λ)

∣

∣

∣

∞

−∞
=
(

δ ln ã+(λ) −ã+(λ)δτ̃+(λ)
ã+(λ)δρ̃+(λ) −δ ln ã+(λ)

)

, (8.144)

and
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ˆ̃χ
−
δχ̃−(x, λ)

∣

∣

∣

∞

−∞
=
(

−δ ln ã−(λ) −ã−(λ)δρ̃−(λ)
ã−(λ)δτ̃−(λ) δ ln ã−(λ)

)

, (8.145)

Next, multiplying by σ± and taking the trace we arrive at:

δρ̃±(λ) = ∓ iλ

2(ã±(λ))2
[[

[S, δS(x)], ˜Φ
±

(x, λ)
]]

˜

, (8.146)

δτ̃±(λ) = ± iλ

2(ã±(λ))2
[[

[S(x), δS(x)], ˜Ψ
±

(x, λ)
]]

, (8.147)

and
δ ˜A(λ) = − iλ

4ã±(λ)
[[

[S(x), δS(x)], ˜Θ
±

(x, λ)
]]

˜

. (8.148)

In addition to ˜Ψ
±

(x, λ) and ˜Φ
±

(x, λ) introduced above, here, we use also the
“squared” solutions:

˜Θ
±

(x, λ) = ã+(λ)(χ̃±(x, λ)σ3
ˆ̃χ
±

(x, λ))f (8.149)

and ˜A(λ) is introduced by:

˜A(λ) =

⎧

⎨

⎩

ln ã+(λ), Imλ > 0 ,
1
2 ln

(

ã+(λ)/ã−(λ)
)

, Imλ = 0 ,
− ln ã−(λ), Imλ < 0.

(8.150)

Note that again we get an additional factor of λ in the right-hand sides of
(8.146), (8.147), and (8.148) compared to (5.25), (5.26), and (5.27).

The third type of Wronskian relations is the analog of (5.32):

(

ˆ̃χ ˙̃χ(x, λ) + ixσ3

)∣

∣

∣

∞

−∞
= −i

∫ ∞

−∞
dx (ˆ̃χ(x, λ)S(x)χ̃(x, λ)− σ3) , (8.151)

where we remind that “dot” means derivative with respect to λ. Taking the
trace with σ3 of the left-hand sides and evaluating the limits gives:

(

1
2
tr (ˆ̃χ ˙̃χ(x, λ)σ3) + ix

)∣

∣

∣

∣

∞

−∞
= ±

˙̃a
±

ã±(λ)
=
d ˜A
dλ

, (8.152)

where ˜A(λ) was introduced in (8.150).
In the analysis of the NLEE related to the system ˜L and their Hamiltonian

structures basic role plays a particular class of variations of S(x) resulting
from its time evolution. In this case S(x, t), depends on t in such a way that
it satisfies certain NLEE. Then, we consider variations of the type:

δS(x) � ∂S

∂t
δt+O((δt)2) . (8.153)

Keeping only the first-order terms with respect to δt we find:
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ρ̃±t (λ) = ∓ iλ

2(ã±(λ))2
[[

[S(x, t), St], ˜Φ
±

(x, t, λ)
]]

˜

, (8.154)

τ̃±t (λ) = ± iλ

2(ã±(λ))2
[[

[S(x, t), St], ˜Ψ
±

(x, t, λ)
]]

˜

. (8.155)

We postpone the application of these relations until later, and now we
consider the second method for the derivation of the Wronskian relations.
It consists in applying successively the gauge transformations to the Wron-
skian relations for the Zakharov–Shabat system derived in Chap. 5. Doing
this, we shall use (8.71), from which one finds that the “squared” solutions
˜Φ
±

(x, λ), and ˜Ψ
±

(x, λ) are related to Φ±(x, λ) and Ψ±(x, λ) by (8.139). Then,
(5.16)–(5.19) acquire the form:

ρ̃ ±(λ) =
i

(ã±(λ))2
[[

q̃(x), ˜Φ
±

(x, λ)
]]

˜

, (8.156)

τ̃±(λ) =
i

(ã ±(λ))2
[[

q̃(x), ˜Ψ
±

(x, λ)
]]

˜

. (8.157)

which means that
[[

q̃(x), ˜P (x, λ)
]]

˜

= 0,
[[

q̃(x), ˜Q(x, λ)
]]

˜

= −i , (8.158a)

[[

q̃(x), ˜P
±
k (x)

]]

˜

= 0,
[[

q̃(x), ˜Q
±
k (x)

]]

˜

= −i . (8.158b)

Analogously, applying the gauge transformation to the second type of
Wronskian relations see (5.25), (5.26) we get:

δρ̃±(λ) = ∓ i

2(ã±(λ))2
[[

[S(x), δ̃q(x)], ˜Φ
±

(x, λ)
]]

˜

, (8.159)

δτ̃±(λ) = ± i

2(ã±(λ))2
[[

[S(x), δ̃q(x)], ˜Ψ
±

(x, λ)
]]

˜

, (8.160)

where
˜δq(x) = g−1(x)δq(x)g(x) . (8.161)

Now, we need to express ˜δq in terms of S(x) and δS(x). Using (8.49) and
(8.52) q̃(x) equals:

q̃(x) ≡ g−1(x)q(x)g(x) = − i

4

[

S(x),
∂S

∂x

]

= ˜Λ±πSσ3 . (8.162)

Next, we prove:
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Lemma 8.5. The following relations hold:

δ̃q(x) ≡ g−1(x)δq(x)g(x) = ˜Λ∗
−(δS(x)) , (8.163)

δ̃q(x) = ˜Λ∗
+(δS(x))− i

∂S

∂x
δ
(

ln a+
0

)

. (8.164)

Proof. From (8.34c) there follows the relation:

δS(x) = [S(x), g−1(x)δg(x)] , (8.165)

which means that

(

g−1(x)δg(x)
)f

=
1
4
[S(x), δS(x)] . (8.166)

Let us consider the matrix function B(x, λ) = δψψ−1(x, λ), where ψ(x, λ) is
the Jost solution introduced in (8.60). Note that B(x, 0) = δg(x)g−1(x). Using
(8.59a) and (8.128), we can see that B(x, λ) satisfies the following equation:

i
∂B

∂x
+ [q(x), B(x, λ)]− λ[σ3, B(x, λ)] = δq(x) . (8.167)

Separating the diagonal and off-diagonal parts of (8.167) and taking proper
care of the integration constants we find that

δq(x) = [σ3, (Λ± − λ)Bf(x, λ)] + [σ3, q(x)] lim
x→±∞

〈σ3, B(x, λ)〉 . (8.168)

In the limit λ→ 0 we easily get:

lim
x→∞

〈σ3, B(x, 0)〉 = 0, lim
x→−∞

〈σ3, B(x, 0)〉 = −δ ln a+
0 . (8.169)

Next, we apply the similarity transformation with g(x) to both sides of
(8.168), put λ = 0 and use the fact that

˜Λ± ˜X = g−1(x)(Λ±X)g(x) . (8.170)

This gives:

g−1(x)(δq(x))g(x) = [S(x), ˜Λ+B̃(x)f ]

= [S(x), ˜Λ−B̃(x)f ]− [S, q̃(x)]δ(ln a+
0 ) . (8.171)

It remains only to use the relation (8.162) to complete the proof.

It is useful to reformulate the above lemma in a somewhat different way,
namely, that the Gateau derivative q′(S) of the mapping q → S is given by:

g−1(x)q′(S)g(x) = ˜Λ∗
− = ˜Λ∗

+ − i
∂S

∂x
δ(ln a+

0 )
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= ˜Λ∗ − i

2
∂S

∂x
δ(ln a+

0 ) , (8.172)

where we recall that ˜Λ = ( ˜Λ+ + ˜Λ−)/2.
The operators ˜Λ± and ˜Λ satisfy “conjugation”-type relations with respect

to the skew-symmetric scalar product
[[

· , ·
]]

˜

:

[[

˜Λ+
˜X, ˜Y

]]

˜

=
[[

˜X, ˜Λ− ˜Y
]]

˜

,
[[

˜Λ ˜X, ˜Y
]]

˜

=
[[

˜X, ˜Λ˜Y
]]

˜

, (8.173)

for any choice of the functions ˜X(x) and ˜Y (x) such that

˜X(x) ≡ πS
˜X(x), ˜Y (x) ≡ πS

˜Y (x) . (8.174)

Another fact that singles out these recursion operators as important ob-
jects in the theory of HF-type NLEE is that they have the “squared” solutions
˜Ψ
±

(x, λ) and ˜Φ
±

(x, λ) as eigenfunctions, namely:

˜Λ+
˜Ψ
±

(x, λ) = λ˜Ψ
±

(x, λ), ˜Λ+
˜Ψ
±
k (x) = λ±k

˜Ψ
±
k (x) , (8.175a)

˜Λ−˜Φ
±

(x, λ) = λ˜Φ
±

(x, λ), ˜Λ−˜Φ
±
k (x) = λ±k

˜Φ
±
k (x) , (8.175b)

˜Λ˜P
±

(x, λ) = λ˜P
±

(x, λ), ˜Λ˜P
±
k (x) = λ±k

˜P
±
k (x) , (8.175c)

˜Λ˜Q
±

(x, λ) = λ˜Q
±

(x, λ), ˜Λ˜Q
±
k (x) = λ±k

˜Q
±
k (x) . (8.175d)

In addition, applying the gauge transformation to the (5.99b), (5.100b) and
(5.101) we get:

( ˜Λ− − λ)˜Ψ
±

(x, λ) = − i

4

[

S(x),
∂S

∂x

]

ã±(λ)˜b∓(λ) , (8.176a)

( ˜Λ+ − λ)˜Φ
±

(x, λ) = − i

4

[

S(x),
∂S

∂x

]

ã±(λ)˜b±(λ) , (8.176b)

( ˜Λ+ − λ) ˜Θ
±

(x, λ) = − i

4

[

S(x),
∂S

∂x

]

ã±(λ) , (8.176c)

( ˜Λ− − λ) ˜Θ
±

(x, λ) = − i

4

[

S(x),
∂S

∂x

]

ã±(λ) , (8.176d)

These important relations allow us to give an alternative proof of the
lemma 8.5. It consists in comparing the two expressions for δρ±(λ) given by
(8.146) and (8.159) and using the following chain of relations:

[[

[S(x), δ̃q(x)], ˜Φ
±

(x, λ)
]]

˜

= λ
[[

[S(x), δS(x)], ˜Φ
±

(x, λ)
]]

˜
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=
[[

[S(x), δS(x)], ˜Λ−˜Φ
±

(x, λ)
]]

˜

=
[[

˜Λ+[S(x), δS(x)], ˜Φ
±

(x, λ)
]]

˜

. (8.177)

From them we conclude that the function

˜H(x) = [S(x), δ̃q(x)]− ˜Λ+[S(x), δS(x)] (8.178)

has vanishing skew-symmetric scalar products with the squared solutions
˜Φ
±

(x, λ) for all real values of λ. It is not difficult to check that also
[[

˜H(x), ˜Φ
±
k (x)

]]

˜

= 0 for all k = 1, . . . , N . In order to conclude that ˜H(x) = 0

we need to use the completeness of the family ˜Φ
±

(x, λ), ˜Φ
±
k (x), a fact that

we shall prove in the next section.

8.6 Generalized Fourier Transform
and Gauge Transformations

We have already established that the gauge transformations preserve the an-
alytic properties of the Jost solutions. An immediate consequence of this
fact are the analyticity properties of the “squared” solutions ˜Ψ

±
(x, λ) and

˜Φ
±

(x, λ) recall that the superscript + (resp. −) means analyticity in the
upper (resp. lower) complex half-plane. Then in complete analogy with the
Zakharov–Shabat system, we can introduce the Green function:

˜G±(x, y, λ) = ˜G±
1 (x, y, λ)θ(x− y)− ˜G±

2 (x, y, λ)θ(y − x) , (8.179)

˜G±
1 (x, y, λ) =

1
(ã±(λ))2

˜Ψ
±

(x, λ)⊗ ˜Φ
±

(y, λ) , (8.180)

˜G±
2 (x, y, λ) =

1
(ã±(λ))2

(

˜Φ
±

(x, λ)⊗ ˜Ψ
±

(y, λ)

+
1
2
˜Θ

±
(x, λ)⊗ ˜Θ

±
(y, λ)

)

. (8.181)

and apply the contour integration method for the integral

˜J
˜G(x, y) =

1
2πi

(

∮

C+

dλ ˜G+(x, y, λ)−
∮

C−

dλ ˜G−(x, y, λ)

)

. (8.182)

One can evaluate ˜J
˜G(x, y) by the residue theorem having in mind that the

poles of ˜G± coincide with λ±k ; if ã±(λ) have first-order zeroes at λ±k , then ˜G±

will have second-order poles at these points. Next, we integrate directly along
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the contours. The integration along the real λ-axis gives us the contribution
from the continuous spectrum, while integrating along the infinite semicircles
of the contours C± results in the terms with δ(x− y). Equating both answers
for ˜J

˜G(x, y) leads to the completeness relation.
Another way to derive it consists in applying the gauge transformation to

(5.59). In this way, we get

δ(x− y) ˜Π0(x, y)

= − 1
π

∫ ∞

−∞
dλ

(

˜Ψ
+
(x, λ)⊗ ˜Φ

+
(y, λ)

(ã+(λ))2
−
˜Ψ
−

(x, λ)⊗ ˜Φ
−

(y, λ)
(ã−(λ))2

)

+ 2i
N
∑

k=1

(

˜X+
k (x, y) + ˜X−

k (x, y)
)

, (8.183a)

˜Π0 = σ̃+(x)⊗ σ̃−(y)− σ̃−(x)⊗ σ̃+(y) , (8.183b)

where σ̃±(x) are defined in (8.40) and

˜X±
k (x, y) =

1

( ˙̃a
±
k )2

(

˜Ψ
±
k (x)⊗ ˙̃

Φ
±
k (y) + ˙̃

Ψ
±
k (x)⊗ ˜Φ

±
k (y)

−
¨̃a
±
k

˙̃a
±
k

˜Ψ
±
k (x)⊗ ˜Φ

±
k (y)

)

. (8.183c)

The completeness relation for the symplectic basis has the form (compare
with (5.63)):

δ(x− y) ˜Π0(x, y) =
∫ ∞

−∞
dλ
(

˜P (x, λ)⊗ ˜Q(y, λ)− ˜Q(x, λ)⊗ ˜P (y, λ)
)

+
N
∑

k=1

(

˜Z+
k (x, y) + ˜Z−

k (x, y)
)

, (8.184a)

˜Z±
k (x, y) =

(

˜P
±
k (x)⊗ ˜Q

±
k (y)− ˜Q

±
k (x)⊗ ˜P

±
k (y)

)

. (8.184b)

As we see below ˜Π0(x, y) is compatible with the splitting (8.44).
Using (8.184), one can expand any function ˜X(x) ≡ πS

˜X(x) satisfying
condition ˜C.1 over the “squared” solutions of ˜L. To this end, we use

˜X(x) = ˜X+(x)σ̃+ + ˜X−(x)σ̃− , (8.185)

and (8.183b) to get:

1
2
tr 1

(

[S(x), ˜X(x)]⊗ 1l
)

˜Π0 = −1
2
tr 2

˜Π0

(

1l⊗ [S(x), ˜X(x)]
)

˜Π0

= − ˜X(x) . (8.186)
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where tr 1 (and tr 2) mean that we are taking the trace of the elements in the
first (or the second) position of the tensor product. In this way, we get:

˜X(x) = − 1
π

∫ ∞

−∞
dλ
(

˜φ+
X(λ)˜Ψ

+
(x, λ)− ˜φ−

X(λ)˜Ψ
−

(x, λ)
)

+ 2i
N
∑±

k=1

(

˜φ±
X,k

˙̃
Ψ

±
k + ˙̃

φ
±
X,k

˜Ψ
±
k

)

, (8.187)

˜φ±
X(λ) =

[[

˜Φ
±

(x, λ), ˜X(x)
]]

˜

(ã±(λ))2
, ˜φ±

X,k =

[[

˜Φ
±
k (x), ˜X(x)

]]

˜

( ˙̃a
±
k )2

, (8.188a)

˙̃
φ
±
X,k =

1

( ˙̃a
±
k )2

(

[[ ˙̃
Φ

±
k (x), ˜X(x)

]]

˜

−
¨̃a
±
k

˙̃a
±
k

[[

˜Φ
±
k (x), ˜X(x)

]]

˜

)

. (8.188b)

The same procedure, applied to the completeness relation (8.184) for the
symplectic basis leads to:

˜X(x) =
∫ ∞

−∞
dλ
(

κ̃X(λ)˜P (x, λ)− η̃X(λ)˜Q(x, λ)
)

+
N
∑±

k=1

(

κ̃±X,k
˜P

±
k − η̃±X,k

˜Q
±
k

)

, (8.189)

κ̃X(λ) =
[[

˜Q(x, λ), ˜X(x)
]]

˜

, η̃X(λ) =
[[

˜P (x, λ), ˜X(x)
]]

˜

(8.190a)

κ̃±X,k =
[[

˜Q
±
k (x), ˜X(x)

]]

, η̃±X,k =
[[

˜P
±
k (x), ˜X(x)

]]

˜

(8.190b)

The completeness relations we obtained in the above allow us to establish
a one-to-one correspondence between the element ˜X(x) ∈ ˜M and its expan-
sion coefficients. Indeed, from (8.183) and (8.184), we derived the expansions
(8.187) and (8.189) with the inversion formulae (8.188) and (8.190), respec-
tively. Using them we can prove the following:

Proposition 8.1 The function ˜X(x) ≡ 0 if and only if one of the following
sets of relations holds:

˜φ+
X(λ) = ˜φ−

X(λ) ≡ 0, λ ∈ R , (8.191a)

˜φ±
X,k = ˙̃

φ
±
X,k = 0, k = 1, . . . , N ; (8.191b)

or

κ̃X(λ) = η̃X(λ) ≡ 0, λ ∈ R , (8.192a)
κ̃±X,k = η̃±X,k = 0, k = 1, . . . , N ; (8.192b)



280 8 The NLEEs and the Gauge Transformations

Proof. Let us show that from ˜X(x) ≡ 0 there follows (8.191). To this end, we
insert ˜X(x) ≡ 0 into the right-hand sides of the inversion formulae (8.188) and
immediately get (8.191). The fact that from (8.191) there follows ˜X(x) ≡ 0 is
readily obtained by inserting it into the right-hand side of (8.187).

The equivalence of ˜X(x) ≡ 0 and (8.191) or (8.192) is proved analogously
using the inversion formulae (8.188), (8.190) and the expansions (8.187) and
(8.189). The proposition is proved.

Of special importance are the expansions of q̃(x) and δ̃q(x). The Wronskian
relations that we derived above allow to derive their expansion coefficients.
Thus, we find (compare with (5.78) and (5.80)):

q̃(x) = − i

π

∫ ∞

−∞
dλ
(

ρ̃+(λ)˜Ψ
+
(x, λ)− ρ̃−(λ)˜Ψ

−
(x, λ)

)

− 2
N
∑

k=1

(

˜C+
k
˜Ψ

+

k (x) + ˜C−
k
˜Ψ
−
k (x)

)

. (8.193a)

where ˜C±
k = C±

k .

q̃(x) = i

∫ ∞

−∞
dλ ˜P (x, λ) + i

N
∑

k=1

(

˜P
+

k (x) + ˜P
−
k (x)

)

. (8.193b)

Analogously, for δ̃q(x) we have:

S(x)δ̃q(x) =
i

π

∫ ∞

−∞
dλ
(

δρ̃+(λ)˜Ψ
+
(x, λ) + δρ̃−(λ)˜Ψ

−
(x, λ)

)

(8.194a)

+ 2
N
∑

k=1

(

˜C+
k δλ

+
k

˙̃
Ψ

+

k (x) + δ ˜C+
k
˜Ψ

+

k (x)− ˜C−
k δλ

−
k

˙̃
Ψ

−
k (x)− δ ˜C−

k
˜Ψ
−
k (x)

)

.

and

S(x)δ̃q(x) = i

∫ ∞

−∞
dλ
(

δκ̃(λ)˜P (x, λ)− δη̃(λ)˜Q(x, λ)
)

(8.194b)

+ i

N
∑

k=1

(

δη̃+
k
˜Q

+

k (x)− δκ̃+
k
˜P

+

k (x) + δη̃−k
˜Q

−
k (x)− δκ̃−k

˜P
−
k (x)

)

,

where

η̃(λ) =
1
π

ln
(

1 + ρ̃+(λ)ρ̃−(λ)
)

, η̃±k = ∓2iλ±k , (8.195a)

κ̃(λ) =
1
2

ln
˜b+(λ)
˜b−(λ)

, κ̃±k = ± ln˜b±k . (8.195b)



8.6 Generalized Fourier Transform and Gauge Transformations 281

In the next chapter, we shall see how this set of variables is related to the
action–angle variables of the corresponding NLEE.

Now we apply the expansions to variations of the type:

˜δq =
∂q̃

∂t
δt . (8.196)

We easily get:

S(x)
∂q̃

∂t
=

i

π

∫ ∞

−∞
dλ
(

ρ̃+
t (λ)˜Ψ

+
(x, λ) + ρ̃−t (λ)˜Ψ

−
(x, λ)

)

(8.197a)

+ 2
N
∑

k=1

(

˜C+
k λ

+
k,t

˙̃
Ψ

+

k (x) + ˜C+
k,t
˜Ψ

+

k (x)− ˜C−
k,tλ

−
k,t

˙̃
Ψ

−
k (x)− ˜C−

k,t
˜Ψ
−
k (x)

)

.

and

S(x)
∂q̃

∂t
= i

∫ ∞

−∞
dλ
(

κ̃t(λ)˜P (x, λ)− η̃t(λ)˜Q(x, λ)
)

(8.197b)

+ i

N
∑

k=1

(

η̃+
k,t
˜Q

+

k (x)− κ̃+
k,t
˜P

+

k (x) + η̃−k,t
˜Q

−
k (x)− κ̃−k,t

˜P
−
k (x)

)

,

Using the first set of Wronskian relations (8.136), (8.137) (resp. (8.146),
(8.147)), we can evaluate the expansion coefficients of πSσ3 (resp. [S(x, t), δS])
with the result:

πSσ3 = − i

π

∫ ∞

−∞

dλ

λ

(

ρ̃+(λ)˜Ψ
+
(x, λ)− ρ̃−(λ)˜Ψ

−
(x, λ)

)

−2
N
∑

k=1

(

˜C+
k

λ+
k

˜Ψ
+

k (x) +
˜C−

k

λ−k

˜Ψ
−
k (x)

)

. (8.198a)

πSσ3 = i

∫ ∞

−∞

dλ

λ
˜P (x, λ) + i

N
∑

k=1

(

1
λ+

k

˜P
+

k (x) +
1
λ−k

˜P
−
k (x)

)

. (8.198b)

Analogously for [S(x), δS] we have:

[S(x), δS(x)] =
i

π

∫ ∞

−∞

dλ

λ

(

δρ̃+(λ)˜Ψ
+
(x, λ) + δρ̃−(λ)˜Ψ

−
(x, λ)

)

(8.199a)

+ 2

N
∑

k=1

(

˜C+
k δ ln λ+

k
˙̃
Ψ

+

k (x) +
δ ˜C+

k

λ+
k

˜Ψ
+

k (x) − ˜C−
k δ ln λ−

k
˙̃
Ψ

−
k (x) − δ ˜C−

k

λ−
k

˜Ψ
−
k (x)

)

.

[S(x), δS(x)] = i

∫ ∞

−∞

dλ

λ

(

δκ̃(λ)˜P (x, λ) − δη̃(λ)˜Q(x, λ)
)

(8.199b)

+ i
N
∑

k=1

(

δη̃+
k

λ+
k

˜Q
+

k (x) − δκ̃+
k

λ+
k

˜P
+

k (x) +
δη̃−

k

λ−
k

˜Q
−
k (x) − δκ̃−

k

λ−
k

˜P
−
k (x)

)

,
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For δS(x) of the type ∂S
∂t δt we get:

[

S(x),
∂S

∂t

]

=
i

π

∫ ∞

−∞

dλ

λ

(

ρ̃+
t (λ)˜Ψ

+
(x, λ) + ρ̃−t (λ)˜Ψ

−
(x, λ)

)

(8.200a)

+ 2
N
∑

k=1

(

˜C+
k

λ+
k,t

λ+
k

˙̃
Ψ

+

k (x) +
˜C+

k,t

λ+
k

˜Ψ
+

k (x)− ˜C−
k,t

λ−k,t

λ−k

˙̃
Ψ

−
k (x)−

˜C−
k,t

λ−k

˜Ψ
−
k (x)

)

.

[

S(x),
∂S

∂t

]

= i

∫ ∞

−∞

dλ

λ

(

κ̃t(λ)˜P (x, λ)− η̃t(λ)˜Q(x, λ)
)

(8.200b)

+ i
N
∑

k=1

(

η̃+
k,t

λ+
k

˜Q
+

k (x)−
κ̃+

k,t

λ+
k

˜P
+

k (x) +
η̃−k,t

λ−k

˜Q
−
k (x)−

κ̃−k,t

λ−k

˜P
−
k (x)

)

,

The expansions (8.198) are compatible with (8.193). To demonstrate this,
we apply the operator ˜Λ+ (resp. ˜Λ) to the right-hand side of (8.193a) (resp.
to (8.193b)), take into account the relation (8.162), and use the fact that
˜Ψ
±

(x, λ) (resp. P (x, λ), Q(x, λ)) are eigenfunctions of ˜Λ+ (resp. ˜Λ); see
(8.175). In the same manner, using lemma 8.5, we demonstrate the compati-
bility of the (8.194), (8.197) to the (8.199), (8.200).

8.7 Fundamental Properties of the Gauge-Equivalent
NLEEs

Now, we are ready to describe the fundamental properties of the HF-type
NLEEs. Again, we have the choice to either use the expansions over the
“squared” solutions derived above or to apply the gauge transformation to
the results about the NLS type equations we had in Chap. 6. The latter ap-
proach applied to theorem 6.1 directly produces the following.

Theorem 8.6. Let the function f(λ) be meromorphic for λ ∈ C and has no
singularities on the spectrum of ˜L. Then, the NLEE:

iS(x)
∂q̃

∂t
+ 2f( ˜Λ+)q̃(x, t) = 0 , (8.201a)

iS(x)
∂q̃

∂t
+ 2f( ˜Λ−)q̃(x, t) = 0 , (8.201b)

iS(x)
∂q̃

∂t
+ 2f( ˜Λ)q̃(x, t) = 0 , (8.201c)

are pairwise equivalent to the following linear evolution equations for the scat-
tering data:

iρ̃±t ∓ 2f(λ)ρ̃±(λ, t) = 0 ,
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i ˜C±
k,t ∓ 2f±

k
˜C±

k (t) = 0 , (8.202a)

λ±k,t
˜C±

k (t) = 0 ,

iτ̃±t ± 2f(λ)τ̃±(λ, t) = 0 ,

i˜M±
k,t ± 2f±

k
˜M±

k (t) = 0 , (8.202b)

λ±k,t
˜M±

k (t) = 0,
iη̃t = 0, iκ̃t − 2f(λ) = 0 ,

iη̃±k,t = 0, iκ̃±k,t − 2f±
k = 0, (8.202c)

Theorem 8.7. Let the function ˜f(λ) be smooth for real λ and such that it
has no singularities on the spectrum of ˜L and ˜f(0) = 0. Then the NLEE:

iS(x, t)
∂S

∂t
− i

4
˜f( ˜Λ+)

[

S(x, t),
∂S

∂x

]

= 0 , (8.203a)

iS(x, t)
∂S

∂t
− i

4
˜f( ˜Λ−)

[

S(x, t),
∂S

∂x

]

= 0 , (8.203b)

iS(x, t)
∂S

∂t
− i

4
˜f( ˜Λ)

[

S(x, t),
∂S

∂x

]

= 0 , (8.203c)

are pairwise equivalent: (i) to the linear evolution equations (8.202a), (8.202b)
and (8.202c) for the scattering data with f(λ) = λ ˜f(λ) and (ii) to the NLEE
(8.201a), (8.201b) and (8.201c) with f(λ) = λ ˜f(λ).

It is not difficult to find that the class of the solvable NLEEs can be written
down also in the form:

2F ( ˜Λ±) ˜Λ±[S, St] + iG( ˜Λ±)[S, Sx] = 0 . (8.204)

Needless to say, these equations are equivalent to the linear equations (8.202)
for the scattering data, provided the functions F (λ) and G(λ) are such that
G(λ) = f(λ)F (λ). As before, one can write in (8.204) either the recursion
operators ˜Λ± or the operator ˜Λ without changing anything.

Sometimes one prefers to describe the same set of equations by means of
the adjoint operators ˜Λ∗

∓. If we introduce F1(λ) = 2λF (λ) and G1(λ) = iG(λ),
then with the help of Lemma 8.5 we have [2]

F1( ˜Λ∗
∓)St +G1( ˜Λ∗

∓)Sx = 0 (8.205)

Written like that the equations are invariant under the permutation x ↔ t,
F1 ↔ G1.

Remark 8.8. A simple argument applied to (8.204) shows that they may be
written in the symmetric form as well:

F2( ˜Λ∗
∓)qt +G2( ˜Λ∗

∓)qx = 0 , (8.206)

where F2 = 1
2F and G2(λ) = i

4λ
−1G(λ).
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Note that for F (λ) = 1, G(λ) = 4iλ2, one gets the HFE (8.1), which is
gauge equivalent to the NLSE. The choice F = 1/(8i) and G(λ) = f0λ

3+f1λ
2

leads to the (8.58), gauge equivalent to the NLS-mKdV type (6.23).
These NLEEs have an infinite number of integrals of motion. They are

generated by ˜A(λ) and can be expressed through the scattering data of ˜L
using the dispersion expansions:

˜A(λ) = A(λ)−A(0)

=
λ

2πi

∫ ∞

−∞

dμ

μ(μ− λ)
ln(ã+(μ)ã−(μ)) +

N
∑

k=1

ln
(λ− λ+

k )λ−k
(λ− λ−k )λ−k

=
λ

2

∫ ∞

−∞

dμ

μ(μ− λ)
η̃(μ) +

N
∑

k=1

ln
2λ/η+

k + 1
−2λ/η−k + 1

, (8.207)

If we consider the asymptotic expansion of ˜A(λ) over the positive and negative
powers of λ:

˜A(λ) = i

∞
∑

p=1

˜Cpλ
−p, ˜A(λ) = −i

∞
∑

p=1

˜C−pλ
p , (8.208)

then from (8.207) we find:

˜Cp = −1
2

∫ ∞

−∞
dμμp−1η̃(μ) +

i

p

N
∑

k=1

(

(

iη̃+
k

2

)p

−
(

η̃−k
2i

)p
)

, (8.209)

˜C−p = −1
2

∫ ∞

−∞

dμ

μp+1
η̃(μ)− i

p

N
∑

k=1

(

(

iη̃+
k

2

)−p

−
(

η̃−k
2i

)−p
)

, (8.210)

where p = 1, 2, . . .. The convergence of the integrals defining ˜Cp, p > 0 is a
consequence of conditions ˜C.1 and ˜C.3, which ensure that ρ̃±(t, λ), τ̃±(t, λ)
and η̃(λ) are Schwartz–type functions of λ for λ ∈ R and vanish for λ = 0
along with their first few derivatives.

There exist a close relation between the densities of ˜Cp and the diagonal
of the resolvent

˜R±(x, λ) = ± i

2
χ̃±(x, λ)σ3

ˆ̃χ
±

(x, λ) = ± i

2ã±(λ)
˜Θ±(x, λ) , (8.211)

of ˜L. Considering it, we are able to obtain compact expressions for ˜Cp through
the generating operators ˜Λ±. To this end, we recall the Wronskian relations
(8.152)

d ˜A
dλ

= −i
∫ ∞

−∞
dx
(

〈ˆ̃χ
±
S(x)χ̃±(x, λ)σ3〉 − 1

)
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= ∓i
∫ ∞

−∞
dx
(

〈(S(x) ˜R±(x, x, λ)〉)− 1
)

= − i

2ã±(λ)

∫ ∞

−∞
dx

∫ x

±∞
dy
〈

Sy, ˜Θ
±

(y, λ)
〉

. (8.212)

This is the relation between the diagonal of the resolvent of ˜L and the gener-
ating functional of integrals of motion of the HF-type NLEE.

In deriving the last line of (8.212), we used the fact that both ˜R±(x, λ)
and ˜Θ±(x, λ) satisfy the equation:

i
d ˜Θ±

dx
− λ[S(x), ˜Θ±(x, λ)] ≡ [˜L(λ), ˜Θ±(x, λ)] = 0 . (8.213)

This equation shows that ˜Θ±(x, λ) generates matrix-valued functions com-
muting with ˜L(λ). Note that ˜Θ±(x, λ) in the right-hand side of (8.211) has
both “diagonal” and “off-diagonal” parts, while in the right-hand side of
(8.212) only its “off-diagonal” part ˜Θ

±
(x, λ) contributes.

The “squared solution” ˜Θ
±

(x, λ), as noted above, satisfies also (8.176c),
(8.176d) which using (8.162) provides:

( ˜Λ± − λ)
˜Θ

±
(x, λ)

ã±(λ)
≡ ( ˜Λ− λ)

˜Θ
±

(x, λ)
ã±(λ)

= ˜ΛπSσ3 . (8.214)

If we apply now the operator ( ˜Λ − λ)−1 to both sides of (8.214) and expand
formally its right-hand side over the powers of λ−1 we get:

˜Θ
±

(x, λ)
ã±(λ)

= ( ˜Λ− λ)−1
˜ΛπSσ3

= −
∞
∑

s=0

λ−s−1
˜Λs+1πSσ3 . (8.215)

Let us denote by ˜Vs(x) and ˜V f
s (x) the expansion coefficients of ˜Θ(x, λ) and

˜Θ(x, λ), respectively:

˜Θ±(x, λ)
ã±(λ)

=
∞
∑

s=1

λ−s
˜Vs(x),

˜Θ
±

(x, λ)
ã±(λ)

=
∞
∑

s=1

λ−s
˜V f
s (x) . (8.216)

Next, if we recall the splitting (8.44) ˜Vs(x) = ˜V d
s (x) + ˜V f

s (x), we shall get:

˜V f
s (x) = − ˜ΛsπSσ3 ≡

i

4
˜Λs−1[S(x), Sx] , (8.217)

˜V d
k (x, t) = iS(x, t)

∫ x

±∞
dy 〈Sy, ˜V

f
k (y, t)〉+ S(x, t) lim

y→±∞
〈˜V d

k (y, t), S(y)〉 .
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Therefore, if we choose the dispersion law to be f(λ) = λN the corresponding
operator ˜M(λ) will have as potential

˜V (N)(x, λ) =
N
∑

s=0

λN−s
˜V f
s (x) = P+

(

λN
˜Θ±(x, λ)
ã±(λ)

)

, (8.218)

where the operator P+ applied to the series picks up only the coefficients with
non-negative power of λ.

Thus, we have demonstrated that the diagonal of the resolvent is a gener-
ating functional of the Lax representations for the HF-type NLEE.

Analogous arguments applied to (8.148) allow to write that

δ ˜A = iλ

∫ ∞

−∞
dx

〈

δS(x)
Θ±(x, λ)
ã±(λ)

〉

. (8.219)

If we combine this with the expansions (8.208) and (8.215), we get:

δ ˜Cp =
1
4
[[

[S(x), δ̃q(x)], ˜Λp−1
± q̃(x)

]]

˜

=
1
4
[[

˜Λ[S(x), δS(x)], ˜ΛpπSσ3

]]

˜

=
1
4
[[

[S(x), δS(x)], ˜Λp+1πSσ3

]]

˜

= −1
2

∫ ∞

−∞
dx tr

(

δS(x), ˜Λp+1πSσ3

)

. (8.220)

This means that the variational derivatives of δ ˜Cp have the form:

δ ˜Cp

δ ˜ST (x)
= −1

2
˜Λp+1πSσ3, p = 1, 2, . . . (8.221)

Note that the right-hand side of (8.221) does not depend on the choice of the
generating operator that we use; it will be the same for ˜Λ+, ˜Λ−, and ˜Λ. The
Lenard relation is obtained easily from (8.221):

δ ˜Cp

δ ˜S(x)T
= ˜Λ±

δ ˜Cp−1

δ ˜S(x)
= ˜Λ

δ ˜Cp−1

δ ˜S(x)
. (8.222)

Two important facts must be noted here:

1. The variational derivatives of ˜Cp and ˜Cp−1 are related by a ˜Λ-operator,
which is p-independent;

2. As a consequence of (8.221) and (8.222), the nonlinear parts of the NLEE
(8.201) are in fact variational derivatives of conveniently chosen linear
combinations of ˜Cps;
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The compact formulae (8.212) are the starting point for obtaining the
series of conservation laws with a local densities for the HF-type equations.
From (8.150) and (8.71) it follows that ˜A(λ) = A(λ) − ln a+(0). Therefore,
the generating functionals for the NLS-type equations and HF-type equations
differ only by the quantity ln a+(0), which is a conservation law by itself.
Applying to the integrand of (6.131) the gauge transformation we obtain:

˜Cm =
1

4im

∫ +∞

−∞
dx

∫ x

∞
〈Sy, ˜Λ

m
+ [S, Sy]〉 dy ≡

∫ +∞

−∞
ρm(x)dx . (8.223)

The integrals with m > 0 have local densities in terms of S(x) and its x-
derivatives. This result follows easily from the locality of the related integrals
Cm in terms of q(x) and from (8.162).

One can also check that ˜C0 = 0. All other integrals ˜Cm with m < 0 are
expected to be nonlocal in terms of S(x). The only exception is:

˜C−1 = − i

4

∫ +∞

−∞
dx

∫ x

∞
〈Sy, ˜Λ

−1
+ [S, Sy]〉 dy

=
∫ +∞

−∞
dx

∫ x

∞
〈Sy, πSσ3〉 dy

=
∫ +∞

−∞
dx(〈S(x), σ3〉 − 1)

=
∫ +∞

−∞
dx(S3(x)− 1) . (8.224)

In fact, these NLEE have two more conserved quantities:

˜C−1;a =
∫ +∞

−∞
dxSa(x), a = 1, 2 , (8.225)

For the HF equation, the existence of the integrals ˜C−1 and ˜C−1;a means that
all three components of the total spin are conserved. We shall discuss these
integrals in the next Section.

Utilizing the explicit form of ˜Λ+, one is able to obtain (up to numerical
factors and x-derivative terms) the first three conserved densities:

ρ1 = 〈Sx, Sx〉, ρ2 = 〈S, [Sx, Sxx]〉 ,
ρ3 = 5〈Sx, Sx〉2 − 4〈Sxx, Sxx〉 . (8.226)

At first sight ρ3 differs from the expression obtained in [1], which contains
rational dependence on Sx, i.e. a factor 〈Sx, Sx〉−1. But, if Sx 	= 0, then S, Sx

and [S, Sx] are linearly independent and form a basis in sl(2,C). Expanding
Sxx over this basis one can check that

ρ3 = 〈Sx, Sx〉2 −
(

d

dx
〈Sx, Sx〉2 − 〈Sxx, [S, Sx]〉

)

〈Sx, Sx〉−1 , (8.227)
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which coincides with the quantity in [1]. Besides, since the operators ˜Λ± de-
pend polynomially on S, it is obvious that all the densities ρm(x) are also
local functions in S and its x-derivatives.

8.8 The Generic HF-Type NLEE as Completely
Integrable Complex Hamiltonian System

Again, we have two ways to approach the Hamiltonian properties of the HF-
type equations. The first one is to do it directly, the second, to make use of
the gauge transformation. We shall first use the direct approach, and next
we shall analyze the relationships between the two hierarchies of Hamiltonian
structures.

It is only natural to consider the phase space of the HF-type equations
as the space of allowed matrix-valued functions S(x, t) (resp. vector-valued
functions S(x, t)) that satisfy the corresponding equation. One may also say
that the phase space ˜MC consists of the class of allowed potentials of the
linear problem ˜L (8.34a). By “allowed” potential, we understand the space of
functions

˜M =
{

S(x) : S2 = 11, lim
x→±∞

S(x) = σ3, S(x) ∈ sl(2,C)
}

.

satisfying conditions ˜C.1, ˜C.2, ˜C.3.
˜MC is not a linear space due to the nonlinear constraints on S(x, t) in

(8.2a). This constraint can be formulated also as

(S,S) ≡ S2
1 + S2

2 + S2
3 = 1 , (8.228)

which means that only two of the three complex-valued functions Sa(x, t) are
independent. On this phase space, there exist a canonical way to introduce
Poisson and symplectic structures:

{Sa(x),Sb(y)}˜(0) = εabcSc(x)δ(x− y) . (8.229)

It is easy to check that these Poisson brackets are compatible with the
constraint (8.228) due to the fact that

{S2(x),Sa(y)}
˜(0)
≡ {S2

1 + S2
2 + S2

3,Sa(y)}
˜(0)

= 0 . (8.230)

Of course, the choice S2
1 + S2

2 + S2
3 = 1 reflects specific normalization of the

spin vector. Choosing

HHF =
∫ ∞

−∞
dx 〈Sx, Sx〉 ≡

∫ ∞

−∞
dx (Sx,Sx) , (8.231)

one easily finds that the corresponding Hamiltonian equations of motion:
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∂S

∂t
= {HHF, S}˜(0) , (8.232a)

or in components:

∂Sa

∂t
= {HHF,Sa}˜(0) , (8.232b)

gives the Heisenberg ferromagnet equations of motion (8.1). Of course, the HF
model has physical applications for real-valued components Sa(x, t), or equiv-
alently, for hermitian matrices S(x, t) = S†(x, t). The models that we were
studying are more general in the sense that we are dealing with complex-
valued components Sa(x, t), or with nonhermitian matrices S(x, t). These
models can be obtained from the physical ones by the complexification pro-
cedure described in the previous chapter. That is why we shall first analyze
the Hamiltonian properties of the complexified HF-type equations and then
we shall pass to their real Hamiltonian forms.

We can introduce local coordinates on the phase space ˜MC in two different
but equivalent ways by using : (i) 2×2 complex matrix-valued functions S(x, t)
as in (8.4) satisfying (8.2); (ii) vector-valued functions S(x) satisfying (8.228).
Obviously, all necessary quantities can be expressed either through S(x) or S.
For example, the variational derivatives (or the “gradients”) of the functional
HC can be written as:

∇SH
C ≡ δHC

δST (x)
=

(

δHC

δS3(x)
δHC

δS−(x)
δHC

δS+(x) −
δHC

δS3(x)

)

≡
3
∑

a=1

δHC

δSa(x)
σa , (8.233a)

with S±(x, t) = S1(x, t)∓ iS2(x, t), or

∇SH
C ≡

(

δHC

δS1(x)
,
δHC

δS2(x)
,
δHC

δS3(x)

)T

, (8.233b)

The first important consequence of the fact is that ˜MC is not a linear space
and that the tangent space TS

˜MC is not isomorphic to ˜MC. Along with the
tangent space, one should consider also the co-tangent space T ∗

S
˜MC.

The symplectic structure can of course be introduced not only by the Pois-
son brackets (8.228) but also through a symplectic form, which is
given by:

˜Ω(0) =
∫ ∞

−∞
〈δS(x)∧

′
[S(x), δS(x)]〉dx . (8.234)

Such symplectic form can be interpreted also as the natural symplectic form
on the co-adjoint orbit of sl(2) passing through the element S(x). The corre-
sponding Hamiltonian equations of motion can be written out in equivalent
form as:

˜Ω(XH , ·) + δH = 0 , (8.235)

where H is the Hamiltonian of the corresponding NLEE.
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We shall limit ourselves to the class of Hamiltonians that are analytic
functions of S(x, t).

Recalling the definition of the skew-symmetric scalar product
[[

· , ·
]]

˜

,

(8.138) one is able to cast the canonical Poisson brackets (8.229) as follows:

{F,G}C

˜0
= i

∫ ∞

−∞
〈∇SF, [S(x),∇SG]〉dx

= i
[[

∇SF,∇qG
]]

˜

. (8.236)

The corresponding canonical symplectic form and Hamiltonian vector field
become:

˜ΩC

(0) =
i

2

∫ ∞

−∞
dx 〈δS(x)∧

′
[S(x), δS(x)])〉

= − i

8
[[

[S, δS(x)]∧
′
[S, δS(x)]

]]

˜

, (8.237a)

˜ΩC

(0) =
∫ ∞

−∞
dx
(

S(x), δS(x)∧
′
δS(x)

)

. (8.237b)

and

˜XHC · = −i
[[

∇SH
C,∇S ·

]]

˜

= −{HC, ·}C

˜(0)
, (8.238a)

˜XHC · = −{HC, ·}C

˜(0)
= 2

∫ ∞

−∞

(

∇SH
C · S(x)×∇S·

)

, (8.238b)

In what follows, we shall use mostly the first realization of ˜MC and the
sl(2)-type notations. The advantage is that they can easily be generalized to
any semisimple Lie algebra. Using the formula above, the reader can cast all
results in vector notations.

Now, we can write down the complexified version of the HF system (8.1)
in the form:

i
∂S

∂t
+∇SH

C

HF = 0 , (8.239)

where
HC = HC

HF =
1
2

∫ ∞

−∞
〈Sx, Sx〉dx =

1
2
˜C1 . (8.240)

It generalizes the HF in the sense that S(x, t) is generic (nonhermitian)
complex-valued matrix. We shall not repeat here the ideas of complexify-
ing Hamiltonian systems; they are in complete analogy with the ones already
discussed in the previous Chapter.

Returning to the generic NLEE (8.201) with dispersion law f(λ), each of
them can be written down in the form (8.239). It is only natural to expect
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that the corresponding Hamiltonian H should be expressed in terms of the
integrals of motion ˜Cp. Indeed, if we make use of (8.221) and choose

HC =
∑

k

4fk
˜Ck+1 (8.241)

we get:
∇SH

C = 2f( ˜Λ) ˜ΛπSσ3 . (8.242)

Thus Equation (8.239) coincides with the NLEE (8.201).
Next, we evaluate the Poisson brackets between the entries in the minimal

sets of scattering data T1, T2, and T . To do this, we use the compact expres-
sions for the scattering data variations, which follow from (8.146) and (8.147):

δτ̃±(t, λ)
δST (x)

≡ ∇S τ̃
±(t, λ) =

∓iλ
(ã±(λ))2

˜Ψ
±

(x, t, λ) , (8.243a)

∇Sλ
±
k = ∓iλ±k ˜C

±
k
˜Ψ
±
k (x, t) , (8.243b)

∇S
˜M±

k =
∓i

( ˙̃a
±
k )2

(

˙̃
Ψ

±
k (x, t)−

¨̃a
±
k

˙̃a
±
k

˜Ψ
±
k (x, t)

)

, (8.243c)

and

∇S ρ̃
±(t, λ) =

∓i
(ã±(λ))2

˜Φ
±

(x, t, λ) , (8.244a)

∇Sλ
±
k = ±iλ±k ˜M

±
k
˜Φ
±
k (x, t) , (8.244b)

∇S
˜C±

k =
∓i

( ˙̃a
±
k )2

(

˙̃
Φ

±
k (x, t)−

¨̃a
±
k

˙̃a
±
k

˜Φ
±
k (x, t)

)

, (8.244c)

In addition, for the variations of κ̃(λ) and η̃(λ) we find:

∇S η̃(λ) = i˜P (x, t, λ), ∇S η̃
±
k = i˜P

±
k (x, t) , (8.245a)

∇S κ̃(t, λ) = i˜Q(x, t, λ), ∇S κ̃
±
k = i˜Q

±
k (x, t) , (8.245b)

where ˜P (x, t, λ), ˜Q(x, t, λ) etc. are the elements of the symplectic basis
(8.141).

From the above relations, there follows that the Poisson brackets between
the scattering data are expressed through the skew-symmetric scalar products
of the corresponding “squared” solutions. So, in order to evaluate them, we
need to recall the results from Sect. 5.5.1 and Table 5.2 and apply to them
the gauge transformations. This gives:

{ρ̃+(t, λ), τ̃+(t, μ)}
˜(0)

= −
i
[[

˜Φ
+

(x, t, λ), ˜Ψ
+
(x, t, ν)

]]

˜

(ã+(λ))2(ã+(μ))2
,
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= −iπδ(λ− μ) , (8.246a)

{ρ̃−(t, λ), τ̃−(t, μ)}
˜(0)

= −
i
[[

˜Φ
−

(x, t, λ), ˜Ψ
−

(x, t, ν)
]]

˜

(ã−(λ))2(ã−(μ))2
.

= iπδ(λ− μ) . (8.246b)

and

{η̃(λ), κ̃(μ)}C

˜(0)
= iδ(λ− μ), {η̃(λ), κ̃±k }C

˜(0)
= 0 ,

{κ̃(λ), η̃±k }C

˜(0)
= 0, {η̃±k , κ̃±m}C

˜(0)
= iδkm,

(8.247a)

{η̃(λ), η̃(μ)}C

˜(0)
= 0, {η̃±k , η̃±m}C

˜(0)
= 0, {η̃(λ), η̃±k }C

˜(0)
= 0 , (8.247b)

{κ̃(λ), κ̃(μ)}C

˜(0)
= 0, {κ̃±k , κ̃±m}C

˜(0)
= 0, {κ̃(λ), κ̃±k }C

˜(0)
= 0 . (8.247c)

Thus we find that the set of variables {η̃(λ), κ̃(λ), η̃±k , κ̃
±
k } satisfy canon-

ical Poisson brackets. We also proved that {η̃(λ), η̃±k } are in involution (see
(8.247b) above). For evolution, defined by a generic NLEE, they are also time
independent due to (8.63). The variables {κ̃(λ), κ̃±k } are also in involution but
depend on time linearly; see (8.63). Thus, these two sets of variables have all
the necessary properties to be global “action-angle” variables for the NLEEs
(8.201).

From the trace identities (8.209) and (8.210), we know that the integrals
of motion ˜Ck are expressed in terms of η̃(λ) and η̃±k only; therefore, they are
in involution, i.e.

{ ˜Cn, ˜Cm}C

˜(0)
= 0 , (8.248)

for n,m = ±1,±2, . . . .
Thus we conclude that the NLEE (8.201) are infinite dimensional com-

pletely integrable complex Hamiltonian systems with respect to the canonical
Poisson brackets defined by (8.229) on ˜MC.

In treating the complete integrability of an infinite-dimensional system,
the most difficult point is to ensure that the action-angle variable really spans
the whole phase spaceMC. We are now going to present a more rigorous proof
of this fact, which is based on the completeness relation for the symplectic
basis.

Again, the most straightforward way to derive the action-angle variables
of the NLEE (8.201) is to insert the right- hand side of (8.199b) into the
expression for ˜ΩC

(0). This gives:

˜ΩC

(0) =
i

2

[[

[S, δS(x)]∧
′

(

i

∫ ∞

−∞

dλ

λ

(

δη̃(λ)˜Q(x, λ)− δκ̃(λ)˜P (x, λ)
)
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+ i

N
∑

k=1

(
δη̃+

k

λ+
k

˜Q
+

k (x)− δκ̃+
k

λ+
k

˜P
+

k (x) +
δη̃−k
λ−k

˜Q
−
k (x)− δκ̃−k

λ−k

˜P
−
k (x))

)]]

˜

= −1
2

∫ ∞

−∞

dλ

λ

(

δη̃(λ) ∧
[[

[S, δS(x)], ˜Q(x, λ)
]]

˜

− δκ̃(λ) ∧
[[

[S, δS(x)], ˜P (x, λ)
]]

˜

)

− 1
2

N
∑

k=1

(

(δη̃+
k ∧

[[

[S, δS(x)], ˜Q
+

k (x)
]]

˜

−δκ̃+
k ∧

[[

[S, δS(x)], ˜P
+

k (x)
]]

˜

− 1
2
δη̃−k ∧

[[

[S, δS(x)], ˜Q
−
k (x)

]]

˜

−δκ̃−k ∧
[[

[S, δS(x)], ˜P
−
k (x))

]]

˜

)

=
∫ ∞

−∞

dλ

λ2
δκ̃(λ) ∧ δη̃(λ) +

∑

k=1

(

δκ̃+
k ∧ δη̃

+
k

(λ+
k )2

+
δκ̃−k ∧ δη̃

−
k

(λ−k )2

)

. (8.249)

In the above derivation, we made use of the inversion formulae (8.190) for
the symplectic basis with ˜X(x) = [S(x), δS(x)].

From (8.249), we see also that the 2-form ˜ΩC

(0), just likeΩC

(−2), has λ−2η̃(λ),
κ̃(λ), (λ±k )−2η̃±k and κ̃±k as canonical coordinates; the extra factors (λ±k )−2 can
be taken care of by conveniently redefining η̃±k as follows; see (8.195):

δη̃±k
(λ±k )2

= ±2iδ
(

1
λ±k

)

. (8.250)

Let us recall now the trace identities (8.209), (8.210). From them, there
follows that the Hamiltonian HC of the NLEE depends only on the variables
η̃(λ), η̃±k :

HC = −i
∫ ∞

−∞
dμ f(μ)η̃(μ)− 2

N
∑

k=1

(

˜F+
k − ˜F−

k

)

(8.251)

where

˜F±
k = ˜F (λ±k ), ˜F (λ) =

∫ λ

dλ′ ˜f(λ′) . (8.252)

Remark 8.9. The equations of motion written in terms of the variables η̃(λ),
κ̃(λ), η̃±k and κ̃±k run as follows:

dη̃

dt
= 0,

dη̃±k
dt

= 0, i
dκ̃

dt
− 2f(λ) = 0, i

dκ̃±k
dt

− 2f(λ±k ) = 0 .

(8.253)
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As already mentioned, we see that the “action” variables η̃, η̃±k are time-
independent while the “angle” variables κ̃, κ̃±k are linear functions of t. How-
ever, here both types of variables are complex-valued. The “angle” variables
κ̃(λ), κ̃±k (see (8.195b)) can be written as:

κ̃(λ) =
1
2

ln

∣

∣

∣

∣

∣

˜b+(λ)
˜b−(λ)

∣

∣

∣

∣

∣

+
i

2
arg

˜b+(λ)
˜b−(λ)

, κ̃±k = ± ln |˜b±k | ± i arg˜b±k , (8.254)

from which we find that only their imaginary parts can be viewed as real
angles taking values in the range [0, 2π].

The completeness relation of the symplectic basis ensures: i) the uniqueness
and the invertibility of the mapping from {S(x, t)} to ˜T ; ii) the nondegeneracy
of the 2-form ˜ΩC

(0) on ˜MC.

Since we look at S(x) as local coordinates on ˜MC, any generic functional
F or G on ˜MC can be expressed in terms of S(x). Their variations δF and
δG are the analogs of 1-forms over MC. They can be expressed in terms of
the “gradients” by:

δF =
[[

∇SF, δS
]]

˜

, δG =
[[

∇SG, δS
]]

˜

, (8.255)

The “gradients” ∇SF and ∇SG are elements of the tangent space TS
˜MC.

Since the mapping S → ˜T is one-to-one, it is possible to express F and
G in terms of the scattering data. To this end, we consider the expansions of
∇SF and ∇SG over the symplectic basis:

∇SF = i

∫ ∞

−∞

dλ

λ

(

η̃F (λ)˜Q(x, λ)− κ̃F (λ)˜P (x, λ)
)

+ i

N
∑±

k=1

(

η̃±F,k

λ±k

˜Q
±
k (x)−

κ̃±F,k

λ±k

˜P
±
k (x)

)

, (8.256)

η̃F (λ) = i
[[

˜P (x, λ),∇SF
]]

˜

, κ̃F (λ) = i
[[

˜Q(x, λ),∇SF
]]

˜

,

η̃±F,k = i
[[

˜P
±
k (x),∇SF

]]

˜

, κ̃±F,k = i
[[

˜Q
±
k (x),∇SF

]]

˜

. (8.257)

Similar expansion for ∇SG is obtained from (8.256) by changing F to G. Such
expansions will hold true provided F and G are restricted in such a way that
the expansion coefficients η̃F (λ) and κ̃F (λ) are smooth and fall off fast enough
for λ→ ±∞. In what follows, we shall assume that the functionals F and G
satisfy.

Condition ˜C4. The functionals F and G are restricted by the following
implicit condition: The expansion coefficients η̃F (λ) and κ̃F (λ) and η̃G(λ) and
κ̃G(λ) are Schwartz-type functions of λ for real λ.



8.9 Hamiltonian Hierarchies and Gauge Transformations 295

Under the above assumptions the biquadratic relations satisfied by the
elements of the symplectic basis (8.140), we can express the Poisson brackets
between F and G in terms of their expansion coefficients as follows:

{F,G}C

˜(0)
= −i

[[

∇SF,∇SG
]]

˜

(8.258)

=
∫ ∞

−∞
dλ (η̃F κ̃G − κ̃F η̃G) (λ) +

N
∑±

k=1

(

η̃±F,kκ̃
±
G,k − κ̃±F,kη̃

±
G,k

)

.

In particular, if we choose F = HC, then from (8.245) we find that
η̃HC(λ) = 0, η̃±

HC,k
= 0 and

κ̃HC,k(λ) = −2f(λ), κ̃±
HC,k

= −2f(λ±k ),

which gives:

{H,G}C

˜(0)
= 2

∫ ∞

−∞
dλ f(λ)η̃G(λ) + 2

N
∑

k=1

(f(λ+
k )η̃+

G,k + f(λ−k )η̃−G,k) . (8.259)

Equation (8.259) allows us to describe the set of functionals G that are in
involution with all integrals of motion of the generic NLEE. Indeed, the right-
hand side of (8.259) will vanish identically for all choices of the dispersion law
f(λ) only provided the expansion coefficients of ∇SG satisfy:

η̃g(λ) = 0, λ ∈ R; η̃±G,k = 0, ∀k = 1, . . . , N . (8.260)

One can also describe the Hamiltonian vector fields in terms of the sym-
plectic basis:
˜XHC · ≡ −{HC, ·}C

˜(0)
(8.261)

= −2i
∫ ∞

−∞
dλ f(λ)

[[

˜P (x, λ),∇S ·
]]

˜

−2i
N
∑±

k=1

f(λ±k )
[[

˜P
±
k (x),∇S ·

]]

˜

,

where f(λ) is the dispersion law of the generic NLEE with Hamiltonian HC.
We end this section by underlying the special role of the subspace ˜LC ⊂

˜MC spanned by ˜P (x, λ) and ˜P
±
k (x), k = 1, . . . , N , i.e. by “half” of the ele-

ments of the symplectic basis. All Hamiltonian vector fields with Hamiltonians
of the form (8.241) induce dynamics which is tangent to ˜LC. This is the sub-
space of maximal dimension in ˜MC on which the symplectic form ˜ΩC

(0) is

degenerated. Therefore, ˜LC is the Lagrange submanifold of ˜MC.

8.9 Hamiltonian Hierarchies and Gauge Transformations

The complete integrability of the generic NLEEs we described makes them
rather special. They have an infinite number of integrals of motion Cn, which
are in involution and these integrals satisfy the relation:



296 8 The NLEEs and the Gauge Transformations

∇SCn+m = ˜Λm∇SCn , (8.262)

which generalizes the Lenard relation (8.221). The important fact here is that
the recursion operator Λ is a universal one and does not depend on either n
or m. This important fact has far-reaching consequences, which we discuss
below.

The first topic we would like to mention is the possibility introducing a
hierarchy of Poisson brackets as follows:

{F,G}C

˜(m)
=

1
i

[[

∇SF, ˜Λ
m∇SG

]]

˜

. (8.263)

Naturally, we must prove that these brackets are indeed Poisson brackets.
The fact that the brackets are skew-symmetric follows from the property

that Λ is “self-adjoint” with respect to the skew-symmetric scalar product.
Indeed:

{F,G}C

˜(m)
=

1
i

[[

∇SF, ˜Λ
m∇SG

]]

˜

= −1
i

[[

˜Λm∇SG,∇SF
]]

˜

= −1
i

[[

∇SG, ˜Λ
m∇SF

]]

˜

= −{G,F}C

˜(m)
. (8.264)

We also have the Leibnitz rule:

{FG,H}C

˜(m)
=

1
i

[[

∇S(FG), ˜Λm∇SH
]]

˜

=
1
i
F
[[

∇SG,Λ
m∇SH

]]

˜

+
1
i

[[

∇SF, ˜Λ
m∇SH

]]

˜

G

= F{G,H}C

˜(m)
+ {F,H}C

˜(m)
G , (8.265)

the second line being a consequence from ∇S(FG) = F∇SG+ (∇SF )G.
Finally, using the expansion (8.256) of ∇SF , an analogous one for ∇SG,

and the fact that the elements ˜P (x, λ) and ˜Q(x, λ) are eigenfunctions of ˜Λ,
(see (8.175)) we find:

{F,G}C

˜(m)
= −i

[[

∇SF, ˜Λ
m−2∇SG

]]

˜

(8.266)

=
∫ ∞

−∞
dλλm (η̃F κ̃G − κ̃F η̃G) (λ) +

N
∑±

k=1

(λ±k )m−2
(

η̃±F,kκ̃
±
G,k − κ̃±F,kη̃

±
G,k

)

.

The Jacobi identity is not trivial to check in these notations. However,
after we consider the corresponding symplectic form, this fact will become
clear. For this reason, we postpone its discussion until later.
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The hierarchy of Poisson brackets suggests that there must exist also hier-
archy of vector fields, symplectic forms etc. Indeed, combining the symplectic
form ΩC

(m) with HC one gets the following Hamiltonian vector field:

˜X
(m)

HC
· ≡ −{HC, ·}C

˜(m)
(8.267)

= −2i

∫ ∞

−∞
dλ λm−1f(λ)

[[

˜P (x, λ),∇S ·
]]

˜

−2i

N
∑±

k=1

(λ±
k )m−1f(λ±

k )
[[

˜P
±
k (x),∇S ·

]]

˜

,

The corresponding equation of motion is one of the higher generic NLEEs,
namely:

i ˜Λm ∂S

∂t
+ 2 ˜Λmf( ˜Λ)πSσ3 = 0 . (8.268)

The same NLEE (8.268) can be obtained also using the canonical Poisson
brackets {· , ·}C

˜(0)
with the Hamiltonian HC

(m) given by:

HC

(m) =
∑

k

4ifkCk+m+1 , (8.269)

Indeed, from the Lenard relation and from (8.242) there follows that

∇SH
C

(m) = 2 ˜Λmf( ˜Λ)πSσ3 . (8.270)

It is also easy to check using (8.262) that we have the infinite chain of
relations:

· · · = ˜Λ−1∇SH
C

(m+1) = ∇SH
C

(m) = ˜Λ∇SH
C

(m−1)

= · · · = ˜Λm∇SH
C

(0) = ˜Λm+1∇SH
C

(−1) = · · · , (8.271)

where we have put HC

(0) = HC. The elements of this infinite chain are well

defined only if the potential S(x) satisfies conditions ˜C1 and ˜C4.
Using the “self-adjoint” properties of ˜Λ with respect to the skew-symmetric

scalar product, we can write formally:

˜X
(m)

HC · ≡ −i
[[

∇SH
C

(0),
˜Λm∇S ·

]]

˜

= −i
[[

˜Λp∇SH
C

(0),
˜Λm−p∇S ·

]]

˜

= {∇SH
C

(p), ·}C

˜(m−p)
, (8.272)

for all p = ±1,±2, . . . . But each Hamiltonian vector field determines uniquely
the corresponding equations of motion. Therefore, the chain of relations
(8.271) shows that each generic NLEE allows a hierarchy of Hamiltonian
formulations:

∂S+

∂t
= {HC

(p), S
+(x, t)}C

(−p) , (8.273)
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−∂S
−

∂t
= −{HC

(p), S
−(x)}C

(−p) , (8.274)

The hierarchy of Poisson brackets entails that there must exist also a
hierarchy of 2–forms:

˜ΩC

(m) = − i

8
[[

[S, δS(x)]∧
′
˜Λm[S, δS(x)]

]]

˜

. (8.275)

These 2-forms are not canonical. The proof of the fact that δ ˜ΩC

(m) = 0, which
is equivalent to the Jacobi identity for the corresponding Poisson brackets is
performed by recalculating these forms in terms of the “action-angle” vari-
ables. For this, we follow the same idea as in the calculation of ˜ΩC

(0); see
(8.249). We insert the expansion for [S, δS(x)] over the symplectic basis and
act on this expansion by ˜Λm. This is easy to do because of (8.175) and the
result is:

˜Λm[S, δS(x)] = i

∫ ∞

−∞
dλλm−1

(

δη̃(λ)˜Q(x, λ)− δκ̃(λ)˜P (x, λ)
)

+ i
N
∑

k=1

(

(λ+
k )m−1

(

δη̃+
k
˜Q

+

k (x)− δκ̃+
k
˜P

+

k (x)
)

+ (λ−k )m−1
(

δη̃−k
˜Q

−
k (x)− δκ̃−k

˜P
−
k (x)

))

. (8.276)

In calculating the skew-symmetric scalar products of [S, δS(x)] with the
right-hand side of (8.276), we again obtain the variations of the variables η̃
and κ̃ with the result:

˜ΩC

(m) = i

∫ ∞

−∞
dλλm−2δκ̃(λ) ∧ δη̃(λ)

+ i
∑

k=1

((λ+
k )m−2δκ̃+

k ∧ δη̃
+
k + (λ−k )m−2δκ̃−k ∧ δη̃

−
k ) . (8.277)

Remark 8.10. The right-hand sides of (8.277) are well defined for all m ≥ 0
for potentials S(x) satisfying condition ˜C1. This condition ensures that κ̃(λ)
and η̃(λ) are Schwartz-type functions of λ.

Remark 8.11. For negative values of m, the existence of the integrals in (8.277)
is ensured only provided we put additional restrictions on S(x), which would
ensure that limλ→0 λ

mδκ̃(λ) ∧ δη̃(λ) exist for all m < 0.

Now it is easy to prove that.
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Proposition 8.2 Let potential S(x) satisfy condition ˜C1. Then the forms
˜ΩC

(m) for m ≥ 0 are closed, i.e.

δ ˜ΩC

(m) = 0, m = 0, 1, 2, . . . . (8.278)

If in addition S(x) satisfies the condition in remark 8.11, then each of the
forms ˜ΩC

(m) is closed also for m < 0.

Proof. Indeed, the condition in proposition 8.2 is such that the integral in the
right-hand side of (8.277) is well defined, so we can interchange the integration
with the operation of taking the external differential δ. Therefore, we have:

δ ˜ΩC

(m) = i

∫ ∞

−∞
dλλm−2δ (δκ̃(λ) ∧ δη̃(λ))

+ i
∑

k=1

δ
(

(λ+
k )m−2δκ̃+

k ∧ δη̃
+
k + (λ−k )m−2δκ̃−k ∧ δη̃

−
k )
)

= 0 , (8.279)

where we used the simple fact that δ(δg(λ)) ≡ 0 for any g(λ) and that
δλ±k ∧ δη̃

±
k = 0 due to (8.195).

Corollary 8.1 The Poisson brackets { ·, ·}C

˜(m)
satisfy the Jacobi identity.

Now, we are in position to establish the relationship between the gauge-
equivalent hierarchies of Hamiltonian structures. The easiest way to do this
is to compare the explicit expressions for ˜ΩC

(m) (8.279) and ΩC

(m) (7.74) and
to use the relationship between the two sets of action-angle variables. From
(8.195), (6.5) and (8.71), we find:

η̃(λ) = η(λ), κ̃(λ) = κ(λ)− ln a+
0 ,

η̃±k = η±k , κ̃±k = κ±k − ln a+
0 . (8.280)

Inserting this result into (8.280) one easily gets:

˜ΩC

(m) = i

∫ ∞

−∞
dλλm−2(δκ(λ) ∧ δη(λ)− δ ln a+

0 ∧ δη(λ))

+ i
∑

k=1

((λ+
k )m−2δκ+

k ∧ δη
+
k + (λ−k )m−2δκ−k ∧ δη

−
k ) (8.281)

− iδ ln a+
0 ∧

∑

k=1

((λ+
k )m−2δη+

k − (λ−k )m−2δη−k )

= ΩC

(m−2) − δ ln a+
0 ∧ δCm−1 (8.282)

Since ln a+
0 and Cm−1 are integrals of motion for our NLEEs, the forms ˜ΩC

(m)

and ΩC

(m−2) have the same Hamiltonian vector fields, written in different vari-
ables. See the discussion about it in Corollary 15.20, in Sect. 15.3.2, in the
second part.

Thus, we have shown that the gauge transformation (8.34) preserves the
Hamiltonian hierarchies as a whole but acts as a shift on the index m.
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8.10 Involutions and Hierarchies

It is natural to expect that the involutions of the Zakharov–Shabat system
L(λ) will have their counterparts for ˜L(λ). We start by recalling the main
results of Sect. 6.3 and their consequences for the spectral data of ˜L(λ).

The first involution considered there was (see (6.49)):

U∗(x, t, λ) = −ε−1U(x, t, λ)ε, ε =
(

0 1
−ε0 0

)

, (8.283)

where U(x, t, λ) = q(x, t)− λσ3 and ε0 = ±1.
The fundamental solution of L(λ) then must satisfy (6.50), which means

that g(x, t) must satisfy:

g∗(x, t) = ε−1g(x, t)ε . (8.284)

As a result the potential ˜U(x, t, λ) = λS(x, t) of ˜L(λ) must satisfy:

˜U∗(x, t, λ∗) = −ε−1
˜U(x, t, λ)ε (8.285)

or, equivalently:
S∗(x, t) = −ε−1S(x, t)ε . (8.286)

The corresponding constraints on the scattering data follow directly from
(6.52), (6.53), and (8.71):

ã−(λ) = (ã+(λ∗))∗, ˜b−(t, λ) = ε0(˜b+(t, λ∗))∗ , (8.287a)

ρ̃−(t, λ) = ε0(ρ̃+(t, λ∗))∗, τ̃−(t, λ) = ε0(τ̃+(t, λ∗))∗ , (8.287b)

η̃−(λ) = ε0(η̃+(λ∗))∗, κ̃−(t, λ) = −(κ̃+(t, λ∗))∗ , (8.287c)

The second involution (see (6.63)) was of the form:

U(x, t, λ) = σU(x, t,−λ)σ−1, σ =
(

0 1
ε1 0

)

, (8.288)

where ε1 = ±1. Then the fundamental solution of L(λ) satisfies, (6.64) which
means that:

g(x, t) = σg(x, t)σ−1 , (8.289)

and consequently:
˜U(x, t, λ) = σ ˜U(x, t,−λ)σ−1 , (8.290)

or
S(x, t) = −σS(x, t)σ−1 . (8.291)

The restrictions on the scattering data which follow from (6.65) to (6.67) and
(8.71) take the form:
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ã−(λ) = ã+(−λ), ˜b−(t, λ) = −ε1˜b+(t,−λ), (8.292a)

ρ̃−(t, λ) = −ε1ρ̃+(t,−λ), τ̃−(t, λ) = −ε1τ̃+(t,−λ) , (8.292b)

η̃−(λ) = η̃+(−λ), κ̃−(t, λ) = −κ̃+(t,−λ) . (8.292c)

Taking into account (8.71), and the fact that a±0 	= 0, we conclude that
the zeroes of the functions ã±(λ) and a±(λ), whenever present, coincide. We
formulate this as.

Corollary 8.2 The gauge-equivalent operators L(λ) and ˜L(λ) have the same
set of discrete eigenvalues.

8.10.1 The Involutions S3 = S∗
3 , S+ = ±(S−)∗

Written for the components of S(x, t) the involution (8.286) with ε0 = 1 takes
the form:

S3(x, t) = S∗
3 (x, t), S−(x, t) = S∗

+(x, t) . (8.293a)

This means that all components of the vector S(x, t) become real and the
corresponding 2× 2 matrix becomes hermitian:

S(x, t) = S†(x, t) . (8.293b)

As usual, we assume that conditions ˜C1–˜C3 hold so that corollary 8.2 holds
and both L(λ) and ˜L(λ) have the same set of discrete eigenvalues

λ±k = λ0,k ± iλ1,k ∈ C± , (8.294)

where μk and νk are real and νk > 0. Note that the symmetry λ+
k = (λ−k )∗

is a consequence of the imposed involution. Besides, we need to take into ac-
count (8.287) and to check how they affect the data on the discrete spectrum.
Skipping the details, we find that its effect on the action-angle variables are
as follows:

η̃(λ) = η̃∗(λ), κ̃(λ) = −κ̃∗(λ),
η̃k

+ = (η̃k
−)∗, κ̃k

+ = (κ̃k
−)∗, (8.295a)

where k = 1, . . . , N, and

η̃(λ) = 1
π ln(1 + |ρ̃+(t, λ)|2), κ̃(λ) = i arg˜b+(t, λ), λ ∈ R,

η̃±k = 2λ1,k ∓ iλ0,k, κ̃±k = ln |˜b+k | ± i arg˜b+k . (8.295b)

Thus, we conclude that ˜Ω(0) becomes purely real and has the form:

˜Ω(0) = −
∫ ∞

−∞
dλ δη̃(λ) ∧ δ arg˜b+(t, λ)
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− 4
N
∑

k=1

(

δνk ∧ δ arg˜b+k (t) + δμk ∧ δ ln |˜b+k (t)|
)

. (8.296)

As regards the integrals of motion, they also become real, (see (8.209)):

˜Cp = −1
2

∫ ∞

−∞
dλλp−1η̃(λ)− 2

p

N
∑

k=1

Im (λ+
k )p , (8.297)

and so the Hamiltonians H(0) become real:

H(0) = 4
∑

p

fp
˜Cp+1

= −2
∫ ∞

−∞
dμ f(μ)η̃(μ)− 8

N
∑

k=1

Im ( ˜F+
k ) , (8.298)

Here f(λ) is the dispersion law and ˜F (λ) and ˜F+
k are introduced in (8.252).

Analogously for the hierarchy ˜Ω(m) we get:

˜Ω(m) = −
∫ ∞

−∞
dλλm−2δη̃(λ) ∧ δ arg˜b+(t, λ) (8.299)

− 4
m− 1

N
∑

k=1

(

δIm (λ+
k )m−1 ∧ δ arg˜b+k (t)− δRe (λ+

k )m−1 ∧ δ ln |˜b+k (t)|
)

.

The hierarchy of Hamiltonians is provided by:

H(m) = 4
∑

p

fp
˜Cp+m+1

= −2
∫ ∞

−∞
dμμmf(μ)η̃(μ)− 8

N
∑

k=1

Im ( ˜F (m),+
k ) . (8.300)

where ˜F (m),+
k =

∫ λ
dλ′ λ′,m−2

˜f(λ′).
Thus, we see that the overall effect of the reduction is to “decrease twice”

the number of the dynamical variables both on the continuous and discrete
spectrum. Now two of the three types of angle variables: arg b+(t, λ) and arg˜b+k
are real and take values in the interval [0, 2π]; the variables of the third type
ln |˜b+k | are also real but may take arbitrary values.

The reduction imposes restrictions also on the dispersion law of the NLEE;
see (8.63b). The reduction (8.283) admits only dispersion laws whose expan-
sion coefficients are real, such as:

f(λ) =
∑

p

fpλ
p, fp = f∗

p . (8.301)
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The most important examples of NLEE obtained by this reduction are the
HF equation (8.1), its higher analog

i
∂S

∂t
− if0

8

{[

S,
∂3S

∂x3

]

− ∂S

∂x
〈Sxx, S(x, t)〉+ 2

[

S(x, t),
∂S

∂x

]

〈Sx, Sx〉
}

= 0 ,

(8.302)
which is gauge equivalent to the complex mKdV equation (7.97), and their
combination equation (8.58), which is gauge equivalent to the NLS-cmKdV
equation (7.98).

The second choice ε0 = −1 in (8.286) leads to:

S3(x, t) = S∗
3 (x, t), S−(x, t) = −S∗

+(x, t) . (8.303a)

For the components of the vector S(x, t), this means that only S3(x, t) remains
real, while S1,2(x, t) becomes purely imaginary:

S3(x, t) = S∗
3 (x, t), S1(x, t) = −S∗

1 (x, t), S2(x, t) = −S∗
2 (x, t) ,

(8.303b)
and the corresponding 2× 2 matrix becomes “quasi-hermitian”:

S(x, t) = σ3S
†(x, t)σ3 . (8.303c)

The change of sign of ε0 is crucial because, as was explained in Sect.
6.3 above, this involution makes L(λ) equivalent to a self-adjoint eigenvalue
problem (6.54), which can have no complex discrete eigenvalues. In addition,
the functions a±(λ) can have no eigenvalues on the real axis, which means that
L(λ) has no discrete spectrum. Since the gauge transformations are isospectral
the same facts must be true also for ˜L(λ). As a consequence, the corresponding
NLEE can have no soliton solutions. However, their complete integrability is
preserved. Their action–angle variables are provided by:

η(λ) = 1
π ln(1− |ρ+(λ)|2), κ(λ) = i arg b+(λ), λ ∈ R, (8.304)

From (6.55b), there follows that |ρ+(λ)| < 1 which makes the action variables
well defined for all real λ.

The integrals of motion remain purely real, (see (8.209)):

˜Cp = −1
2

∫ ∞

−∞
dλλp−1η̃(λ) , (8.305)

and the Hamiltonians become:

H(m) = 4
∑

p

fp
˜Cp+m+1 = −2

∫ ∞

−∞
dμμm

˜f(μ)η̃(μ) . (8.306)

The hierarchy of Hamiltonian structures is given by the sequence of symplectic
forms:
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˜Ω(m) = −
∫ ∞

−∞
dλλm−2δη̃(λ) ∧ δ arg˜b+(λ) . (8.307)

Obviously they are closed.
Again, the overall effect of the reduction is to decrease twice the number

of the dynamical variables. Now, we have “true” action-angle variables: η̃(μ)
and arg˜b+(t, λ) take values in the interval [0, 2π]. Therefore, the phase space
˜M in some sense is isomorphic to an infinite-dimensional torus.

The HF-type equations constrained by the involution (8.303) are gauge
equivalent to the NLS and cmKdV equations:

iut + uxx − 2|u|2u(x, t) = 0 , (8.308)
ut + uxxx − 6|u|2ux̂(x, t) = 0 , (8.309)

with “wrong” signs of the nonlinearity, compared to (7.96) and (7.97). Due to
the lack of soliton solutions, they are not so attractive to physicists.

8.10.2 The Involutions S+ = ±S−

This involution is obtained from (8.288) or (8.291) with ε1 = ∓1. We con-
sider two possibilities: ε1 = 1 and ε1 = −1, which means that there are no
restrictions on S3(x, t) but

S+(x, t) = −ε1S−(x, t) . (8.310)

Then the condition S2(x, t) = 11 means that

S2
3(x, t)− ε1(S+)2(x, t) = 1 , (8.311)

Therefore, S3(x, t) and S+(x, t) can be parametrized as trigonometric func-
tions of one variable:

S3(x, t) = cos(α(x, t)), S+(x, t) = S−(x, t) = sin(α(x, t)) , (8.312a)

for ε1 = −1 and

S3(x, t) = cosh(β(x, t)), S+(x, t) = −S−(x, t) = sinh(β(x, t)) . (8.312b)

for ε1 = 1. Note that since S3(x, t) and S±(x, t) are complex-valued functions,
then α(x, t) and β(x, t) may also be complex-valued. Since S3(x, t) must tend
to 1 for x→ ±∞ (see (8.7)), then we must have:

lim
x→±∞

α(x, t) = 2k±π, k± = 0,±1,±2, . . . , (8.313a)

lim
x→±∞

β(x, t) = 2p±iπ, p± = 0,±1,±2, . . . , (8.313b)

where k±, p± are integers. The differences
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k ≡ k+ − k− =
∫ ∞

−∞
dx

∂α

∂x
(8.314a)

p ≡ p+ − p− =
∫ ∞

−∞
dx

∂β

∂x
(8.314b)

are integrals of motion for all NLEE of the corresponding class. Such kinds of
invariants were first discovered and analyzed for the s-G equation and were
called topological charges, because they reflect the complicated topological
properties of the corresponding phase space. Indeed, ˜MC splits into union of
invariant subspaces:

˜MC =
∞
∪

k=−∞
˜MC

k , ˜MC

k ∩ ˜MC

s = ∅ for k 	= s , (8.315)

each subspace ˜MC

k has fixed value of k. The dynamics of any of the NLEE
leaves all this subspaces invariant. Any solution that has nonvanishing value
for k (or p) is considered as topologically nontrivial. For this reason, the value
of k (or p) is known as the topological charge. Indeed, they are conserved
not because of the special dynamics prescribed by the NLEEs but due to the
special choice of the initial conditions. We shall come back to this below.

For this involutions, one can calculate also the gauge function g(x, t) re-
lated to S(x, t) through (8.34c) in terms of α or β, respectively. Since g(x, t)
must satisfy (8.34c), then it has only two independent matrix elements con-
strained by the requirement det g(x, t) = 1 :

g(x, t) =
(

cos(α/2) sin(α/2)
− sin(α/2) cos(α/2)

)

, for ε1 = −1 , (8.316a)

g(x, t) =
(

cosh(β/2) sinh(β/2)
sinh(β/2) cosh(β/2)

)

, for ε1 = 1 . (8.316b)

The scattering data of ˜L(λ) must satisfy the restrictions analogous to
(6.66) and (6.68), namely:

ã−(λ) = ã+(−λ), ˜b−(t, λ) = −ε1˜b+(t,−λ) ,

η̃(λ) = η̃(−λ), κ̃(t, λ) = −κ̃(t,−λ),
(8.317)

for the data on the continuous spectrum and

λ+
k = −λ−k , ˜b+k (t) = −ε1˜b−k (t) ,

η̃+
k = η̃−k , κ̃+

k (t) = −κ̃−k (t).
, k = 1, . . . , N . (8.318)

The consequences of this involutions on the Hamiltonian structures and
on the conservation laws are as follows. From (8.296), there follows that the
canonical symplectic form ˜Ω(0) becomes identically zero: ˜Ω0 ≡ 0. In fact, from
(8.277) and (8.292), we find that for all symplectic forms with even indices:
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˜Ω(2p) ≡ 0 , (8.319)

As for the forms with odd indices, we get:

˜Ω(2p+1) = 2i
∫ ∞

0

dλλ2p−1δ ln
˜b+(t, λ)
˜b+(t,−λ)

∧ δη̃(λ)

+
2

p− 1

N
∑

k=1

δκ̃+
k ∧ δ(λ

+
k )2p . (8.320)

The reason why the degeneracy (8.319) occurs is that the integrand be-
comes an odd function of λ; besides, the terms under the summation sign due
to (8.317) and (8.318) cancel pairwise. For odd values of m = 2p + 1 these
terms add up.

Similar situation occurs for the integrals of motion. From (8.317) and
(8.318) it follows that

˜C2p = 0 , (8.321)

˜C2p+1 = −
∫ ∞

0

dλλ2p−1η̃(λ)− 2
2p− 1

N
∑

k=1

(λ+
k )2p−1 . (8.322)

The reduction now requires ˜f(λ) to be an odd function of λ

˜f(λ) = − ˜f(−λ), or, ˜f(λ) =
∑

p

f2p−1λ
2p−1 ; (8.323)

but the coefficients f2p−1 may take complex values. It is easy to see that due
to this, such reductions are not applicable, e.g. to the NLS and HF equations
which contain second-order derivatives with respect to x.

As examples of interesting NLEE related to this reduction in Chap. 7, we
mentioned the mKdV and sG. Here, we present the equation gauge equivalent
to the mKdV equation:

∂2S

∂x∂t
−
〈

∂2S

∂x∂t
, S(x, t)

〉

S +
1
2
[σ3, S]S(x, t) = 0 , (8.324)

with one of the following additional conditions:

〈S, σ1〉 = 0, ε2 = −1 , (8.325a)
〈S, σ1〉 = 0, ε1 = 1 . (8.325b)

8.10.3 Applying Both Involutions

Of course, one can ask whether it is possible to impose both involutions si-
multaneously. The answer is positive only if they commute. Indeed, we can
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calculate the interrelation between ˜U(x, t,−λ∗) and ˜U(x, t, λ) in two ways:
(i) first applying involution (8.283) and then (8.284) and (ii) first applying
(8.284) then (8.283). The two results will be identical if the matrices ε and σ
commute, i.e. the involutions are compatible provided:

ε0 = −ε1 . (8.326)

Again, we can consider two possibilities. The first one is:

ε0 = 1, ε1 = −1 , (8.327)

which means that S∗
3 (x, t) = S3(x, t) and

(S+(x, t))∗ = S−(x, t) = S+(x, t), or S±(x, t) = sin(α(x, t)) ,
(8.328)

where α(x, t) is a real-valued function.
In this case, the scattering data must satisfy both sets of restrictions

(8.287) and (8.292) at the same time. This has to be done with special care
for the discrete spectrum. Indeed, the discrete spectrum of L may contain two
types of eigenvalues:

1. pairs of purely imaginary eigenvalues:

λ±k = ±isk, k = 1, . . . , N0 , (8.329)

2. quadruplets of complex eigenvalues, lying on the vertices of a quadrangle
in the complex λ–plane:

λ±k = λ0,k±iλ1,k, λ±k+N1
= −λ0,k±iλ1,k, k = N0+1, . . . , N0+N1 .

(8.330)

The functions η̃(λ) and κ̃(t, λ) as before have the properties:

κ̃(t, λ) = κ̃(−λ), η̃(λ) = −η̃(−λ) , (8.331)

(compare (6.67c) and (8.195)) so that only the 2-forms ˜Ω(2p+1) are nondegen-
erate. A bit more care is needed to calculate the contribution of the discrete
spectrum to ˜Ω(2p+1). The result is:

˜Ω(2p+1) = −2
∫ ∞

0

dλλ2p−1δκ̃(t, λ) ∧ δη̃(λ) +
2(−1)p

p

N0
∑

k=1

δ ln˜b+k ∧ δs
2p
k

+
4
p

N0+N1
∑

k=N0+1

(

δ(ln |˜b+k |) ∧ δ(Re (λ+
k )2p − δ arg˜b+k ∧ δ(Im (λ+

k )2p
)

. (8.332)

for p = 0, 1, 2, . . ..
Of course, these formulae are not valid for p = 0. In this case, we have:
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˜Ω(1) = −2
∫ ∞

0

dλ

λ
δ arg˜b+(t, λ) ∧ δη̃(λ) + 2

N0
∑

k=1

δ ln˜b+k ∧ δ ln sk

+ 4
N0+N1
∑

k=N0+1

(

δ(ln |˜b+k |) ∧ δ(ln |λ
+
k | − δ arg˜b+k ∧ δ(arg(λ+

k )
)

. (8.333)

The 2-form ˜Ω(1) is well defined only for the class of potentials for which the
reflection coefficients ρ̃±(λ = 0) = 0 and τ̃±(λ = 0) = 0.

Analogously, for the integrals of motion we get:

C2p−1 = −
∫ ∞

0

dλλ2p−2η̃(λ)− 4
2p− 1

N0
∑

k=1

(−1)ps2p−1
k

− 8
2p− 1

N0+N1
∑

k=N0+1

Im (λ+
k )2p−1 . (8.334)

The second choice for the involution parameters is

ε0 = −1, ε1 = 1 , (8.335)

which preserves the restriction on S∗
3 (x, t) = S3(x, t) but changes the ones on

S±(x, t) to:

(S+(x, t))∗ = −S−(x, t) = S+(x, t) = sinh(β(x, t)) , (8.336)

where β(x, t) is a real-valued function. In this case, the Lax operator does not
have discrete eigenvalues. Skipping the details, we note that the corresponding
action-angle variables are given by:

η̃(λ) =
1
π

ln(1− |ρ̃+(t, λ)|2), κ̃(λ) = i arg˜b+(t, λ), 0 ≤ λ . (8.337)

The symplectic forms ˜Ω(2p) vanish identically and ˜Ω(2p−1) reduce to

˜Ω(2p+1) = 2
∫ ∞

0

dλλ2p−1δη̃(λ) ∧ δ arg˜b+(t, λ) . (8.338)

The integrals of motion ˜C2p become identically zero, while ˜C2p+1 remains
nontrivial and purely real (see (7.105)):

˜C2p−1 = −1
2

∫ ∞

−∞
dλλ2p−2η̃(λ) . (8.339)

The corresponding Hamiltonians H(2p−1) then take the form:

H(2p−1) = 4
∑

p

f2p
˜C2p−1 = −2

∫ ∞

0

dμμ2p−2
˜f(μ)η̃(μ) , (8.340)

where the dispersion law ˜f(λ) is an odd function of λ.
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We end this Chapter with a remark concerning the Lax representations of
the sine-Gordon and sinh-Gordon equations [2]. They possess the symmetry
mentioned in the remark 8.8 above. Indeed, these equations are symmetric
under the exchange x ↔ t. Using as L(λ) the Zakharov-Shabat system with
the involutions q(x) = v(x, t)σ and v = ±v∗, we get that the M -operator
takes the form:

M = i
∂

∂t
+

1
λ
S(x, t) . (8.341)

where S(x, t) is given by the proper formula in (8.312) above. If we insert
(8.312a) (resp. (8.312b)) into the matrix equation (8.324), after some calcu-
lations we derive the s-G equation for α(x, t) (resp. the sinh-G equation for
β(x, t)).

The compatibility condition [L(λ),M(λ)] = 0 leads to an interrelation
between q(x, t) and S(x, t), which may be solved explicitly. Indeed, inserting
(8.316) into q(x, t) = −igxĝ(x, t) we get:

q(x, t) = − i

2

(

0 αx

−αx 0

)

, for s-G case ε1 = −1 , (8.342a)

q(x, t) = − i

2

(

0 βx

βx 0

)

, for sinh-G case ε1 = 1, (8.342b)

i.e. we reproduce the Lax representation for the s-G and sinh-G equations
with x and t interchanged. In this particular case, the gauge transformation
just interchanges the operators L and M in the Lax representation.

8.11 Comments and Bibliographical Review

1. The equivalence between the NLS and the HF equation was discovered by
Lakshmanan [3]. The notion of gauge transformations for the Lax repre-
sentation was introduced by Zakharov and Takhtadjan [1]. Using it, the
equivalence between seemingly different hierarchies of NLEE became clear
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; it was applied also for the discrete
evolution equations [16, 17].

2. The direct and inverse scattering method for the gauge-equivalent oper-
ator ˜L was developed in [1]. The corresponding Wronskian relations, the
explicit form of the squared solutions, and their completeness relations
were derived by the present authors [2, 10]. There also it was shown that
the interpretation of the ISM as a generalized Fourier transform is valid
also for the gauge-equivalent systems. This fact can be generalized for ZS
and pole-type Lax operators related to any simple Lie algebra [6].

3. The gauge-equivalent soliton equations, e.g. the HF-type equations also
admit Hamiltonian formulation [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
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68, 69, 70, 71, 72]. However, the gauge transformations act nontrivially
on the hierarchies of Hamiltonian structures of the NLEE. The interrela-
tion between the hierarchies Hamiltonian structures of NLS and the HF
equations was discovered by Kulish and Reyman [4].

4. A gauge-covariant formulation of the theory of recursion operators Λ± for
the Zakharov–Shabat system is proposed in [2, 7, 10]. There, the opera-
tors, ˜Λ±, corresponding to the gauge equivalent system in the pole gauge
were explicitly calculated. Thus, the unified approach to the nonlinear
Schrödinger-type equations based on Λ can be automatically reformu-
lated with the help of Λ̃ for the HF-type equations. Consequently, it is
established that the conserved densities for the HF-type equations are
polynomial in S(x) and its x-derivatives. Special attention is paid to the
interrelation between the hierarchies of symplectic structures correspond-
ing to the above-mentioned families of gauge-equivalent equations.

5. Along with the standard and the pole gauge, there exist also other possi-
bilities to fix up the gauge. Some of these gauge transformations may look
somewhat exotic, but the important property is whether they are one-to-
one mappings; we will call such gauges admissible. If that is true, then all
the ideas displayed in the first part of this monograph such as Wronskian
relations, expansions over squared solutions, Hamiltonian hierarchies, etc.
can be transferred to any admissible gauge. As examples for such hi-
erarchies, we can point out the relation between the HF-type equations
and the Wadati-Konno-Ichikawa-Shimizu (WKIS) equations [73]. Another
example of such nontrivial gauge-like transformations was used in inter-
relating the properties of the KdV-type equations with the ones of the
Camassa–Holm hierarchy [74, 75, 76, 77, 78, 79, 80, 81].
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Transformations, Generalized Fourier Transforms and All That. Prog. Theor.
Phys., 75(5):1111–1141, 1986.

74. R. Camassa and D. Holm. An integrable shallow water equation with peaked
solitons. Phys. Rev. Lett., 71:1661–1664, 1993.

75. R. I. Ivanov. On the dressing method for the generalised Zakharov–Shabat
system. Nuclear Phys. B, 694:509–524, 2004.

76. R. I. Ivanov. Conformal properties and Bäcklund transform for the associated
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9

The Classical r-Matrix Method

In this chapter, we shall outline the modern approach to the Hamiltonian
properties of the NLEE based on the classical r-matrix. In the first section,
we introduce the notion of the classical r-matrix for the ZS system on fi-
nite interval. The same method is applicable to its gauge-equivalent system.
Next we outline how the r-matrix method can be extended to the ZS sys-
tem on the whole axis with vanishing boundary conditions and calculate the
Poisson brackets between the matrix elements of the scattering matrix. In
Sect. 9.3, we derive the classical Yang–Baxter equation as the condition on
the r-matrix that ensures the Jacobi identity on the relevant Poisson brackets.
The classical r-matrices entertwining the ZS system and its gauge-equivalent
one can be naturally generalized to higher rank Lie algebras g. New solutions
of the classical Yang–Baxter equation can be obtained from already known
ones by averaging over the action of Lie algebra automorphisms. Combining
these facts with the properties of the fundamental representations of g, one
can prove that the principal series of the integrals of motion for a given gZS
system are in involution.

9.1 The Classical r-Matrix and the NLEE of NLS Type

In this chapter, we shall extensively use the notion of tensor product of matri-
ces. The tensor product A⊗B of the n× n matrix A with the m×m matrix
B can be defined in different ways; two of them are [1]:

A⊗B =

⎛

⎜

⎝

A11B A12B . . . A1nB
...

...
. . .

...
An1B An2B . . . AnnB

⎞

⎟

⎠
(9.1)

or

A⊗B =

⎛

⎜

⎝

B11A B12A . . . B1mA
...

...
. . .

...
Bn1A Bm2A . . . BnnA

⎞

⎟

⎠
(9.2)
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With both definitions one ends up with an nm×nm matrices; the right-hand
sides of (9.1) and (9.2) are related by a similarity transformation [1].

The results displayed below are independent of the definition for A ⊗ B
we are using.

One of the definitions of the classical r-matrix is based on the Lax rep-
resentation for the corresponding NLEE. We shall start from this definition,
but first we shall introduce the following notation:

{

U(x, λ)⊗
′
U(y, μ)

}

, (9.3)

which is an abbreviated record for the Poisson bracket between all matrix
elements of U(x, λ) and U(y, μ)

{

U(x, λ)⊗
′
U(y, μ)

}

ik,lm

= {Uik(x, λ), Ulm(y, μ)} . (9.4)

In particular, if U(x, λ) is of the form:

U(x, λ) = q(x)− λσ3, q(x) = q+σ+ + q−σ− , (9.5)

and the matrix elements of q(x) satisfy (7.23), then:
{

U(x, λ)⊗
′
U(y, μ)

}

= i (σ+ ⊗ σ− − σ− ⊗ σ+) δ(x− y) . (9.6)

The classical r-matrix in our case is an element from sl(2)⊗ sl(2) defined
through the relation:
{

U(x, λ)⊗
′
U(y, μ)

}

= i [r(λ− μ), U(x, λ)⊗ 1l + 1l⊗ U(y, μ)] δ(x−y) . (9.7)

Equation (9.7) can be understood as a system of 16 equations for the 16
matrix elements of r(λ − μ). However, these relations must hold identically
with respect to λ, μ and q±(x), i.e. (9.7) is an overdetermined system of
algebraic equations for the matrix elements of r. It is far from obvious whether
such r(λ−μ) exists; still less obvious is that it depends only on the difference
λ − μ. In other words, far from any choice for U(x, λ) and any choice for
the Poisson brackets between its matrix elements a classical r-matrix can be
found. In the next Section, we shall discuss in greater detail the question as
to which types of U(x, λ) allow r-matrices. In our case, system (9.7) allows a
solution, with the r-matrix given by:

r(λ− μ) = − P

λ− μ
, (9.8)

where P is a constant 4× 4 matrix:
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P =
1
2

(

1l +
3
∑

α=1

σα ⊗ σα

)

=

⎛

⎜

⎜

⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟

⎟

⎠

. (9.9)

The matrix P possesses the following special properties:

P (X ⊗ Y ) = (Y ⊗X)P, P 2 ≡ 1l , (9.10)

i.e. it interchanges the positions of the elements in the tensor product. By
using these properties of P we get:

[P, q(x)⊗ 1l + 1l⊗ q(x)] = 0 , (9.11)

showing that the right-hand side of (9.7) does not contain q(x). Besides:

[P, λσ3 ⊗ 1l + μ1l⊗ σ3] = (λ− μ) [P, σ3 ⊗ 1l]

= −2(λ− μ) (σ+ ⊗ σ− − σ− ⊗ σ+) , (9.12)

where we used the commutation relations between the Pauli matrices:

[σα, σβ ] = 2iεαβγσγ , α, β, γ = 1, 2, 3 . (9.13)

The comparison between (9.11), (9.12), and (9.7) shows that r(λ − μ) (9.8)
indeed satisfies the definition (9.7).

Let us now show that the classical r-matrix, if it exists of course, is a very
effective tool for calculating the Poisson brackets between the matrix elements
of the scattering matrix T (λ, t). It will be more convenient for us to start with
the Zakharov–Shabat problem with periodic boundary conditions:

i
∂T�

∂x
+ U(x, λ)T�(x, y, λ) = 0, U(x+ 2�, λ) = U(x, λ) , (9.14)

By T�(x, y, λ), we denote the fundamental solution of (9.14), satisfying the
boundary condition:

T�(x, x, λ) = 11 . (9.15)

Obviously T�(x, y, λ) can be written down as the ratio of two Jost solutions
of (9.14):

T�(x, y, λ) = ψ(x, λ)ψ̂(y, λ) . (9.16)

Periodic boundary conditions require special treatment, which we shall not
display in detail. We just mention that the proper analog of the scatter-
ing matrix T (λ, t) here is the transfer matrix T�(λ, t) for one period −� ≤
x ≤ �, i.e.

T�(t, λ) = T�(−�, �, t, λ) =
(

a+
� (λ) −b−� (t, λ)

b+� (t, λ) a−� (λ)

)

(9.17)
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Now we prove the following relation:
{

T�(x, y, λ)⊗
′
T�(x, y, μ)

}

= [r(λ− μ), T�(x, y, λ)⊗ T�(x, y, μ)] δ(x− y) ,

(9.18)
for −� ≤ x < y ≤ �. In order to do this we shall make use of the general
properties of the Poisson brackets, from which there follows:

{

T�(x, y, λ)⊗
′
T�(x, y, μ)

}

ab,cd

= {T�,ab(x, y, λ), T�,cd(x, y, μ)} (9.19)

=
∫ ∞

−∞
dz dz′

δT�,ab(x, y, λ)
δUjk(z, λ)

{Ujk(z, λ), Ulm(z′, μ)} δT�,cd(x, y, λ)
δUlm(z′, λ)

.

In order to calculate the variational derivatives of T�,ab(x, y, λ), we shall use
the relations:

i
dδT�

dx
= U(x, λ)δT�(x, y, λ) + δU(x, λ)T�(x, y, λ) ,

δT�(x, x, λ) = 0 , (9.20)

which are obtained by taking the variation of (9.14). The formal solution of
(9.20) is given by:

δT�(x, y, λ) = −i
∫ ∞

−∞
dzT�(x, z, λ)δU(z, λ)T�(z, y, λ) , (9.21)

i.e. for the variational derivatives δ(T�,ab(x, y, λ))/δUjk(z, λ) we get:

δT�,ab(x, y, λ)
δUjk(z, λ)

= −iT�,aj(x, z, λ)T�,kb(z, y, λ) . (9.22)

Let us now insert (9.22) into (9.20) and write down the result in terms of
tensor products:
{

T�(x, y, λ)⊗
′
T�(x, y, μ)

}

= −
∫ x

y

dz

∫ x

y

dz′ (T�(x, z, λ)⊗ T�(z′, y, μ))

{

U(z, λ)⊗
′
U(z′, μ)

}

(T�(z, y, λ)⊗ T�(z′, y, μ))

= −i
∫ x

y

dz (T�(x, z, λ)⊗ T�(z, y, μ))

[r(λ− μ), U(z, λ)⊗ 1l + 1l⊗ U(z, μ)] (T�(z, y, λ)⊗ T�(z, y, μ))

=
∫ x

y

dz

(

{T�(x, z, λ)⊗ T�(z, y, μ)) r(λ− μ)
d

dz
(T�(z, y, λ)⊗ T�(z, y, μ))
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+ i (T�(x, z, λ)⊗ T�(z, y, μ)) (U(z, λ)⊗ 1l

+ 1l⊗ U(z, μ)) r(λ− μ) (T�(z, y, λ)⊗ T�(z, y, μ))) (9.23)

For the next step we use the fact that if T�(x, y, λ) is a solution of (9.14),
(9.15), then T�(x, z, λ) will satisfy:

dT�(x, z, λ)
dz

= −T�(x, z, λ)U(z, λ), T�(x, x, λ) = 1l . (9.24)

This allows us to write down the integrand in the last equality in (9.23) as a
total z-derivative:

{

T�(x, y, λ)⊗
′
T�(x, y, μ)

}

=
∫ x

y

dz
d

dz
{(T�(x, z, λ)⊗ T�(x, z, μ)} r(λ− μ)

(T�(z, y, λ)⊗ T�(z, y, μ))}

= [r(λ− μ), T�(x, y, λ)⊗ T�(x, y, μ)] , (9.25)

after which it coincides with (9.19). In order to calculate the Poisson brackets
between the matrix elements of T�(λ), it is enough to put x = �, y = −�:

{

T�(λ)⊗
′
T�(μ)

}

= [r(λ− μ), T�(λ)⊗ T�(μ)] . (9.26)

An elementary consequence of this result is the involutivity of the integrals
of motion I�,k. Indeed, let us multiply both sides of (9.26) by C ⊗ C with
C = (11 + σ3)/2 and take the tr on both sides. Then its right-hand side
obviously vanishes, and the left-hand side gives:

{

a+
� (λ), a+

� (μ)
}

= 0 . (9.27)

Consider the asymptotic expansions of ln a+
� (λ)

ln a+
� (λ) =

∞
∑

k=1

I�,kλ
−k , (9.28)

(compare with (6.87)) and insert it into (9.27). Since (9.27) holds identically
with respect to λ and μ we obtain:

{I�,k, I�,m} = 0, k,m = 1, 2, . . . (9.29)

One can choose also C = (11− σ3)/2, which immediately gives us the involu-
tivity also of:

{

a+
� (λ), a−� (μ)

}

=
{

a−� (λ), a−� (μ)
}

= 0 . (9.30)
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Let us also write down the Poisson brackets between the remaining matrix
elements of T�(λ):

{

b+� (λ), b+� (μ)
}

=
{

b−� (λ), b−� (μ)
}

= 0 ,
{

a+
� (λ), a+

� (μ)
}

=
{

a−� (λ), a−� (μ)
}

= 0 ,

{

a+
� (λ), a−� (μ)

}

=
1

λ− μ

(

b+� (λ)b−� (μ)− b−� (λ)b+� (μ)
)

,

{

b+� (λ), b−� (μ)
}

=
1

λ− μ

(

a+
� (λ)a−� (μ)− a−� (λ)a+

� (μ)
)

, (9.31)

{

b+� (λ), a±� (μ)
}

=
±1
λ− μ

(

b+� (λ)a±� (μ)− a±� (λ)b+� (μ)
)

,

{

b−� (λ), a±� (μ)
}

=
∓1
λ− μ

(

b−� (λ)a±� (μ)− a±� (λ)b−� (μ)
)

,

Taking the limit � → ∞, we are able to transfer these results also for the
case of potentials with zero boundary conditions at infinity. Such procedure
is not trivial. Here, we note that the scattering matrix T (λ, t) is related to
T�(λ, t) through:

T (λ) = lim
x→−∞
y→∞

E−1(x, λ)T�(x, y, t, λ)E(y, λ), E(x, λ) = e−iλxσ3 . (9.32)

Therefore, we multiply (9.19) by E(y, λ) ⊗ E(y, μ) on the right and by
E−1(x, λ)⊗E−1(x, μ) on the left and calculate the limit for x→∞, y → −∞
taking into account (9.32) and the well-known formulae:

lim
x→±∞

eix(λ−μ)

λ− μ
= ±iπδ(λ− μ) . (9.33)

The answer is given by:
{

T (λ)⊗
′
T (μ)

}

= r+(λ− μ)T (λ)⊗ T (μ)− T (λ)⊗ T (μ)r−(λ− μ) , (9.34)
r±(λ− μ) = lim

x→±∞

(

E−1(x, λ)⊗ E−1(x, μ)
)

r(λ− μ) (E(y, λ)⊗ E(y, μ))

= −σ0 ⊗ σ0 + σ3 ⊗ σ3

2(λ− μ)
∓ iπδ(λ− μ) (σ+ ⊗ σ− − σ− ⊗ σ+) . (9.35)

Written in components the Poisson brackets (9.34) have the form:
{

a+(λ), a+(μ)
}

=
{

a−(λ), a−(μ)
}

=
{

a+(λ), a−(μ)
}

= 0 ,
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{

b+(λ), b+(μ)
}

=
{

b−(λ), b−(μ)
}

= 0 ,

{

b+(λ), a±(μ)
}

= ±b
+(λ)a±(μ)
2(λ− μ)

+ iπδ(λ− μ)a±(λ)b+(λ) , (9.36)

{

b−(λ), a±(μ)
}

= ∓b
−(λ)a±(μ)
2(λ− μ)

− iπδ(λ− μ)a±(λ)b−(λ) ,

{

b+(λ), b−(μ)
}

= −2iπδ(λ− μ)a+(λ)a−(λ) ,

From the equalities in the first line of (9.36), there immediately follows that
the integrals of motion I�,k retain their involutivity after the limit � → ∞.
The relations (9.36) allow us also to calculate the Poisson brackets between:

η(λ) =
1
π

ln a+(λ)a−(λ) = − 1
π

ln
(

1 + ρ+(λ)ρ−(λ)
)

, (9.37)

and
κ(λ) =

1
2

ln
(

b+(λ)/b−(λ)
)

, (9.38)

and to assert that

{κ(λ), η(μ)} = iδ(λ− μ), {κ(λ), κ(μ)} = {η(λ), η(μ)} = 0 (9.39)

for λ, μ ∈ R. Generically speaking, the Zakharov–Shabat system L (9.14b)
possesses also discrete eigenvalues. The variables η(λ), κ(λ) (9.37) and (9.38)
provide the scattering data on the continuous spectrum of L; the data on its
discrete spectrum is characterized by:

η±k = ∓2iλ±k , κ±k = ± ln b±k , k = 1, . . . ,M , (9.40)

where λ±k ∈ C± are the discrete eigenvalues of L. We assume that these are
finite number of simple eigenvalues and that the normalization of the Jost
solutions ψ±

k (x) ≡ ψ(x, λ±k ) are determined by the constants b±k . The fact
that the eigenvalues λ±k are simple means that λ±k are simple zeroes of a±(λ),
i.e. in the neighborhood of λ±k a±(λ) has the expansion:

a±(λ) =
(

λ− λ±k
)

ȧ±k +
1
2
(

λ− λ±k
)2
ä±k + . . . (9.41)

The calculation of the Poisson brackets between η±k , κ±k , η(λ) and κ(λ)
requires a deeper knowledge of the spectral theory of the system L which was
outlined in Chaps. 3 and 4 of the present monograph. Here, we shall only
write down the nontrivial (i.e. the non-vanishing) Poisson brackets:

{

η+
k , κ

+
l

}

=
{

η−k , κ
−
l

}

= δkl . (9.42)

The comparison between (2.54), (9.37), and (9.38) shows that if q(x) is a
solution of the NLEE (6.7), then η±k , κ±k , η(λ) and κ(λ) will satisfy:

iηt = 0, iκt = f(λ), iη±k,t = 0, iκ±k,t = f(λ±k ), (9.43)
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This makes evident the fact that the set
{

η(λ), κ(λ), η±k , κ
±
k

}

may be con-
sidered as a generalization of the action-angle variables for systems with an
infinite number of degrees of freedom as seen in Chap. 7.

9.2 The Classical r-Matrix and the NLEE of Heisenberg
Ferromagnet Type

The method, which we used in the previous Section to introduce the classi-
cal r-matrix is not explicitly gauge covariant. We shall show that not only
the Zakharov–Shabat system but also its gauge-equivalent one also allows an
r-matrix formulation. We start by formulating the system L̃, gauge equivalent
to L:

L̃T̃�(x, y, λ) ≡
(

i
d

dx
− λS(x)

)

T̃�(x, y, λ) = 0, T̃�(x, x, λ) = 0 , (9.44)

where

S(x) = g−1(x)σ3g(x) =
3
∑

α=1

Sα(x)σα , (9.45)

and g(x) = T̃�(x, y, λ = 0). The symplectic structure in the phase space Φ̃ of
the NLEE (8.203) is introduced by the following Poisson brackets:

{

Sα(x), Sβ(y)
}(0) = −εαβγSγ(x)δ(x− y) . (9.46)

(compare with (9.13)). The system (9.44) can be written down in the form
id ˜ψ/dx + ˜U(x, λ) with Ũ(x, λ) = −λS(x). By inserting this expression for
Ũ(x, λ) into (9.4), we obtain the following form of (9.6) related to the system
L̃ and to the HFE:

{

Ũ(x, λ)⊗
′
Ũ(y, μ)

}(0) = −λμ
∑

α,β,γ

εαβγσα ⊗ σβSγ(x)δ(x− y) (9.47)

We introduce the corresponding classical r-matrix through:
{

U(x, λ)⊗
′
U(y, μ)

}(0) = i
[

r̃(λ− μ), Ũ(x, λ)⊗ 1l + 1l⊗ Ũ(y, μ)
]

δ(x− y)

(9.48)
and consider (9.48), just like in the previous Section, as a system of 16 equa-
tions for the 16 matrix elements of r̃(λ− μ). They must hold identically with
respect to λ, μ and S(x). Just like before, it is far from obvious whether this
system allows solution, but we can see that

r̃(λ− μ) = − λμP

λ− μ
, P =

1
2

3
∑

α=0

σα ⊗ σα , (9.49)
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indeed satisfies (9.48). At first glance r̃(λ−μ) is not a function of the difference
λ− μ; but (9.49) can be written down as:

r̃(λ− μ) = − P

1/λ− 1/μ
. (9.50)

After changing the variables λ and μ by 1/λ and 1/μ we see that r̃(1/λ, 1/μ)
again depends only on the difference 1/λ− 1/μ and, moreover, has the same
matrix structure as the classical r-matrix for the NLSE.

Next, we derive the analogue to relation (9.26) for system (9.44). In order
to calculate the Poisson brackets between the matrix elements of T̃�(x, y, λ),
we need to know their variational derivatives with respect to Sγ(x); these will
be calculated by making use of (9.44) and the relation:

i
dδT̃�

dx
− λS(x, y)δT̃�(x, y, λ) = λδS(x)T̃�(x, y, λ) ,

δT̃�(x, x, λ) = 0 , (9.51)

following from (9.44). The solution of (9.51) is given by the expression:

δT̃�(x, y, λ) = −i
∫ ∞

−∞
dzT̃�(x, z, λ)δS(z)T̃�(z, y, λ) , (9.52)

i.e. the variational derivatives δ(T�,ab(x, y, λ))/δS0(z) are equal to

δT̃�,ab(x, y, λ)
δSc(z, λ)

= −iλT̃�(x, z, λ)σcT̃�(z, y, λ) . (9.53)

The rest of the calculations are analogous to the ones in Sect. 9.1 and
lead to:
{

T̃�(x, y, λ)⊗
′
T̃�(x, y, μ)

}(0) =
[

r̃(λ− μ), T̃�(x, y, λ)⊗ T̃�(x, y, μ)
]

, (9.54)

for −� < x < y < �. In order to calculate the Poisson brackets between the
matrix elements of T�(λ) it is enough to assume x = �, y = −�

{

T̃�(λ)⊗
′
T̃�(μ)

}(0) =
[

r̃(λ− μ), T̃�(λ)⊗ T̃�(μ)
]

. (9.55)

From the properties of P (see (9.10), (9.11), (9.50), and (9.55), there im-
mediately follows the involutivity of the integrals of motion Ĩ�,k with respect
to Poisson brackets (9.46). Indeed, let us take the tr from both sides of (9.55);
its right-hand side obviously vanishes, and denoting tr T̃�(λ) = F̃�(λ), the left-
hand side gives:

{

F̃�(λ), F̃�(μ)
}(0) = 0 , (9.56a)
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From the gauge equivalence between L and L̃, we get ã±� (λ) = a±� (λ)/a±� (0).
Therefore, the asymptotic expansions for ln ã±� (λ) reads:

ln ã±� (λ) =
∞
∑

k=0

I�,kλ
−k, I�,0 = ln a±� (0) . (9.56b)

Next, we derive the analog of (9.27):
{

ã+
� (λ), ã+

� (μ)
}(0) = 0 . (9.56c)

which must hold identically with respect to λ and μ. This gives, in complete
analogy with (9.27),

{

I�,k, I�,m
}(0) = 0, k,m = 0, 1, 2, . . . (9.56d)

The formulae (9.56) are not an immediate consequence of (9.27), (9.28),
(9.29) and (9.30), although they resemble them very much. The essential dif-
ference consists in that the gauge covariance does not transfer Poisson brack-
ets (7.23) into Poisson brackets (9.46). Later we shall formulate the nontrivial
interrelation between the Hamiltonian structures, defined by these two Pois-
son brackets. Now, we write down all Poisson brackets between the matrix
elements of T�(λ), which follow from (9.55)

{

ã+
� (λ)ã+

� (μ)
}(0) =

{

ã−� (λ)ã−� (μ)
}(0) = 0

{

ã+
� (λ)ã−� (μ)

}(0) =
λμ

λ− μ

(

b̃+� (λ)b̃−� (μ)− b̃−� (λ)b̃+� (μ)
)

,

{

b̃+� (λ)b̃−� (μ)
}(0) =

λμ

λ− μ

(

ã+
� (λ)ã−� (μ)− ã−� (λ)ã+

� (μ)
)

, (9.57)

{

b̃+� (λ)ã±� (μ)
}(0) = ± λμ

λ− μ

(

b̃+� (λ)ã±� (μ)− ã±� (λ)b̃+� (μ)
)

,

{

b̃−� (λ)ã±� (μ)
}(0) = ∓ λμ

λ− μ

(

b̃−� (λ)ã±� (μ)− ã±� (λ)b̃−� (μ)
)

,

The limit �→∞ can be taken like in (9.33) using the analogue of (9.32)

T̃ (λ) = lim
x→∞

lim
y→−∞

E−1(x, λ)T̃�(x, y, λ)E(y, λ) . (9.58)

This limit will also allow transfer of the results to the case of potentials with
vanishing boundary conditions. As a result, we obtain:
{

T̃�(λ)⊗
′
T (μ)

}(0) = r̃+(λ−μ)T̃�(λ)⊗T̃�(μ)−T̃�(λ)⊗T̃�(μ)r̃−(λ−μ) , (9.59)
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where

r̃±(λ− μ)
= lim

x→±∞

(

E−1(x, λ)⊗ E−1(x, μ)
)

r̃(λ− μ) (E(x, λ)⊗ E(x, μ))

= − λμ

2(λ− μ)
(σ0 ⊗ σ0 + σ3 ⊗ σ3)

∓iπλ2δ(λ− μ) (σ+ ⊗ σ− − σ− ⊗ σ+) . (9.60)

Written in components, Poisson brackets (9.59) have the form:
{

ã+(λ), ã+(μ)
}(0) =

{

ã+(λ), ã−(μ)
}(0) =

{

ã−(λ), ã−(μ)
}(0) = 0

{

b̃+(λ), b̃+(μ)
}(0) =

{

b̃−(λ), b̃−(μ)
}(0) = 0 , (9.61)

{

b̃+(λ), ã±(μ)
}(0) = ± λμ

2(λ− μ)
b̃+(λ)ã±(μ) + iπδ(λ− μ)λ2ã±(λ)b̃+(λ) ,

{

b̃−(λ), ã±(μ)
}(0) = ∓ λμ

2(λ− μ)
b̃−(λ)ã±(μ)− iπδ(λ− μ)λ2ã±(λ)b̃−(λ) ,

{

b̃+(λ), b̃−(μ)
}(0) = −2iπδ(λ− μ)λ2ã+(λ)ã−(λ) ,

In analogy with what we had before, there follows that the integrals of
motion I�,k retain their involutivity also after the limit �→∞ is taken. From
them there follows that the Poisson brackets between

η̃(λ) =
1
πλ2

ln a+(λ)a−(λ) = − 1
πλ2

(

1 + ρ+(λ)ρ−(λ)
)

, (9.62)

and
κ̃(λ) =

1
2

ln
(

b̃+(λ)/b̃−(λ)
)

, (9.63)

for λ, μ ∈ R are equal to:
{

κ̃(λ), η̃(μ)
}(0) = iδ(λ− μ),

{

η̃(λ), η̃(μ)
}(0) =

{

κ̃(λ), κ̃(μ)
}(0) = 0 .

(9.64)
A well-known fact from the scattering theory is that the gauge transfor-

mations preserve the spectrum of the operators, i.e. L and L̃ have the same
continuous spectrum (filling up the real λ-axis) and the same sets of eigen-
values λ±k . The scattering data, characterizing the discrete spectrum of L̃, are
introduced in analogy to η±k , κ±k through:

η̃±k = η±k
(

λ±k
)−2

= ∓2i
(

λ±k
)−1

, κ̃±k = ± ln b̃±k , k = 1, . . . ,M ,
(9.65)
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The nontrivial Poisson brackets between η̃(λ), κ̃(λ), η̃±k and κ̃±k are given by
the expressions:

{

η̃+
k , κ̃

+
l

}(0) =
{

η̃−k , κ̃
−
k

}(0) = δkl . (9.66)

The relations (9.64), (9.66) can be formally obtained as a consequence of
(9.39), (9.42) by taking into account the interrelations between the scattering
data of both problems and by using the equivalence between the Hamiltonian
structures related to L and L̃. This equivalence is a consequence of the follow-
ing identities between the two gauge-equivalent systems for periodic boundary
conditions (compare with (8.68), (8.69)):

T̃ (x, y, t, λ) = g−1(x, t)T (x, y, t, λ)g(y, t) , (9.67a)

T̃�(λ) = T̃�(�,−�, t, λ) = T�(t, λ)g(−�, t) = T�(t, λ)T−1
� (t, 0)

in the periodic case, and by

ψ̃(x, t, λ) = g−1(x, t)ψ(x, t, λ), T̃ (t, λ) = T (t, λ)T−1(t, 0) ,

φ̃(x, t, λ) = g−1(x, t)φ(x, t, λ)T−1(t, 0) , (9.67b)

in the case of vanishing boundary conditions.
After some calculations we obtain:

η̃(λ) = λ−2η(λ), κ̃(λ) = κ(λ)− 1
2

ln
(

a+(0)/a−(0)
)

(9.68)

and
η̃±k =

(

λ±k
)−2

η±k , κ̃±k = κ±k −
1
2

ln
(

a+(0)/a−(0)
)

. (9.69)

9.3 Jacobi Identity and the Classical Yang–Baxter
Equations

The canonical Poisson brackets (7.23) also allow us to calculate the Poisson
brackets between any two admissible functionals A and B of q+(x) and q−(x).
By admissible functionals, we mean functionals, which depend only on the
values of q+(x) and q−(x) inside the interval −� < x < �; this means that the
boundary conditions do not contribute to the Poisson brackets.1 For example,
if A and B are 2× 2 matrix-valued functions, we obtain:

{

A⊗
′
B

}

= i

∫ �

−�

dx

(

δA

δv(x)
⊗ δB

δv∗(x)
− δA

δv∗(x)
⊗ δB

δv(x)

)

. (9.70)

1 The notion of admissible functionals and its importance to the investigation
of the complete integrability of the NLEE is studied in detail in [2], Chap. 3,
Part I.



9.3 The classical Yang–Baxter Equations 327

The Poisson brackets possess the following properties:

(a) skew-symmetry:
{

A⊗
′
B

}

= −P
{

B⊗
′
A

}

P , (9.71)

(b) differentiability:
{

A⊗
′
BC

}

=
{

A⊗
′
B

}

(1l⊗ C) + (1l⊗B)
{

A⊗
′
C

}

; (9.72)

(c) Jacobi identity:
{

A⊗
′

{

B⊗
′
C

}}

+ P13P23

{

C ⊗
′

{

A⊗
′
B

}}

P23P13 +

P13P12

{

C ⊗
′

{

A⊗
′
B

}}

P12P13 = 0 . (9.73)

Let us make clear the notations introduced in (9.73). Each summand in
the right-hand side of (9.73) acts in the tensor cube C

2 ⊗ C
2 ⊗ C

2, and by
Pkl, we have denoted the linear operator (the matrix) P (9.9), which acts
nontrivially only in the spaces labeled by k and l. In other words:

P12 =
1
2

3
∑

k=0

σα ⊗ σα ⊗ 1l , P13 =
1
2

3
∑

k=0

σα ⊗ 1l⊗ σα ,

P23 =
1
2

3
∑

k=0

1l⊗ σα ⊗ σα , (9.74)

The proofs of (9.71), (9.72) and (9.73) follow from the properties of the
Poisson brackets for the c-number functionals and also from the fact that
each 2× 2 matrix can be written down as:

A =
∑

k,l

AklEkl, B =
∑

m,n

BmnEmn , (9.75)

where the matrices Ekl are given by (Ekl)st = δksδlt. Obviously:
{

A⊗
′
B

}

=
∑

k,l,m,n

{

AklEkl⊗
′
BmnEmn

}

=
∑

k,l,m,n

{Akl, Bmn}Ekl ⊗ Emn = −
∑

k,l,m,n

{Bmn, Akl}Ekl ⊗ Emn

= −
∑

k,l,m,n

{Bmn, Akl}P (Emn ⊗ Ekl)P = −P
{

B⊗
′
A

}

P . (9.76)
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Here we used the property (9.10) of P to interchange the positions of the
factors in the tensor product and the antisymmetry of the Poisson brackets.
Quite analogous, but more lengthy is the proof of (9.73). Here, we note that
Pkl(. . . )Pkl interchanges the positions of the factors, taking the k-th and the
l-th positions in the tensor cube; for example:

P13 (X1 ⊗X2 ⊗X3)P13 = X3 ⊗X2 ⊗X1 . (9.77)

Let us consider the Poisson brackets, given by:
{

U(x, λ)⊗
′
U(y, μ)

}

= i [r(λ− μ), U(x, λ)⊗ 1l + 1l⊗ U(x, μ)] δ(x− y) ,

(9.78)
which allow an r-matrix of the form:

r(λ, μ) =
3
∑

α,β=0

rαβ(λ, μ)σα ⊗ σβ , (9.79)

and let us try to understand what restrictions on r(λ, μ) are imposed by
properties (9.71), (9.72) and (9.73).

The fact that the right-hand side of (9.78) is proportional to δ(x − y) is
known as the ultralocality of the initial Poisson brackets. In this Chapter, we
shall deal only with ultralocal cases, so it will be enough to analyze only the
coefficients in front of the δ-functions – they must be the same on both sides
of the equations.

The property (9.71), where A = U(x, λ) and B = U(x, μ), leads immedi-
ately to:

r(λ, μ) = −Pr(μ, λ)P . (9.80)

We also make use of the fact that from (9.10) there follows:

P (U(x, μ)⊗ 1l + 1l⊗ U(x, λ))P = U(x, λ)⊗ 1l + 1l⊗ U(x, μ) . (9.81)

The next property (9.72) does not impose restrictions on r(λ, μ), the reason
being the fact that the Lie algebraic bracket [X,Y ] satisfies:

[X,Y Z] = [X,Y ]Z + Y [X,Z] . (9.82)

For greater convenience in analyzing the consequences of the Jacobi iden-
tity for r(λ, μ), we shall denote by J(A,B,C) the left-hand side of (9.73) and
will introduce also the notations:

A = U1(x, λ) , B = U2(x, μ) , C = U3(x, ν) ,
U1 = U(x, λ)⊗ 1l⊗ 1l = A⊗ 1l⊗ 1l ,

U2 = 1l⊗ U(x, μ)⊗ 1l = 1l⊗B ⊗ 1l ,
U3 = 1l⊗ 1l⊗ U(x, ν) = 1l⊗ 1l⊗ C, . (9.83)
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In view of (9.78), each of the three terms in the left-hand side of (9.73) is
proportional to δ(x− y)δ(y − z). We shall omit this factor remembering that
because of it we may assume x = y = z. The coefficient in front of the
first term in the left-hand side of (9.73) with A = U1(x, λ), B = U2(y, μ),
C = U3(z, ν) will be denoted by {U1, {U2, U3}} and is equal to:
{

U1⊗
′

{

U2⊗
′
U3

}}

= i

{

U1⊗
′

[r23(μ, ν), U2 + U3]
}

i

[

r23(μ, ν),
{

U1⊗
′
U2

}

+
{

U1⊗
′
U3

}]

= − [r23(μ, ν), [r12(λ, μ), U1 + U2] + [r13(λ, ν), U1 + U3]] (9.84)

= [r23(μ, ν), [r12(λ, μ) + r13(λ, ν), U1] + [r12(λ, μ), U2] + [r13(λ, ν), U3]] .

From (9.74) and (9.80) we find that for k 	= l and l 	= m

Pklrlm(λ, μ)Pkl = rml(μ, λ) , Pklrlm(λ, μ)Pkl = rkm(μ, λ) , (9.85)

where rlm(λ, μ) is defined in analogy with Plm (9.74). With this definition for
l 	= m we shall have rlm(λ, μ) = −rml(μ, λ). Thus for l = 2 and m = 1, we
have:

r12(λ, μ) =
3
∑

α,β=0

rαβ(λ, μ)σα ⊗ σβ ⊗ 1l ,

r21(λ, μ) =
3
∑

α,β=0

rαβ(μ, λ)σβ ⊗ σα ⊗ 1l . (9.86)

and r12(λ, μ) = −r21(μ, λ) is a consequence of (9.80). Relations (9.85) allow us
to calculate easily the second and the third summands in (9.73). The second
summand equals to:

[r12, [r13, U1 + U3] + [r23, U2 + U3]] , (9.87)

and the third – to:

[r13, [r23, U2 + U3]− [r12 , U1 + U2]] . (9.88)

where we have omitted the arguments λ, μ, ν. They can be easily restored, if
we keep in mind that λ is associated with the index 1, μ – with the index 2,
ν – with the index 3. By summing (9.84), (9.87), and (9.88), we obtain:

J(A,B,C) = [r23, [r12 + r13, U1] + [r12, U2] + [r13, U3]]

+ [r12, [r13, U1 + U3] + [r23, U2 + U3]]

+ [r13, [r23, U2 + U3]− [r12, U1 + U2]] (9.89)
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Let us first consider those terms in the right-hand side of (9.89), which
contain U1 and let us make use of the Jacobi identity and the commutativity
between r23 and U1. After analogous transformation applied to the other terms
in the right-hand side of (9.89) we find that (9.73) is equivalent to:

[U1 + U2 + U3, [r12, r13 + r23] + [r13, r23]] = 0 (9.90)

Obviously, if r(λ, μ) satisfies the equation:

[r12, r13 + r23 ]+[ r13, r23] = 0 (9.91)

then Poisson brackets (9.78) satisfy the Jacobi identity. The equation (9.91)
is known in the literature as the classical Yang–Baxter equation.

By using the explicit form of P (9.9) and Pkl (9.74), it is not difficult
to check that r(λ, μ) defined by (9.8) satisfies all the requirements for an
r-matrix. The same is true also for r̃(λ, μ) (9.49).

Of course, these examples do not exhaust all known classical r-matrices.
An effective method for constructing new solutions of the classical Yang–
Baxter equation is based on a sort of ‘averageing’ procedure which we shall
describe below.

Let us introduce the lattice (nω, n ∈ Z), where ω is some constant (see [2],
Part II, Chap. 4) and the cyclic group Z2, acting on the basis of sl(2) by:

A(σk) = σ3σkσ3, A2(σk) = σk , (9.92)

Let us now define ra(λ, μ) by:

ra(λ, μ) = −
∞
∑

n=−∞
(An ⊗ 1l) r(λ− μ− nω) . (9.93)

Inserting formally (9.93) into (9.91) shows that ra(λ, μ) is also a solution
of the classical Yang–Baxter equation. However, we must keep in mind that
in proving this we have to change the order of summations, which is rigor-
ously justified only if the series in the right-hand side of (9.93) is absolutely
convergent.

Let us try to check whether this is so for ra(λ, μ) (9.8):

ra(λ− μ) = −
∞
∑

n=−∞

(An ⊗ 1l)P
λ− μ− nω

= −1
2

∞
∑

n=−∞

1l⊗ 1l + σ3 ⊗ σ3 + (−1)n (σ1 ⊗ σ1 + σ2 ⊗ σ2)
λ− μ− nω

. (9.94)

The series in the right-hand side of (9.94) are not absolutely convergent, but
have well-defined principle value:
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ra(λ− μ) =
cos(λ− μ) (σ3 ⊗ σ3 + σ0 ⊗ σ0) + σ1 ⊗ σ1 + σ2 ⊗ σ2

2 sin(λ− μ)
. (9.95)

A rigorous treatment of the problem of convergence for the series shows
that (9.94) will satisfy the classical Yang– Baxter equation, only if the auto-
morphism A satisfies an additional constraint, namely, the elements of sl(2),
which are stable with respect to A have to form an abelian subalgebra. In
our case, this constraint is satisfied and consequently ra(λ, μ) (9.95) satisfies
(9.91). We can check this also by a direct calculation.

The solution (9.95) of (9.91) is an example of a trigonometric classical
r-matrix.

The above procedure can be performed to a lattice of form (nω1 + mω2,
n,m ∈ Z; Im(ω2/ω1) > 0). We need also two automorphisms A1, A2 acting
by:

A1(σk) = σ3σkσ3, A2(σk) = σ1σkσ1 , (9.96)

Then the averaging is done as follows:

ra(λ− μ) = −
∞
∑

n,m=−∞
(An

1Am
2 ⊗ 1l) r(λ− μ− nω1 −mω2) . (9.97)

If we insert here r(λ−μ) (9.8), we again encounter the problem about the
absolute convergence of the series in the right-hand side of (9.97). This imposes
restrictions on the automorphisms A1 and A2, namely, A1 and A2 must not
have common fixed points. In our case, this is fulfilled and the averaging (9.97)
leads to a new solution of the classical Yang–Baxter equation, known as the
elliptic r-matrix

ra(η) =
(cn (η, k) (σ3 ⊗ σ3 + 1l⊗ 1l) + σ1 ⊗ σ1 + dn (η, k)σ2 ⊗ σ2)

2sn (η, k)
, (9.98)

where sn (η, k), dn (η, k), cn (η, k) are elliptic functions of η = λ − μ with
module k, which is related in the standard way to their periods ω1 and ω2.

9.4 The Classical r-Matrix and the Lax Representation

In this section, we shall analyze the interrelation between the classical r-matrix
approach and the Lax approach. Here by a classical r-matrix, we shall mean
a solution of the classical Yang–Baxter equation:

[r12(λ− μ), r13(λ− ν) + r23(μ− ν)] + [r13(λ− ν), r23(μ− ν)] = 0 (9.99)

Our main aim will be to show that with each solution of (9.99) we can relate
at least one class of NLEE, which allow Lax representation and whose Hamil-
tonian structure is defined by r(λ − μ). In the beginning, we shall not use
the specifics of the algebra sl(2) but will consider the general case, related to
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an arbitrary semisimple Lie algebra g. We shall introduce the basis and the
structure constants of g in the standard way by:

[Xa,Xb] = Cc
abXc , (9.100)

Let us assume that

r(λ− μ) =
∑

a,b

rab(λ− μ)Xa ⊗Xb , (9.101)

is a solution of (9.99) and let us introduce the Lax operator:

Lψ ≡ i
dψ

dx
+ U(x, λ)ψ(x, λ) = 0 , (9.102)

where
U(x, λ) =

∑

a,b

rab(λ)Xaub(x) . (9.103)

To L we can relate a class of exactly solvable NLEE for the variables ub(x).
The class of allowed coefficients ub(x) will define the phase space Φ of these
NLEEs, and the Hamiltonian structure on M we shall introduce in a natural
algebraic way (compare with (9.100))

{ua(x), ub(y)} = −iCabcuc(x)δ(x− y) . (9.104)

We shall show, that the Lax operator (9.102) satisfies the intertwining con-
dition (9.7) with the classical r-matrix (9.101). We shall see that this condition
is an immediate consequence of (9.99). Indeed, each of the summands in (9.99)
takes values in the tensor cube g ⊗ g ⊗ g. Besides, the structure of (9.99) is
such that in order to calculate the commutators in the left-hand side we need
to know only the commutation relations (9.100). In other words, the classical
Yang–Baxter equation does not depend on the choice of the representation
for the algebra g.

Let us introduce the mapping:

g→M , (9.105a)

under which
Xa → −ua(x), [, ] → 1

i
{ , } . (9.105b)

Then, we consider (9.99) and apply the mapping (9.105a) to the third factors
in the tensor product:

g⊗ g⊗ g→ g⊗ g⊗M . (9.106)

We shall also omit the second sign for tensor product in writing down the
elements of g⊗g⊗M. This mapping does not influence r12(λ−μ) but applied
to r13(λ− ν) and r23(μ− ν) gives:
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r13(λ− ν) =
∑

a,b

rab(λ− ν)Xa ⊗ 1l⊗Xb

→
∑

a,b

rab(λ− ν)ub(x)Xa ⊗ 1l = U(x, λ− ν)⊗ 1l (9.107)

r23(μ− ν) =
∑

a,b

rab(μ− ν)1l⊗Xa ⊗Xb

→
∑

a,b

rab(μ− ν)ub(x)1l⊗Xa = 1l⊗ U(x, μ− ν) (9.108)

Multiplying the commutator [r13(λ− ν), r23(μ− μ)] by δ(x−y), changing
λ − ν and μ − ν to λ and μ, respectively, and making use of (9.104) we see,
that:

δ(x− y) [r13(λ), r23(μ)] =
∑

a,b,c,d

rab(λ)rcd(μ)Xa ⊗Xc ⊗ [Xb,Xa]

→
∑

a,b

∑

c,d

rab(λ)rcd(μ)Xa ⊗Xc {ub(x), ud(y)} , (9.109)

i.e.

δ(x− y) [r13(λ), r23(μ)] → i

{

U(x, λ)⊗
′
U(y, μ)

}

. (9.110)

Thus applying mapping (9.105a) to (9.99) we obtain:

[r12(λ− μ), U(x, λ)⊗ 1l + 1l⊗ U(x, μ)] δ(x− y) + i

{

U(x, λ)⊗
′
U(y, μ)

}

= 0 .

(9.111)
This completes our first task – we showed that to each solution r(λ − μ)

of (9.99) one can associate at least one Lax operator L. As examples for
this construction, we may consider the r-matrices (9.8), (9.95), and (9.98).
Applied to these r-matrices the construction leads to the following auxiliary
linear problems of the type of (9.102)2

U(x, λ) = − 1
2λ

3
∑

α=1

σαSα(x) , (9.112)

U(x, λ) =
1

2 sinλ
(σ3S3(x) cosλ+ σ1S1(x) + σ2S2(x)) , (9.113)

U(x, λ) =
1

2sn (λ, k)
(σ1S1(x) + σ2S2(x)dn (λ, k)

+ σ3S3(x)cn (λ, k)) . (9.114)

2 Here we omit insignificant terms proportional to 1l ⊗ 1l.
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The system (9.102), (9.112), as we have seen, allows us to apply the inverse
scattering method to the Heisenberg ferromagnet equation (8.1) of Chap. 2,
while (9.102), (9.113) allow us to solve the anisotropic Heisenberg ferromagnet
equation.

St = S× Sxx + S× JS(x) ; S(x) = (S1, S2, S3) , (9.115)

where J = diag (J1, J2, J3). The last system, (9.102), (9.113), allows us to
solve the Landau–Lifshitz equation, which differs from (9.115) only in that
the diagonal matrix J is chosen to be generic with three different eigenvalues:
J = diag (J1, J1, J3), J1 < J2 < J3. In all these three cases, the components
of the vector S(x) satisfy the canonical Poisson brackets (9.46).

The fact that each of the above-mentioned three equations possess Lax rep-
resentation is well known (see e.g. [2], Part II). Indeed, even a stronger propo-
sition holds, which makes evident the interrelation between the M-operators
in the Lax representation and the classical r-matrix. More accurately, using
the classical r-matrix we shall construct the generating functional for the
M-operator-operators of the NLEE. We shall show that this is true for the case
of the Zakharov– Shabat system with periodic boundary conditions. The gen-
eralization to the systems of the type of (9.102), (9.103) requires technically
more complicated construction. Simultaneously, we shall show that the Lax
representation of a given NLEE can be written down in an explicitly Hamilto-
nian form. Namely, we shall show that the Hamiltonian equations of motion:

dq+(x)
dt

= −
{

p�(μ), q+(x, t)
}

,
dq−(x)
dt

= −
{

p�(μ), q−(x, t)
}

, (9.116)

where

p�(μ) = arccos
(

1
2
F�(μ)

)

, (9.117)

are equivalent to the compatibility condition (8.11). To do this, we shall cal-
culate the Poisson brackets:

{

T�(x, y, μ)⊗
′
U(z, λ)

}

, −� < y < z < x < � , (9.118)

by using (9.22) and the obvious property:

δUab(z, λ)
δUkj(z′, λ)

= δakδbjδ(z − z′) . (9.119)

This leads to the following result for (9.118):

1
i

{

T�(x, y, μ)⊗
′
U(z, λ)

}

= (T�(x, y, μ)⊗ 1l)[r(λ− μ), U(z, λ)⊗ 1l + 1l⊗ U(z, λ)](T�(x, y, μ)⊗ 1l)
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= [M(z, x, y, λ, μ), 1l⊗ U(z, λ)]

+ (T�(x, y, μ)⊗ 1l)[r(λ− μ), U(z, μ)⊗ 1l](T�(z, y, μ)⊗ 1l) (9.120)

where

M(z, x, y, λ, μ) = (T�(x, z, μ)⊗ 1l)r(λ− μ)(1l⊗ T�(z, y, μ)) . (9.121)

In order to calculate the second term in the last line of (9.120), we use again
(9.24) and (9.26)

i(T�(x, z, μ)⊗ 1l)[r(λ− μ), U(z, μ)⊗ 1l](T�(z, y, μ)⊗ 1l)

= i(T�(x, z, μ)⊗ 1l)r(λ− μ)(U(z, μ)T�(z, y, μ)⊗ 1l)

− i(T�(x, z, μ)U(z, μ)⊗ 1l)r(λ− μ)(T�(z, y, μ)⊗ 1l)

= − d

dz
{(T�(x, z, μ)⊗ 1l)r(λ− μ)(T�(z, y, μ)⊗ 1l)}

= − d

dz
M(z, x, y, λ, μ) . (9.122)

Now we can rewrite (9.118) in the form:

{

T�(x, y, μ)⊗
′
U(z, λ)

}

= i[M(z, x, y, λ, μ), 1l⊗ U(z, λ)] +
dM

dz
. (9.123)

Let us now assume that x = �, y = −�, and let us take tr 1 on both sides
of (9.123). We immediately get:

{F�(μ), U(z, λ)} = i[Ṽ (z, λ, μ), U(z, λ)] +
dṼ (z, λ, μ)

dz
, (9.124)

where

Ṽ (z, λ, μ) = tr 1M(z, �,−�, λ, μ) = tr 1(T (x, z, μ)⊗ 1l)r(λ−μ)(T (z, y, μ)⊗ 1l) .
(9.125)

It is obvious from (9.124) that the Hamiltonian equation of motion:

∂U

∂t
= −{F�(μ), U(x, λ)} , F�(μ) =

1
2
trT�(μ) , (9.126)

which is nothing else but system (9.116) written down in a matrix form,
acquiring the form:

i
∂U

∂t
− i

dṼ (x, λ, μ)
∂x

+ [U(x, λ), Ṽ (x, λ, μ)] = 0 , (9.127)
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This equation resembles compatibility condition (8.11) very much. Indeed, if
we expand Ṽ (x, λ, μ) over the negative powers of μ:

Ṽ (x, λ, μ) =
∞
∑

k=1

μ−kṼk(x, λ) , (9.128)

we shall get a family of Lax equations:

i
∂U

∂t
− i

dṼk(x, λ, μ)
∂x

− [U(x, λ), Ṽk(x, λ, μ)] = 0 . (9.129)

These equations are Hamiltonian with respect to the Poisson brackets (7.23)
and have, as Hamiltonians, the expansions coefficients F�,k of

F�(μ) =
∞
∑

k=0

F�,kμ
−k . (9.130)

Let us now rewrite Ṽ (x, λ, μ) in a more compact form. To this end, we
shall use the explicit form of r(λ− μ) (9.8). We get:

Ṽ (x, λ, μ) = − 1
λ− μ

tr 1(T (�, x, μ)⊗ 1l)P (T (x,−�, μ)⊗ 1l)

= − 1
λ− μ

tr 1P (T (x,−�, μ)PT (�, x, μ)⊗ 1l)

= − 1
λ− μ

tr 1(1l⊗ T (x,−�, μ)T (�, x, μ))P

= − 1
λ− μ

T (x,−�, μ)T (�, x, μ))tr 1P (9.131)

But from (9.9) we easily get that:

tr 1P =
1
2
tr 1

(

1l⊗ 1l +
3
∑

α=1

σα ⊗ σα

)

= 1l . (9.132)

i.e.
Ṽ (x, λ, μ) = − 1

λ− μ
T (x,−�, μ)T (�, x, μ) (9.133)

As one should expect, Ṽ (x, λ, μ) is a periodic function of x.
The construction proposed above has the following drawback: It defines

the Lax representations for a class of nonlocal NLEEs, since the coefficients
F�,k in (9.130) are nonlocal functionals of q(x). In order to obtain the Lax
representations for the local NLEEs, we shall again use the representation
for T�(x, y, μ) (6.94), (6.95) and (6.96). Inserting it in the right-hand side of
(9.133) we obtain:
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Ṽ (x, λ, μ)

= − 1
λ− μ

(1l⊗W (x, μ)) exp(iZ(x,−�, μ) + iZ(�, x, μ)) (1l⊗W (x, μ))−1

= − 1
λ− μ

(1l⊗W (x, μ)) exp(iZ(�,−�, μ)) (1l⊗W (x, μ))−1
, (9.134)

where we again made use of the fact that W (x, λ) is periodic and also the
expression (6.96) for Z(x, y, μ). But, as we have already shown, tr Z(�,−�, μ)
vanishes and consequently:

exp(iZ(�,−�, μ)) = exp(iσ3p�(μ)) = cos(p�(μ))1l + i sin(p�(μ))σ3 . (9.135)

As a result, we see that Ṽ (x, λ, μ) can be written down in the form:

Ṽ (x, λ, μ) = − 1
λ− μ

{cos(p�(μ))1l

+ i sin(p�(μ))(1l +W (x, μ))σ3(1l +W (x, μ))−1
}

. (9.136)

The first term in (9.136) is x-independent and is proportional to the unit
matrix, therefore it does not contribute to the compatibility condition (9.127).
Now we can introduce:

V (x, λ, μ) = − 1
2(λ− μ)

(1l +W (x, μ))σ3(1l +W (x, μ))−1 � −iṼ (x, λ, μ)
2 sin p�(μ)

,

(9.137)

where � reminds us that we have neglected some terms, which are not im-
portant for the Lax representation. The analog of (9.126) is now:

− i

2 sin p�(μ)
{F�(μ), U(x, λ)} = [V (x, λ, μ), U(x, λ)] + i

∂V

∂x
, (9.138)

where:

p�(μ) = arccos
1
2
F�(μ) or F�(μ) = 2 cos p�(μ) . (9.139)

It remains to replace this expression in the left-hand side of (9.138) and to
make use of the properties of the Poisson brackets; this leads to:

{p�(μ), U(x, λ)} = [V (x, λ, μ), U(x, λ)] + i
∂V (x, λ, μ)

∂x
. (9.140)

Since p�(μ) is the generating functional for the local integrals of motion, then
V (x, λ, μ) will be the generating functional for the Lax representations of the
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NLEEs of NLS type (6.7). Let us consider the expansion over the negative
powers of μ of the Hamiltonian equation:

− i {p�(μ), U(x, λ)} ≡ iUt(x, λ) = [U(x, λ), V (x, λ, μ)] + i
∂V

∂x
, (9.141)

and let us consider the coefficient of μ−1. If

V (x, λ, μ) =
∞
∑

k=1

μ−kVk(x, λ) , (9.142)

then

i {Ik, U(x, λ)} ≡ iUt(x, λ) = [U(x, λ), Vk(x, λ)] + i
∂Vk

∂x
, (9.143)

which is the Lax representation for the NLEE with the Hamiltonian H = Ik.

9.5 The Classical r-Matrix and the Involutivity
of the Integrals of Motion in the Case of Arbitrary
Semisimple Lie Algebra

Here, we shall shortly discuss the generalizations of the r-matrix approach to
systems of Zakharov–Shabat type, related to the semisimple Lie algebras. This
section requires some knowledge of the structural theory of the Lie algebras
and their representations. The reader who does not have that knowledge can
safely omit it.

Let us consider the system:

Lψ ≡
(

i
d

dx
+ q(x)− λJ

)

ψ(x, λ) = 0 , (9.144)

and its gauge equivalent:

L̃ψ ≡
(

i
d

dx
− λS(x)

)

ψ̃(x, λ) = 0 , (9.145)

where the functions q(x), S(x) take values in the semisimple Lie algebra g

with rank r; J is a constant real element of the Cartan subalgebra h ⊂ g,
dim Ch = r. The relation between (9.144) and (9.145) is given by:

ψ̃(x, λ) = g−1(x)ψ(x, λ), S(x) = g−1(x)Jg(x),

igx + q(x)g(x) = 0 . (9.146)

Below, we shall use the well-known notations for the Cartan–Weyl basis
(see [3, 4]) Eα, Hj , α ∈ Δ, j = 1, . . . , r, where Δ is the set of roots of g.
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We introduce an ordering in Δ with the help of a convenient regular element
Jreg ∈ h, namely, we shall say that the root α is positive (negative) if
α(Jreg) > 0 (α(Jreg) < 0). Of course, for this, we must require that all
α(Jreg) are real and nonvanishing. The simple roots will be denoted by α1,
. . . , αr, and the fundamental weights – by ω1, . . . , ωr. By definition:

2(αi, αj)
(αi, ωj)

= δij , 1 ≤ i, j ≤ r , (9.147)

and Eα, Hj ∈ h satisfy the following commutation relations:

[Hj , Eα] = α(Hj)Eα, [Eα, E−α] = Hα, [Eα, Eβ ] = NαβEα+β ,
(9.148)

and Nα,β = 0 if α + β is not a root. We also assume that element J is close
in some sense to Jreg, i.e. if α > 0 (α < 0), then also α(J) > 0 (α(J) < 0).
In g, we can introduce metrics with the help of the Killing form 〈 , 〉; moreover
α(J) = (a, α) and:

〈Hi,Hj〉 = (αi, αj), 〈Eα, E−β〉 = δαβ , Nαβ = −N−α,−β . (9.149)

To each of the systems, (9.144), (9.145), one can relate NLEE, generalizing
the NLSE and the HFE correspondingly. The natural way to fix gauge (9.144)
requires that:

q(x) =
∑

α∈Δ,(a,α) 
=0

qα(x)Eα, qα(x) = 〈q(x), E−α〉 , (9.150)

where a is the vector in the root space E
r, corresponding to the element

J ∈ h. A very representative in this respect is the case when J has only two
different eigenvalues: 1 and −1, with multiplicities n1 and n2.3 Now we can
introduce an additional symmetry using an involutive automorphism of g. In
other words, the construction of L can be associated with any of the symmetric
spaces, related to g. They provide the most representative generalizations of
the NLSE [5]:

i[J, qt] + qxx −
1
2
q3(x) = 0, J =

(

1l 0
0 −1l

)

, q =
(

0 q+

q− 0

)

, (9.151)

where q+ and q− are n1 × n2 and n2 × n1 matrices and also of the general-
izations of the HFE:

St + [S, Sxx] = 0 , S2(x) = 1l . (9.152)

3 If n1 	= n2, then tr J 	= 0; we can easily transfer to the case with tr J = 0 by a
gauge transformation. For our purposes, this form of J is more convenient, since
J2 = 1l.
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In order to solve these NLEEs, we also can apply the inverse scattering
method. The classical approach to the solution of the inverse scattering prob-
lem, based on the Gelfand–Levitan–Marchenko equation, is not fully adequate.
Its natural generalization, proposed by Zakharov, Manakov, and Shabat [6, 7]
also provides an effective method for the construction of the soliton solutions
in the general case (arbitrary real J). It is not possible to present this ap-
proach here. We only note that NLEE (9.151) and (9.152) are equivalent to
the following linear equations for the scattering matrices related to (9.144)
and (9.145), respectively:

i
dT

dt
+ 2λ2[J, T (t, λ)] = 0 ,

i
dT̃

dt
+ 2λ2[J, T̃ (λ, t)] = 0 , T̃ (λ, t) = T (λ, t) ̂T (0, t) . (9.153)

The interrelation between both scattering matrices, given in (9.153), general-
izes (8.68) in Chap. 8. The conditions limx→±∞ S(x, t) = J , just like before,
requires that [T (0, t), J ] = 0. But, assuming that λ = 0 in (9.153) we see, that
T (0, t) is an integral of motion for the NLSE.

From the explicit form of L (9.144) and (9.151), there follows that T (λ, t)
has a block-matrix structure, i.e. we may assume that T (λ, t) is given by the
right-hand side of (9.17), where a±(λ), b±(λ) are matrices of the corresponding
size. From (9.153), we find that each of the matrix elements of a+(λ) and a−(λ)
can be considered as a generating functional of the integrals of motion.

The generalizations of the NLSE and the HFE (9.151) and (9.152) possess
hierarchies of Hamiltonian structures; the canonical ways to introduce sym-
plectic structures in the corresponding phase spaces Mg and M̃g are based
on the following Poisson brackets:

{qα(x), qβ(x)} = −iδα,−βδ(x− y) , (9.154)

{Sα(x), Sβ(x)} = −iNαβSα+β(x)δ(x− y) , (9.155)

{Sα(x), S−α(x)} = −i
r
∑

j=1

(α, αj)Sj(x)δ(x− y) , (9.156)

(compare with (9.104)), where

Sα(x) = 〈S(x), E−α〉 , Sj(x) = 〈S(x),H∨
j 〉 , (9.157)

and H∨
j , j = 1, . . . , r is a basis in h, biorthogonal to Hk, i.e. 〈Hk,H

∨
j 〉 = δjk.

These symplectic structures allow the r-matrix approach, i.e. both U(x, λ)
= q(x)−λJ and Ũ(x, λ) = −λS(x) satisfy (9.7) and (9.48) with r(λ−μ) and
r̃(λ− μ), respectively, where

r(λ− μ) = − Π

λ− μ
, r̃(λ− μ) =

−λμΠ
λ− μ

, (9.158)
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Π =
r
∑

j=1

Hj ⊗H∨
j +

∑

α∈Δ

Eα ⊗ E−α , (9.159)

Using (9.148), we see that both r(λ, μ) and r̃(λ, μ) satisfy the classical Yang–
Baxter equation (9.99). As a consequence, we obtain without difficulty that
the corresponding monodromy matrices T�(λ), T̃�(λ) and scattering matrices
T (λ), T̃ (λ) in the case of zero boundary conditions for q(x) and S(x) − J
satisfy:

{

T�(λ)⊗
′
T�(μ)

}

= [r(λ− μ), T�(λ)⊗ Tl(μ)] , (9.160)

{

T̃�(λ)⊗
′
T̃�(μ)

}

= [r̃(λ− μ), T̃�(λ)⊗ T̃�(μ)] , (9.161)

and
{

T (λ)⊗
′
T (μ)

}

= r+(λ− μ)T (λ)⊗ T (μ)− T (λ)⊗ T (μ)r−(λ− μ) , (9.162)
{

T̃ (λ)⊗
′
T̃ (μ)

}

= r̃+(λ− μ)T̃ (λ)⊗ T̃ (μ)− T̃ (λ)⊗ T̃ (μ)r̃−(λ− μ) . (9.163)

The limits �→∞ in calculating r±(λ− μ) (9.35) are given by:

r±(λ− μ)
= lim

x→∞
y→−∞

(

E−1(x, λ)⊗ E−1(x, μ)
)

r(λ− μ) (E(y, λ)⊗ E(y, μ)) (9.164)

= − 1
λ− μ

r
∑

j=1

Hj ⊗H∨
j ∓ iπδ(λ− μ)

∑

α∈Δ

signαEα ⊗ E−α , (9.165)

with E(x, λ) = exp(−iλJx) and analogically for r̃(λ− μ):

r̃±(λ−μ) = − λμ

λ− μ

r
∑

j=1

Hj⊗H∨
j ∓iπλ2δ(λ−μ)

∑

α∈Δ

signαEα⊗E−α . (9.166)

To derive them we made use of commutation relations (9.148) and relations
(9.33).

As already noted, the integrals of motion of the NLSE (9.151) and the
HFE (9.152) are generated by the matrix elements of the diagonal blocks
a±(λ) and ã±(λ) of T±(λ) and T̃±(λ). The difference with respect to the
g ∼= sl(2) case is that not all these generating functionals are in involution.
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We shall formulate below r series of involutive functionals; they are related to
T (λ) and are defined as follows:

Aj(λ) = 〈ωj |T (λ) |ωj〉 , aj(λ) = lnAj(λ) , (9.167)

where T (λ) is considered in the representation V (j) with highest weight
ω = ωj , and by |ωj〉 we have denoted the highest weight vector in V (j). We
remind that by definition the highest weight vector |ωj〉 has the properties:

Eα|ωj〉 = 0 , (Hk − (αk, ωj))|ωj〉 = 0 ,

〈ωj |E−α = 0 , 〈ωj |(Hk − (αk, ωj)) = 0 . (9.168)

for α > 0.
As an immediate consequence of (9.162) and (9.163), we shall prove that

Aj(λ) and Ak(μ) are in involution for any choice of λ, μ, j, and k. To this
purpose, we shall use the fact that (9.162) and (9.163) are valid, irrespective
of the choice of the representation of g. Let us consider T (λ) in the represen-
tation V (j), and T (μ) in the representation V (k). The corresponding classical
r-matrix will again be given by (9.159); only the generators in the first factors
in the tensor product are taken in the representation V (j), and the ones in
the second factors, in the representation V (k). Let us consider the average of
(9.162) between the vectors 〈ωj | ⊗ 〈ωk| and |ωj〉 ⊗ |ωk〉, where r±(λ− μ) are
given by (9.164). It is not difficult to check that in view of (9.168), we have:

r+(λ− μ)|ωj〉 ⊗ |ωk〉 = r−(λ− μ)|ωj〉 ⊗ |ωk〉 = fjk|ωj〉 ⊗ |ωk〉 ,

〈ωj | ⊗ 〈ωk|r+(λ− μ) = 〈ωj | ⊗ 〈ωk|r−(λ− μ) = fjk〈ωj | ⊗ 〈ωk| , (9.169)

where

fjk = − 1
λ− μ

r
∑

p=1

(ωj , αp)(ωp, ωk) =
(ωj , αp)(ωj , ωk)

λ− μ
. (9.170)

The comparison between (9.167) and (9.169) immediately gives, [27]:

{Aj(λ),Ak(μ)} = 0 or {aj(λ), ak(μ)} = 0 . (9.171)

We also note that precisely aj(λ) are generating functionals of the local
integrals of motion. The Hamiltonian of the NLSE (9.151) is a linear combi-
nation of their expansion coefficients.

Analogous procedure can be applied also to the gauge-equivalent equations
(9.152). In this case, the integrals of motion are given by:

Ãj(λ) = 〈ω|T̃ (λ)|ωj〉 = 〈ωj |T (λ)T−1(0)|ωj〉 ,

ãj(λ) = ln Ãj(λ) = aj(λ)− aj(0) . (9.172)
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In order that the last equation in (9.172) holds, we required additional condi-
tion – T (0) must be diagonal, and not just block-diagonal. The proof of the
involutivity:

{

Ãj(λ), Ãk(μ)
}

= 0 or {ãj(λ), ãk(μ)} = 0 , (9.173)

goes along the same lines, using the relations (9.163) and (9.166). The only
difference is that in (9.169) and (9.170) fjk must be replaced by f̃jk = λμfjk.

9.6 Possibilities for Generalizations of the r-Matrix
Approach. A Short Review

We shall finish this chapter with a short review on the perspectives of the
classical r-matrix approach.

Up to now, we considered two gauge-equivalent linear problems (9.144)
and (9.145) and their particular cases for g ∼= sl(2). In both cases U(x, λ)
and Ũ(x, λ) depend linearly on the spectral parameter λ, and the canonical
Poisson brackets defined on the coefficients of U(x, λ) and Ũ(x, λ) are directly
related to the algebra g, which is the ground for L. This may give the wrong
impression that to each auxiliary linear problem L (or L̃) there corresponds
specific r-matrix (of course, if it exists at all). Actually it comes out that a
whole class of auxiliary linear problems lead to the same r-matrix.

1. Let us consider linear problem of the type of (9.144), where U(x, λ) is a
rational function of λ

U(x, λ) =
N
∑

k=−M

uk(x)λk for M ≥ 0, N > 0 , (9.174)

and the coefficients uk(x) take values in the semisimple Lie algebra g. We
first impose on uk(x) a condition, which fixes the gauge of L. This can be
done in many natural ways; here, we only list two of them: (a) uN = J ∈ h,
J = const and (b) u−M = J , M > 0. The gauge degrees of freedom, con-
sidered from the point of view of the Hamiltonian approach to the NLEE,
form an invariant subspace Φ0 in the phase space Φg ≡ {uk}. More-
over, as a rule their evolution is trivial. That is why it is natural to fix
up the gauge and to focus our attention on the other invariant subspace
Φg\Φ0, where the dynamics of the corresponding NLEE takes place. The
formal fixing up of the gauge imposes constraints on Φg, and this pro-
cedure must be performed according to Dirac’s prescription. In Φg\Φ0,
we can introduce the following Poisson brackets between the coefficients
ua

k(x) =< uk(x),Xa > of U(x, λ):
{

ua
k(x), ub

l (y)
}

= −iCc
abu

c
k+l(x)δ(x− y) , (9.175)
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where Cc
ab are the structure constants of the algebra g. By Xa we have

denoted the basis in g, which is orthonormal with respect to the Killing
form

[Xa,Xb] = Cc
abXc, < Xa,Xb >= δab , (9.176)

In this basis, the element Π (9.159) has the form

Π =
∑

a

Xa ⊗Xa . (9.177)

The Poisson brackets (9.175) are a natural generalization of (9.156). We
note here that if k+ l is out of the interval (−M,N), then the correspond-
ing right-hand side of (9.175) must vanish.
After a somewhat lengthy calculation we find that if M > 0, then (9.174)
and (9.175) do not allow a classical r-matrix. An r-matrix exists for the
deformed Poisson brackets:

{

ua
k(x), ub

l (y)
}(0)

=

⎧

⎨

⎩

−iCc
abu

c
k+l(x)δ(x− y) for k ≥ 0, l ≥ 0 ,

iCc
abu

c
k+l(x)δ(x− y) for k < 0, l < 0 ,

0 otherwise ,
(9.178)

It is well known that there exist duality between the Poisson brackets and
the Lie-algebraic operation in g. That is why the existence of r can be
interpreted as a definition of a second Lie-algebraic structure on g. Let
us explain in more detail this fact, following the ideas in [9, 10]. We start
by noting that the Poisson brackets (9.175) are dual to the commutation
relations between the generators of the algebra gc = g ⊗ C[λ, λ−1]. The
elements of gc are the Laurant series X(λ), Y (λ) over the powers of λ

X(λ) =
N
∑

k=−∞
ua

k(x)λkXa , Y (λ) =
∞
∑

k=−M

va
k(x)λkXa , (9.179)

truncated at least on one side, whose coefficients take values in g [11,
12, 13, 14]. As basis in gc, we can consider Xa,k = λkXa. Then, the
commutation relations and the metric in gc are introduced by:

[Xa,k,Xb,l] = Cc
abXc,k+l ,

〈〈X(λ), Y (λ)〉〉 = Res
λ=0

< X(λ), Y (λ) >
λ

=
∞
∑

k=−∞
ua

kv
a
−k . (9.180)

The Poisson brackets (9.175), corresponding to these commutation rela-
tions, do not allow one to introduce an r-matrix.
Conversely, to the Poisson brackets (9.178), which allow an r-matrix there
correspond the second Lie-algebraic structure, which can be introduced
in gc. It is obtained from the first one after a deformation with the linear
operator R as follows:
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[X,Y ]R = [RX,Y ] + [X,RY ] , (9.181)

where RXa,k = Xa,k for k ≥ 0 and RXa,k = −Xa,k for k < 0. If we
denote by X+ (X−) the part of the series (9.179), which contains only
the nonnegative (the negative) powers of λ, we can rewrite (9.181) in the
form:

[X,Y ]R = [X+, Y+]− [X−, Y−] , (9.182)

The Poisson brackets (9.178) are dual precisely to this Lie-algebraic op-
eration.
In order that (9.182) defines a Lie bracket, it is necessary that it satisfies
the Jacobi identity:

[X,B(Y,Z)] + [Y,B(Z,X)] + [Z,B(X,Y )] = 0 , (9.183)

where
B(X,Y ) = [RX,RY ]−R([X,Y ]R) . (9.184)

The classical Yang–Baxter equation (9.91) is obtained, if we equate to
zero each of the three summands in (9.183). But (9.91) is only a sufficient,
but not necessary, condition for (9.183) to hold. Actually (9.183) allows
also another nontrivial solution:

B(X,Y )[RX,RY ]−R([X,Y ]R) = −[X,Y ] . (9.185)

If we insert (9.185) in the left-hand side of (9.183), we obtain the Jacobi
identity for X, Y , Z with respect to the initial Lie-algebraic structure
(9.180). Equation (9.185) is known as the modified Yang–Baxter equation
[10], and the algebra with the two Lie-algebraic structures (9.180) and
(9.181) we shall call a Lie-bialgebra.
The concrete realization of the operator R, given above, corresponds to
the simplest classical r-matrix (9.158), where the function (λ−μ)−1 must
be understood as a principal value. This function, considered as the kernel
of an integral operator, gives the well-known Hilbert transform.
Another possible realization of R as an element of the ring of linear op-
erators is the following: RX = X, if X is a differential operator, and
RX = −X, if X is an integral Volterra-type operator. The corresponding
r-matrix allows one to describe the Hamiltonian structures of the NLEE
in the approach of Gelfand and Dorfman [15].

2. Just like the inverse scattering method, the classical r-matrix approach
can be formulated and applied to the solution of difference evolution equa-
tions (DEE) [2, 10, 16, 17, 18, 19]. We shall mention only the simplest
case – the difference analogue of the Zakharov–Shabat system. In this
case, we require the compatibility between:

Ld ≡ ψn+1(z) = Un(z)ψn(z) , Un(z) =
(

z q+n
q−n 1/z

)

(9.186)
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and
Md ≡

dψn

dt
= Vn(z)ψn(z) . (9.187)

The compatibility condition is of the form:

dUn

dt
+ Un(z, t)Vn(z, t)− Vn+1(z, t)Un(z, t) = 0 . (9.188)

Here, it is z that plays the role of the spectral parameter, and Un(z, t)
takes values not in the algebra but in the group SL(2). As an example of
a DEE, which can be solved with the help of (9.188) we write down the
difference analogue of the NLSE:

iq+n,t +
(

1− q+n q
−
n

) (

q+n−1 + q+n+1

)

− 2q+n = 0 ,

− iq−n,t +
(

1− q+n q
−
n

) (

q−n−1 + q−n+1

)

− 2q−n = 0 , (9.189)

Here we need an alternative natural definition of the classical r–matrix
[10, 18, 19]:

{

Uk(z)⊗
′
Ul(ζ)

}

= [r(z, ζ), Uk(z)⊗ Ul(ζ)]δkl , (9.190)

since the ultralocal Poisson brackets between q+n and q−n are introduced
by:

{

q+k , q
−
l

}

= −i
(

1− q+k q
−
l

)

δkl , (9.191)

One may check that Poisson brackets (9.191) allow classical r-matrix de-
fined by (9.190), where r(z, ζ) is obtained from the trigonometric r-matrix
ra(λ− μ) (9.96) by assuming z = eiλ, ζ = eiμ [19].

3. A substantial constraint on the r-matrix approach is the ultralocality,
imposed on the initial Poisson brackets. Lately, there have been success-
ful attempts to overcome this difficulty and to introduce r-matrix also
for nonultralocal Poisson brackets [20, 21]. Now in the definition of the
r-matrix there enter two (not just one) independent functions:

{

U(x, λ)⊗
′
U(y, μ)

}

= [u(y, λ, μ)− v(x, λ, μ), 1l⊗ U(z)]δ′(x− y)

+ {[u(x, λ, μ), Uk(x, λ)⊗ 1l] + [v(x, λ, μ), 1l⊗ Uk(z)]} δ(x− y) (9.192)

In order that these brackets are antisymmetric, u and v must satisfy:

Pv(x, λ, μ)P = −u(x, μ, λ), Pu(x, λ, μ)P = −v(x, μ, λ) , (9.193)

and the Jacobi identity leads to the following generalization of the Yang–
Baxter equation:
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[v23(x, μ, ν), v12(x, λ, μ)] + [v23(x, μ, ν), v13(x, λ, μ)]

+ [v13(x, λ, ν), u12(x, λ, μ)]

+ H
(v)
1,23(x, λ, μ, ν)−H

(v)
2,13(x, μ, λ, ν) = 0 , (9.194)

where

H
(v)
1,23(x, λ, μ, ν)δ(x− y) = {U1(x, λ), v23(y, μ, ν)} . (9.195)

The Poisson brackets between the matrix elements of the monodromy
matrices also acquire a more general form.

4. Another possibility is to introduce an r-matrix with x-dependence [6],
defined through:

{

U(x, λ)⊗
′
U(y, μ)

}

= i

(

[r(x, λ, μ), U(x, λ)⊗ 1l + 1l⊗ U(y, μ)]− dr

dx

)

δ(x− y)(9.196)

Then the corresponding monodromy matrices satisfy:
{

T (x, y, λ)⊗
′
T (x, y, μ)

}

= r(x, λ, μ)T (x, y, λ)⊗ T (x, y, μ)

− T (x, y, λ)⊗ T (x, y, μ)r(y, λ, μ) (9.197)

5. Immediately after the introduction of the notion of the classical r-matrix,
and the realization of the fact that the classical Yang–Baxter equation is
of pure algebraic nature, there appeared Belavin and Drinfeld’s paper [22],
which classifies all nondegenerate solutions of this equation. The main re-
sult of this paper consists in that to each semisimple Lie algebra g and
to each Coxeter automorphism of g one can relate a classical r-matrix.
In other words, to each Kac–Moody algebra, there corresponds a classical
r-matrix of the form (9.158), (9.159). To each of these r-matrices, one can
apply the averaging procedure, which leads to the so-called trigonometric
r-matrices. Finally, for the algebras sl(n), it is possible to repeat the av-
eraging procedure and to construct the corresponding elliptic r-matrices.

6. We considered two classes of boundary conditions for the auxiliary lin-
ear problem L – periodic and decaying for x → ±∞. In papers [23, 24],
Sklyanin proposes a new version of the r-matrix approach, which is inde-
pendent of the choice of the boundary conditions for L.

7. A wide scope of results, concerning the classical r-matrix approach have
been obtained as consequences from the quantum R-matrix approach and
from the quantum version of the Yang–Baxter equation [25]

R12(λ, μ)R13(λ, ν)R23(μ, ν) = R23(μ, ν)R13(λ, ν)R12(λ, μ) . (9.198)
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This equation lies in the foundation of the recently introduced quantum
groups [9, 26]. As an introduction to this domain, one can use [18, 19, 25,
27, 28, 29], and many other references, cited therein.

9.7 Comments and Bibliographical Review

1. In mathematics soliton equations stimulated the development of the the-
ory of the Kac–Moody and other infinite-dimensional graded algebras
[11, 13, 14, 30, 31, 32, 33, 34, 35]. Eventually the discovery of the quan-
tum version of the ISM introduced the so-called quantum groups on one
side, which were directly related to a special class of solvable models in
statistical physics. Closely related to this approach is the method of the
τ -function; see e.g. [36, 37, 38] and the reference therein.

2. It is only natural that the Lax representation, which is purely algebraic
in nature, stimulated the development of the infinite-dimensional algebras
known also as Kac–Moody algebras. The well-known method coming from
the theory of simple Lie groups and algebras [1, 3, 4, 39, 40, 41, 42, 43]
were found very useful in a number of aspects in soliton theory [16, 33,
34, 35, 38, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104].

3. At the end of the 1970s, a new branch in the soliton theory was started.
Today it is known as the quantum inverse scattering method [22, 25, 27,
61, 71, 80, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116] which
soon created another mathematical field known as quantum groups; see
[9, 22, 38, 117].

4. The classical r–matrix [2, 22, 27, 75, 103, 106, 108, 110, 118] came up as
the quasi-classical approximation of the quantum R–matrix of Baxter [25].
It quickly drew the attention of physicists and mathematicians, because
it provided an effective tool for the study of the Hamiltonian properties of
the soliton equations. In particular, for Lax operators whose potentials al-
low ultralocal Poisson brackets, it allowed a very efficient way to calculate
the Poisson brackets between the scattering matrix elements [2, 27].

5. The fact that the principal minors of the scattering matrix T (λ) of the
generalized ZS system are analytic functions of λ, and their logarithms
can be viewed as generating functionals for the integrals of motion has
been known to Zakharov, Shabat, and Manakov (see [118]) for g � sl(n).
These results are naturally generalized for any semisimple Lie algebra g,
see [34, 35, 119, 120]. Using the well-known facts about the fundamental
representations of g it was possible to prove that these integrals are in
involution [8].
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Part II

Integrable Hamiltonian Hierarchies:
Geometric Theory of the Recursion Operators
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Introduction

The geometric ideas have always been an intrinsic part of the theory of the
Differential Equations. Just in order to be more specific, suppose that we
consider the following system of ordinary differential equations

dy

dt
= X(y) , (10.1)

where y = (y1, y2, . . . yn) belongs to some open subset Ω of R
n, t ∈ R is

the time and X(y) is differentiable function X : Ω → R
n. It is well known

how fruitful may be the interpretation of the right-hand side of this equation
as vector field X over Ω and the interpretation of the solutions of the above
equation as integral curves of X. In particular, the geometric viewpoint proved
to be very useful in such topics as the search for symmetries and conservation
laws for (10.1).

The geometric ideas have even stronger influence on the theory of systems
of evolution equations if these equations are Hamiltonian – then the geometric
techniques and ideas are indispensable, and such notions as Poisson brackets
are one of the necessary tools in the theory. The natural generalization of
these classical topics from open sets in R

n to spaces that are only locally as
R

n leads to the theory of dynamical systems on manifolds, which is now a
developed branch of Mathematics with many applications; see for example
the series [1].

Now consider the system of the evolutionary partial differential equations

∂f

∂t
(x, t) = X(f(x, t), fx(x, t), . . .) . (10.2)

In the above, the right-hand side

X = (X1(f, fx, . . .),X2(f, fx, . . .), . . . , Xn(f, fx, . . .))

is a smooth vector function in all of its arguments, and f = (f1, f2, . . . , fn) is
a set of smooth scalar functions fi, depending on the time and one additional
spatial variable x. Usually x belongs to some interval I on the line.
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The attempts to apply the techniques developed for system (10.1) to
system (10.2) are very old and were in the scope of such mathematicians
as Lie and Volterra. The idea suggests to consider the right-hand side of the
above system of evolution equations (10.2) for the functions fi; i = 1, 2, . . . n
as vector field on the infinite-dimensional manifold on which the functions
f(x) are “points”. This manifold will be referred below as the manifold of
potentials. Of course, to pose the problem properly, one must give additional
information about the manifold of potentials, which include the boundary
conditions for f , the class of functions to which f belong, etc.

However, maybe because of the difficulties to treat infinite-dimensional
case which leads to some lack of rigor in the considerations, the development
of these ideas has been relatively slow, and only in the last decades they have
again started to attract the attention they deserve. In our opinion, the discov-
ery of the Inverse Scattering Method was one of the reasons that caused the
renaissance. It turned out that the equations solvable through Inverse Scat-
tering Method can be investigated more closely than the “usual” nonlinear
evolution equations. Besides, they have number of interesting properties, for
example, they are Hamiltonian and for them have been discovered hierarchies
of conservation laws. It seems that because of these circumstances the glances
turned again to the geometric ideas. Nowadays, the questions of the conserva-
tion laws and Hamiltonian structures, as well as the questions about complete
integrability, which when the Inverse Scattering Method (ISM) was discovered
were treated within its techniques, are investigated through several different
approaches. Among them are the geometric theory of the generating (recur-
sion) operators [2]; the so-called Adler scheme, which exploits the existence of
two Lie algebraic structures over a given Lie algebra and hence the existence of
two Poisson-Lie brackets on the corresponding coalgebra; the approach based
on the properties of the classical R-matrix, etc. All these approaches have
many interrelations and frequently overlap, even consider the same objects
giving them different names, but at least at the present moment each of them
has its own theory and applications. Among the approaches listed above, we
shall consider in detail only the theory of the generating operators. For conve-
nience, we shall refer to the approach based on the existence of two Poisson-Lie
brackets as algebraic approach, though all the algebraic procedures in them
have geometric meaning.1 The geometric theory of the generating operators
originates from the beautiful result of F. Magri [3], who found the second
Hamiltonian structure for the KdV equation. He noticed that the important
properties of the generating operators, namely, that they are producing inte-
grable evolution equations, densities of conservation laws and hierarchies of
symplectic structures, are due to the fact that they can be considered spe-
cial mixed tensor fields over the manifolds of potentials, fields with vanishing

1 It is interesting to note that one of the principal identities in the R-matrix formal-
ism, the so-called modified Yang-Baxter identity; see [4], for an endomorphism R
of a Lie algebra coincides with the definition of the Nijenhuis tensor if R2 = −1.
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Nijenhuis bracket. Such fields are called Nijenhuis tensor fields (Nijenhuis ten-
sors). It turned out that the generating operators are in fact dual objects to
the Nijenhuis tensors. The development of the original ideas have brought
into consideration new geometric structures – the so-called Poisson-Nijenhuis
structures, which we shall introduce in Sect. 14.4. We shall be mainly inter-
ested in the infinite-dimensional dynamical systems, the finite dimensional
ones considered very thoroughly in number of monograph books; see for ex-
ample [5] or [6]. However, frequently we shall consider the finite dimensional
systems as an illustration or when they present some interesting features.

In order to avoid possible misunderstanding, we must stress again that
when we use the word “geometric,” it refers to the idea of treating the
solution of an evolution partial differential equation as a curve on an infinite-
dimensional manifold. There are a number of other approaches and techniques,
which are also geometric and which must not be mixed with the geometric
approach we use in this book. For example, in order to study partial differen-
tial equations, one can use the so-called jet spaces and then these equations
are considered as submanifolds in them. These ideas also showed a renaissance
in the past years; see for example [7] or [8] for the general theory. To the so-
called soliton equations (which are one of the main objects in this book) these
techniques have been also successfully applied; see [9]. As geometric must of
course be classified the techniques that allow to find large classes of solutions
to the soliton equations – the so-called finite-gap solutions; see [10]. In them
the basic objects are some Riemann manifolds associated with the analytical
solutions of the corresponding auxiliary linear problems. There are also other
related techniques for integration, algebraic and geometric; see [11]. However,
all these various approaches focus on different topics, and we shall not discuss
them. There are of course other monographs that (at least partially) adopt
the similar viewpoint as we do, for example [12]. However, as already men-
tioned, our book is about the recursion operators and their interpretation as
Nijenhuis tensors. The Nijenhuis tensors and the Poisson-Nijenhuis manifolds
are, therefore, the central objects in our geometric picture and the ones that
unite the two parts of this book together.

Considerable space in this part is dedicated to the geometric theory
of the generating operators associated with the so-called generalized
Zakharov-Shabat linear system (for shortness GZS)

Lψ = (i
∂

∂x
+ q(x)− λJ)ψ = 0, x ∈ R . (10.3)

Here, the potential function

q(x) =
∑

α∈Δ

qα(x)Eα (10.4)

takes values in some semisimple Lie algebra g, with Cartan subalgebra h,
which we assume fixed, as well as the corresponding root system Δ and the
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corresponding root vectors Eα related to h. We assume that J is constant,
real, regular element from the Cartan subalgebra h, and for simplicity we also
assume that the functions qα(x) are Schwartz-type functions on the line. The
fact that the element J is regular means that

h = ker ad J = {X ∈ g : ad J(X) = [J,X] = 0} . (10.5)

The Zakharov-Shabat system, considered earlier in this book, is a special case
of (10.3) when g = sl (2,C);J = σ3. In order to describe the linear space of
potential functions, we introduce the orthogonal splitting

g = g⊕ h (10.6)

with respect to the Killing form 〈 , 〉 = tr (ad X ◦ad Y ), and then of course we
obtain that the linear space of all potentials q(x) is the space of all Schwartz-
type functions on the line taking values in g.

Remark 10.1. We shall denote the Killing form of a Lie algebra either by
B(X,Y ) or by 〈X,Y 〉. The first notation will be used, when there is some
other pairing, already denoted by 〈., .〉.

The treatment of the general case of arbitrary semisimple Lie algebra
requires some knowledge about the structural theory of the semisimple Lie
algebras, and maybe this circumstance makes some of the arguments difficult
to follow. In order to make things easier, we advise the inexperienced reader
each time he sees the words semisimple Lie algebra to have in mind the ex-
ample of the algebra sl (n,C) – the algebra of traceless n × n matrices with
complex entries. Then one can assume that the element J is of the form

J = diag (j1, j2, . . . , jn),
n
∑

i=1

ji = 0 . (10.7)

The regularity of J means that ji − jk 	= 0 if i 	= k. Then

ker (ad J) = {ξ : ξ ∈ sl (n,C), [J, ξ] = 0} (10.8)

is the subalgebra of the diagonal matrices. This subalgebra is usually taken
as the Cartan subalgebra h for g = sl (n,C). The Killing form for g

〈ξ, η〉 = tr (ad ξ ◦ adη); ξ, η ∈ g (10.9)

in the case g = sl (n,C) is equal to

〈ξ, η〉 =
1
2n

tr (ξη); ξ, η ∈ sl (n,C) . (10.10)

Further, the orthogonal completion of h with respect to the Killing form
(10.9), denoted above by g, in the case g = sl (n,C), is simply the subspace
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of off-diagonal n × n matrices. The fact that this subspace is invariant with
respect to the action of the diagonal matrices h means that if

H = diag (h1, h2, . . . , hn),
n
∑

i=1

hi = 0 . (10.11)

then
[H, g] ⊂ g , (10.12)

which can be easily verified. Let us take now the usual basis {Eij ; 1 ≤ i, j ≤ n}
in the space of the n× n matrices, that is, the entries (Eij)ks of Eij are:

(Eij)ks = δikδjs , (10.13)

(δik is the Kronecker symbol). The matrices Eij ; i 	= j form a basis in the
subspace of the off-diagonal matrices. It is not difficult to check that

[H,Eij ] = αij(H)Eij ; i 	= j (10.14)

where αij ; i 	= j are the following linear functions on the space h:

αij(H) = hi − hj . (10.15)

In the case g = sl (n,C), the functions αij are the roots, the root system Δ
is the set of all αij ’s, and the corresponding root vectors are Eij . Thus, for
g = sl (n,C) (10.4) means that

q(x) =
∑

i
=j

qij(x)Eij . (10.16)

Remember also we have assumed that qij(x) are Schwartz-type functions on
the line.

If the reader has in mind what was said in the above lines, he can safely
“translate” all statements for the general case into the corresponding ones for
the case sl (n,C) and follow most of the argument without the help of the
theory of the semisimple Lie algebras.

We must recall also some facts about the soliton equations that can be
solved with the help of auxiliary linear problem (10.3). Suppose we are looking
for all soliton equations having Lax form

[L,M ] = 0 , (10.17)

where L is the operator defined in (10.3), and the operator M is of the form

M = i
∂

∂t
+

N
∑

k=0

λkMk

MN ∈ h, MN = const . (10.18)
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As MN is a fixed constant element from the Cartan subalgebra, from (10.17)
we get a system of equations for the coefficients Mk, which can be resolved
recursively. At each step, finding the projection of the coefficient functions
Mk+1 over g, we see that it is obtained via one and the same integro-differential
operator Λ±, that is, one finds that

π0Mk+1 = Λ±(π0Mk) , (10.19)

where π0 is the orthogonal projector onto the space g. As to the operators
Λ±, they have the form

Λ±(X(x)) =

ad−1
J

⎛

⎝i
∂X

∂x
+ π0[q,X] + iad q

x
∫

±∞

(1− π0)[q(y),X(y)]dy.

⎞

⎠ , (10.20)

where ad q(X) = [q,X]. The relation (10.19) is one of the reasons the above
operators are called generating operators – they generate the coefficients Mk

starting from the first one. Finally, if we find all the coefficients, we obtain
that the evolution equations (10.17) can be written into one of the following
equivalent forms:

a) iad−1
J

∂q

∂t
+ ΛN

+

(

ad−1
J [MN , q]

)

= 0

b) iad−1
J

∂q

∂t
+ ΛN

−
(

ad−1
J [MN , q]

)

= 0 . (10.21)

The above suggests that the operators Λ± play an important role in the theory
of equations (10.21). For the first time, they were introduced in the famous
paper [13] for the case of the algebra sl (2,C) (Zakharov-Shabat system) and
then were generalized for the case of arbitrary semisimple algebra; see for ex-
ample [14, 15, 16, 17]. For the operators Λ±, there exists developed spectral
theory, due to fact that their eigenfunctions (the so-called squares or adjoint
solutions) can be obtained from the fundamental analytical solutions of the
GZS linear problem (10.3). We have seen in the first part of this book that
the expansions over the adjoint solutions play a very important role. From
one side they are closely related to the spectral decomposition of Λ±. From
the other, the coefficients of the expansions over the adjoint solutions of the
potential function q(x) can be used as scattering data for (10.3), and thus
the map from the potential function q(x) to the scattering data can be re-
garded as generalized Fourier transform. In terms of the coefficients of the
expansions over the adjoint solutions (10.21) are linear. Then, the Inverse
Scattering Method for the equations associated with (10.3) can be regarded
as an analog of the Fourier transform method for solving linear partial dif-
ferential equations. In this approach, the soliton equations can be treated via
spectral theory of the operators. How it can be done is explained in detail in
the first part of this book.
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However, except for beautiful spectral properties, the operators Λ± have
interesting geometric meaning. The geometric methods that reveal its prop-
erties practically do not depend on the spectral properties of Λ± and can be
developed independently. This is how it happened historically. One of the aims
of this book is to bring together the spectral and the geometric approaches to
the operators Λ±. In this part, we shall concentrate upon the geometric theory
and from the list of the properties of the generating operators, we underline
those important for the geometric approach:

• The equations (10.21) are Hamiltonian with respect to the following
hierarchy of symplectic forms:

Ω(m)(X1,X2) =
∫ +∞

−∞
〈X1, Λ

mad−1
J X2〉dx , (10.22)

Λ =
1
2
(Λ+ + Λ−) . (10.23)

• The equations (10.21) possess infinite series of conservation laws.
• The Hamiltonian functions for (10.21) are in involution, that is, their

Poisson brackets vanish. Consequently, the flows of (10.21) commute.

We shall show that the above properties are a consequence of special geometric
structures defined on the manifold of potentials of the GZS system.

We shall construct also the geometric theory of the generating operators
for the following system, gauge-equivalent to the GZS system (10.3):

L̃ψ̃ = (i
∂

∂x
− λS)ψ̃ = 0, x ∈ R

ψ̃(x, λ) = ψ−1
0 (x)ψ(x, λ), S(x) = ψ−1

0 Jψ0 , (10.24)

where ψ0(x) is the Jost solution for (10.3) evaluated at λ = 0. The Jost
solution for (10.3) is a fundamental solution obeying :

ψ(x, λ)eixλ → 1, as x→ +∞ . (10.25)

In the case g = su (2) and the Heisenberg ferromagnet equation the Lax pair
is written in terms of g = su (2). Then one of most frequently used bound-
ary conditions, arising naturally in the physical models in which Heisenberg
ferromagnet is obtained, are limx→±∞ S(x) = σ3. So, it seems reasonable to
consider the following boundary conditions for S(x) in the general case:

lim
x→±∞

S(x) = J . (10.26)

In order to ensure the above relations, we must impose the following require-
ment on the solution ψ0(x):

lim
x→+∞

ψ0 = expH, H ∈ h , (10.27)
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which, of course, is an implicit restriction on the potential function q. Actually
the generalizations we are considering are such that when g = su (2), one ob-
tains from (10.24) the auxiliary linear problem for the Heisenberg ferromagnet
equation, gauge-equivalent to the Zakharov-Shabat linear problem; see [18].
It is known that each of the equations associated with L and having Lax rep-
resentation [L,M ] = 0 has an analog – the equation that can be written into
the form

[L̃, M̃ ] = 0
L̃ = ψ−1

0 Lψ0, M̃ = ψ−1
0 Mψ0 . (10.28)

Such pairs of equations are called gauge-equivalent. The equations associated
with L̃ possess the same Hamiltonian properties as equations (10.17) or if one
prefers, as equations (10.21). In the simplest case g = su (2), the first two non-
linear equations in the hierarchies for L and L̃ are the Nonlinear Schrödinger
equation (NLS) and the Heisenberg ferromagnet Equation respectively. As
mentioned already, their gauge equivalence, established in [18], is one of the
celebrated facts in the theory of the soliton equations.

Remark 10.2. One must have in mind that in both the operators L̃ and M̃ ,
all the coefficients must be expressed only through the new potential function
S(x) and its x-derivatives; otherwise one cannot effectively use them. However,
to perform it is not so simple, though there is a clear procedure for it, [19]
(see also [20] for the case of the algebra sl (3,C)).

It can be proved then that the hierarchy of equations associated with the
system L̃, (10.24) have the form

−iad−1
S

∂S

∂t
+ (Λ̃±)Λ̃±π̃0MN = 0 , (10.29)

where

(Λ̃±) = Ad (ψ−1
0 )Λ±Ad (ψ0)

π̃0 = Ad (ψ−1
0 )π0Ad (ψ0) (10.30)

and by Ad (ψ−1
0 )X we mean ψ−1

0 Xψ0.
The evolution equations (10.29) are in fact the equations gauge-equivalent

to (10.21) and have been considered in the first part of the book. We have:

• Equations (10.29) are Hamiltonian with respect to the following hierarchy
of symplectic forms:

Ω̃(m)(X̃1, X̃2) =
∫ +∞

−∞
〈X̃1, Λ̃

mad−1
S , X̃2〉dx , (10.31)

Λ̃ =
1
2
(Λ̃+ + Λ̃−) . (10.32)
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• Equations (10.29) possess infinite series of conservation laws.
• The Hamiltonian functions for (10.29) are in involution, that is, their

Poisson brackets are zero, and as a consequence, the flows of equations
(10.29) commute.

The theory of the generating operators Λ̃± associated with the gauge-
equivalent system (10.24) can be developed in complete analogy with the
theory of the generating operators for system (10.3) and any result for one
of these systems have its counterpart for the other system. We shall mention
only the relation between the hierarchies of symplectic structures; the details
can be found in [19]. In order to introduce this relation, we need, however,
some information about the spectral properties of the system L.

First of all, the Jost solutions ψ(x, λ), φ(x, λ) for system (10.3) are funda-
mental solutions, uniquely defined for real λ by their asymptotic behavior:

ψ(x, λ)e−iλJx → 1, φ(x, λ)e−iλJx → 1

x→ +∞, x→ −∞ . (10.33)

Then, in the standard way is defined the transition matrix T (λ):

T (λ) = ψ−1φ . (10.34)

As known, starting from the Jost solutions, which do not possess any analytical
properties with respect to the spectral parameter λ, one can construct using
the Gauss decomposition for T (λ), see for example [21, 22], another couple
of fundamental solutions – χ±(x, λ). The Gauss decomposition we use here
is a generalization of that in the general linear group GL (n); for the case of
semisimple Lie groups, see [23, 24]. The solutions χ±(x, λ) are defined for λ
on the real line by

χ+(x, λ) = ψ(x, λ)T−(λ)D+(λ) = φ(x, λ)S+(λ)
χ−(x, λ) = ψ(x, λ)T+(λ)D−(λ) = φ(x, λ)S−(λ) . (10.35)

If one considers λ as complex, it can be proved that χ+(x, λ) allows analytic
continuation in the upper half-plane, and χ−(x, λ) allows analytic continu-
ation in the lower half-plane. As a matter of fact, these are the solutions
used in the spectral theory for L and Λ± and the Riemann-Hilbert prob-
lem constructions for finding the solutions of the nonlinear evolution equa-
tions solvable through the auxiliary linear problem L; see [21, 22] for the
case of the algebra sl (n,C) and real regular J , [25, 26, 27, 28, 29] for
sl (n,C), and complex regular J and [30] for the situation of an arbitrary
complex semisimple Lie algebra and arbitrary regular J . In the formulae
(10.35), T±, S±,D± are the factors of the following Gauss decomposition
for T (λ):

T (λ) = T−(λ)D+(λ)(S+(λ))−1 = T+(λ)D−(λ)(S−(λ))−1 . (10.36)
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where T±, S±,D± have the form:

S±(λ) = exp
∑

α∈Δ+

s±±(λ)E±α

T±(λ) = exp
∑

α∈Δ+

t±±(λ)E±α

D± = I exp
r
∑

i=1

Δ±
j (λ)Hj . (10.37)

Here, {Hi, Eα; i = 1, 2, . . . , r; α ∈ Δ} is a basis of the algebra g, (the so-called
Cartan-Weyl basis) such that {Hi; i = 1, 2, . . . , r} form a basis of h, and the
rest of the vectors {Eα, α ∈ Δ} are basis in g. As to the splitting of the root
system

Δ = Δ+ ∪Δ− (10.38)

into the subsystems of positive Δ+ and negative Δ+ roots, it is defined as
follows:

Δ+ = {α : α(J) > 0}
Δ− = {α : α(J) < 0} . (10.39)

The element I in the Gauss decompositions belongs to the universal center of
the Lie group G corresponding to the algebra g.

Both D±(λ) do not depend on t, and they are generating functions for
the conservation laws of the evolution equations (10.21). The construction is
the following. In the first place, it can be shown that the functions Δ±

j (λ)
have identical power series (in λ−1) asymptotic expansions for λ→∞. Then,
since the coefficients Δk

j in these expansions do not depend on time, they are
conserved quantities for evolution equations (10.21). These coefficients can
be explicitly calculated using the recursion operators. It turns out that their
linear combinations are in fact the Hamiltonian functions for (10.21).

After these preliminaries let

F : [S(x)] → [q(x)] (10.40)

be the inverse of the map [q(x)] → [S(x)]. (It maps the potential function
q(x) for (10.3) into the potential function S(x) for (10.24)). Let D(F ) be the
Gateau derivative of F . It can be proved that

D(F ) = −Ad (ψ0) ◦ ad S ◦ Λ̃− ◦ ad−1
S . (10.41)

As a consequence, the following relation between the hierarchy of symplectic
structures Ω(m); m ∈ Z associated with L and the hierarchy of symplectic
structures Ω̃(n); n ∈ Z associated with L̃ can be established:

F ∗Ω(m) = Ω̃(m+2) − i

2

r
∑

k,l=1

〈Hk,Hl〉dΔ(m+1)
l ∧ dΔ(k)(0) . (10.42)
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Here, as usual F ∗Ω(m) = Ω(m)(D(F )·,D(F )·) and the wedge ∧ denotes the
exterior product. As to the quantities Δk(0), it can be shown that assumption
(10.27) is equivalent to T (0) = D+(0) = D−(0), and then we put Δk(0) =
Δ+

k (0) = Δ−
k (0).

Let us remind again that we shall refer to system (10.3) as generalized
Zakharov-Shabat system (GZS) in canonical gauge and to system (10.24) as
generalized Zakharov-Shabat system (GZS) in pole gauge.

With this, we finish our quick survey of the properties of the generating
operators and the nonlinear evolution equations associated with the auxiliary
linear problems L and L̃.

Let us say also some words about how this part of the book is organized.

• In Chap. 11, we remind some facts from the Differential Geometry and in-
troduce the notation we use. We have planned the material in chapter 11
in such a way that the reader who is familiar with the basic facts and ideas
of Differential Geometry will recall the main properties of the geometric
objects and should be able to follow the argument in the next chapters,
without constantly referring to other books. Some of the following chap-
ters, however, are devoted to more specific geometric objects, and for that
reason we discuss them in greater detail at the corresponding place. Such
writing can be regarded as a part of our effort to make this book accessible
to a larger audience and in general to make it more “readable.” However,
the mathematical methods used are of great variety and this complicates
things. Together with the geometric methods, we use notions and results
from the theory of the Lie algebras, especially the semisimple. Lie algebras.
We were unable to give definitions of all these notions, as it would have
increased considerably the volume of the book but refer the reader to some
book on Lie algebras. Though the task of making the book self-consistent
was not very hard to achieve in the first chapters, as the material develops,
more and more things are needed and the final chapters are more difficult
to follow. For that reason we tried to involve the knowledge of things not
defined in the book as to say “at the last stage” so that at least the ideas
could be easily understandable. But if something is wrong in the language
or grammar you can change it preserving the meaning.

• In Chap. 12, we discuss the possibilities of defining Poisson brackets, the
usual one, based on the existence of symplectic structure and the sec-
ond one, based on the existence of Poisson structures. Here also intro-
duce the properties of the fundamental fields of symplectic structures and
Poisson structures and discuss briefly the problems of restriction of the
symplectic structure and Poisson structure on submanifolds, a process
that is sometimes called Hamiltonian reduction. Interesting and nontrivial
examples of such restrictions are given in Sect. 12.2, which is dedicated
to the discussion of the complexifications of real dynamical systems and
their real forms. At the end of this chapter, in Sect. 12.4, we make a
short introduction to the integrability of Hamiltonian systems and give
the motivations for introducing a new geometric object – the generating
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operator (the Nijenhuis tensor), which plays a central role in this part of
the book.

• In Chap. 13, we develop the mathematical tools for the study of mixed
tensor fields – the theory of the vector-valued differential forms. Then we
proceed with the vector-valued differential forms of degree 1, introduce
the important notion of Nijenhuis tensor (Nijenhuis structure), and give
some applications of the general theory, such as the Haantjes theorem and
the Nijenhuis theorem. These theorems treat the case when the Nijenhuis
tensor (operator) is semisimple. In Sect. 13.3, we introduce the principal
properties of the Nijenhuis tensors which will be used throughout this part
of the book.

• In Chap. 14, we continue the discussion about the relation between the
integrability and the Nijenhuis structures. We consider the case when the
Nijenhuis operator (tensor) is not semisimple and give some applications.
In 14.1 and in 14.3, we dedicate some attention to the finite dimensional
case, when there exist “enough” integrals of motion, but they are not
in involution. In Sect. 14.4, we consider the interrelation between Pois-
son structure and Nijenhuis structure. We introduce here the notion of
compatible Poisson pairs (structures) and define what Poisson-Nijenhuis
manifolds (P-N manifolds) are. Having in mind the applications in the
next section, we also discuss here the construction of Nijenhuis tensor,
provided we have two compatible Poisson tensors. We also discuss the
principal properties of the P-N manifolds, their fundamental fields, the
mechanism, the hierarchies of Poisson structures on a P-N manifold arise,
and some other related topics.

• Chapter 15 is entirely devoted to the geometric theory of the equations as-
sociated with the generalized Zakharov-Shabat system. First, in Sect. 15.1,
we apply the geometric theory developed in the previous chapter to the
investigation of the Hamiltonian structures for the hierarchy of equations,
associated with the generalized Zakharov-Shabat system (GZS) in canon-
ical gauge. More specifically, we show that the manifold of potentials for
GZS is P-N manifold. In the next section, Sect. 15.2, we discuss the prop-
erties of the so-called momentum map, which is a classical object in the
Hamiltonian Dynamics. Here, it is applied to reveal the interrelation be-
tween P-N structures on Lie groups and P-N structures on the dual spaces
of the corresponding Lie algebras. More specifically, we show that the two
compatible Poisson tensors P 0 and Q0 that generate the P-N structure of
the equations associated with the GZS system arise on a certain coalge-
bra using a suitably chosen momentum map. We make some comparisons
with other approaches and give a simple proof of the compatibility of P 0

and Q0 in 15.2.3. In Sect. 15.3, we apply the theory of P-N structures de-
fined on Lie groups and algebras and establish the interrelations between
three remarkable manifolds: the manifold of potentials for the generalized
Zakharov-Shabat system in canonical gauge, the manifold of potentials for
the generalized Zakharov-Shabat system in pole gauge, and the manifold
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of the Jost solutions for λ = 0 for GZS system in canonical gauge. At
the end of this chapter, in Sect. 15.4, we find explicitly sets of fundamen-
tal fields for these structures. According to the general theory these fields
give rise to the hierarchies of integrable systems on each of these manifolds,
closely related between themselves. On the manifold of potentials for GZS
system and on the manifold of potentials for GZS system in pole gauge
these vector fields generate exactly (10.21) and (10.29).

• In Chap. 16, we consider the so-called linear bundles of Lie algebras, an
algebraic concept that has attracted attention recently. Roughly speaking,
this means that there exists of a set of Lie algebra structures on the same
underlying vector space in such a manner that these structures form a
vector space. The reason we consider the linear bundles of Lie algebras
is that in a straightforward way they lead to compatible Poisson tensors,
Sect. 16.2. We give some examples and applications here in Sect. 16.5 to
the so-called Clebsh and Neumann systems. The reader who is interested
only in the infinite-dimensional case can pass directly to Sect. 16.5.2, where
the case of the algebra o (4) is considered. This case is very special and
needed in Sect. 16.6, where the hierarchies of the so-called O(3) Chiral
System (CF) and the Landau-Lifshitz equation (LL) are considered. The
recursion operators (Nijenhuis tensors) for CF hierarchy is obtained as
an application of the same technique which was applied already to the
hierarchies associated with GZS system.

• Finally, we give a short list of the abbreviations we are using.
• Appendix A is devoted to generalizations of the approaches we have pre-

sented. It is written in a somewhat different style from the rest of the
book; it is rather concise. We have tried to illustrate the generalizations
by examples rather than give all the appropriate definitions and theorems.
We believe that both the specialists and nonspecialists in the field will
find this chapter useful. In Sect. A.1, it is shown that it is possible to give
purely algebraic formulation to many aspects of the theory of the classical
dynamical systems by exploiting the existing duality between F(M) and
M, where F(M) is the ring of smooth functions over the manifold M.
This allows to develop an “abstract” approach to integrability of dynam-
ical systems, choosing F to be simply an associative algebra. Naturally,
the new constructions reduce to the familiar ones when F is realized as a
ring of functions on a specific “carrier” manifold M. An advantage of the
algebraic approach is the ease with which we can add fermionic degrees of
freedom, though of course one should be careful in assuming that results
true in the bosonic situation hold true in the fermionic case too [31]. In
Sect. A.2, the role of (1, 1) graded tensor field N that could play the role
of a Nijenhuis tensor in the analysis of complete integrability of dynamical
systems with fermionic variables is discussed. It is shown that such a ten-
sor can be a recursion operator if and only if N as a graded map is even.
We clarify this fact by constructing an odd tensor for two examples, the
supersymmetric Toda chain and the supersymmetric harmonic oscillator.
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We explicitly show that an odd tensor cannot be a recursion operator,
since it does not allow to build new integrals of motion in contrast to
what usually happens in the ordinary, i.e. nongraded systems.

Through this part we have tried to give (at the proper places) very short
historical remarks about the origin and development of the geometric notions
and ideas we are speaking about. However, the literature referring to these
topics is so vast, and the approaches used so diverse that we have little hope
that we have been able to do justice to these interesting topics. We have even
less hope that we have been able to mention everybody who contributed sig-
nificantly to the development of these ideas in the last decades, a circumstance
that we regret and for which we apologize.
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Smooth Manifolds

In this chapter, we give some important facts about Differential Geometry and
introduce the notation we use. In the literature, there are often differences
either in the signs or in the coefficients for the expressions defining some
basic operations and that is why some notes about them are indispensable.
We could limit ourselves to listing the differences and refer the reader to
some excellent books [1, 2, 3, 4] on Differential Geometry and Hamiltonian
systems, introducing only the less common objects, as the Nijenhuis tensors,
for example. However, since we try to bring together the spectral and the
geometric approaches for the recursion operators, we have made an effort to
give the reader all the information that will help them to read this part of
the book independently, introducing gradually, first, the basic notions and
facts from Differential Geometry, Symplectic Geometry and the Hamiltonian
Systems Theory and then the more specific topics.

There is also another point that we would like to make clear from the be-
ginning. The theory of the infinite-dimensional manifolds is far more intricate
than the corresponding finite dimensional one and not so “classic” and not
so “ideologically” clear. Besides, when one tries to perform some calculations,
one immediately gets a little disappointed in the general theory, because just
to carry out the simplest constructions one must restrict oneself to some class
of spaces, usually Banach spaces – see for example [2] – and to check fulfilment
of conditions that take one far from the original task and get one in the area
of the Functional Analysis. Of course, one needs Banach spaces in order to
have the Implicit Function Theorem, which is so important for Differential
Geometry, but in the applications the spaces are usually not Banach spaces,
and it can be even difficult to decide what spaces to take as tangent and
cotangent spaces to some set that we want to treat as “manifold”, in order
that future constructions do not lead to discrepancies. Indeed, even in the case
of the Zakharov–Shabat system, which except for the Sturm-Liouville eigen-
value problem is the best studied auxiliary linear problem, one is not able to
give a clear geometric description of the so-called generic potentials to which,
as assumed, belong the solutions of the corresponding evolution equations.
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In other words, we give the spectral properties of the fundamental solutions
for these potentials, but before solving the linear problem we are not able
to say if a given potential is “generic” or not. However, these potentials are
the “points” in our manifold M, from which one must start the geometric
analysis. Some of the important facts, as for example, that the “generic” po-
tentials are dense in some Banach space or Fréchet space are helpful indeed,
but the rigorous theory will be difficult to construct. All this is added to the
usual predicament that in the infinite-dimensional case, the vector spaces E
we have are usually not reflexive ((E∗)∗ 	= E), and the usual tensor calculus
identifications, strictly speaking, cannot be used. In a rigorous approach all
this must be taken into account. Such an approach (if possible) cannot be
reconciliated with our view of how this book must be written, that is, the
excessive rigor will only complicate the original ideas without adding to them
new features and will restrict greatly the scope of questions we would like to
discuss. So, we shall adopt quite a utilitarian viewpoint – we shall try to keep
the analogy with the finite dimensional case as far as is possible and shall
show how the things work mostly on the calculative level.

11.1 Basic Objects: Manifolds, Vector and Tensor Fields

The structure of infinite of dimensional manifold (over one of the classical
fields R or C) on a Hausdorff topological space M can be defined in analogy
with the corresponding structure in the finite dimensional case with the help
of a set of homeomorphisms ϕi : Ui → ϕi(Ui) ⊂ E, where Ui are open subsets
of M covering the space M:

⋃

i∈I

Ui =M (11.1)

and E is some “model” infinite-dimensional vector space. (Usually Banach
space). The pair (Ui, ϕi) is called as usual a chart of M (or parametrization
ofM) and Ui is called a parameterized neighborhoods ofM. The collection of
the charts {(Ui, ϕi)}i∈I covering M is called an atlas of M. Of course, in the
case of a finite dimensional differentiable manifold of dimension n (without
boundary) E = R

n and then

ϕi(m) = (x1(m), x2(m), . . . , xn(m)) . (11.2)

The functions m �→ xi(m) are called local coordinates in the chart (local
coordinate system, or frame) (Ui, ϕi).

Usually one imposes also the property of M to be paracompact, in order
to be able to construct partition of the unity, subordinate to any cover – an
important tool for “global” constructions; see for example [1, 3]. But we shall
not enter here in such a detail.
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In order to define the structure of differential manifold one must assume
that the transition maps

ϕij = ϕi ◦ ϕ−1
j : ϕj(Uj ∩ Ui) → ϕi(Ui ∩ Uj) (11.3)

are infinitely differentiable in the Fréchet sense (of course we consider those
i, j for which Ui ∩ Uj 	= ∅).

Recall that the Fréchet derivative D(f)|m of the map f : U → E2, where
U is open in E1 and E1, E2 are Banach or Fréchet spaces, is a continuous
linear map E1 �→ E2, such that f(m+h)−f(m) is approximated by D(f)|mh
up to the terms of order higher than h, that is, in the Banach case for example

||f(m+ h)f(m)−D(f)|mh||2 = o(||h||1) , (11.4)

where ||.||i i = 1, 2 are the norms in E1, E2. When E1 = R
n, E2 = R

m,
D(f)|m is the Jacobi matrix of f .

Since we do not want to enter into the subject of complex manifolds,
we shall in general limit ourselves to the real case, that is, with real spaces
E1, E2 (the single exception is Sect. 12.2). Even when the corresponding space
consists of complex functions (vectors), we understand them as a couple of
real ones – the real and imaginary part of the corresponding functions or the
real and imaginary part of the corresponding vectors in some fixed basis.

Also, as already explained, we shall pay practically no attention to the
topological aspects of the theory and concentrate on the rich calculus existing
in Differential Geometry, so this is the right moment to discuss the derivatives
that shall be used. Often in the literature instead of the Fréchet derivative
D(f) is used the so-called variational derivative – especially in the case when
E2 is R or C. The interrelation of these two objects is the following: Suppose
E is some functional space of functions u(y) and let F : E → C,

F (u) =

+∞
∫

−∞

K(y, u(y), u′(y), . . . u(n)(y))dy (11.5)

where K is differentiable in all its arguments. Then F is functional on E.
In order to perform the necessary calculations, we assume that E consists of
functions defined on the line, having the derivatives up to a certain order and
decaying at infinity as fast as we need. To be even more explicit, let E consist
of scalar functions. Then the usual variational derivative of F at the point
u ∈ E is equal to

δF

δu
=

n
∑

k=0

(−1)k dk

dxk

∂K

∂u(k)
, (11.6)

that is, it is a function. On the other hand, the derivativeD(F ) is the following
linear map on E (provided it is continuous):



376 11 Smooth Manifolds

h→ D(F )|u(h) =

+∞
∫

−∞

δK

δu
(y)h(y)dy . (11.7)

However, often the continuous linear functionals on E, that is, the elements
of E∗, can be embedded into some other functional space Ē. It is the case
when there is some natural pairing (bilinear continuous map)

B : E × Ē → C . (11.8)

(In the above example, it is the integral of the product of two functions). Then
if α ∈ E∗ and there exists unique ϕ ∈ Ē such that

α(h) = B(h, ϕ) (11.9)

for all h ∈ E, we identify α and ϕ. We also can speak about the identification of
α and ϕ if we are interested not in α(h) for all possible h ∈ E but only in h that
belong to some subspace of E, etc. The possibilities here may be various but
the idea is quite clear, and in case we identify functional from E∗ with vector
from Ē, the variational derivative coincides with the Fréchet derivative in
the sense we explained. For this reason, we shall use the variational derivative
symbol in the case when the pairingB is natural, and when we believe that this
will simplify the notation. One can also adopt the equivalent viewpoint that
the derivative δF

δu is generalized function (distribution) and then it coincides
with D(F ).

Returning to the general definitions, we recall that the differentiable maps
between smooth manifolds are introduced in complete analogy to the finite
dimensional case, that is, the corresponding map is differentiable if its expres-
sions (its representatives) in the charts are differentiable. In more detail, let
h : M → N is continuous at m ∈ M. Let (U,ϕ) is a chart at the neighbor-
hood U of m ∈ M, and (V, ψ) is a chart of N at the neighborhood V of the
point h(m), ψ : V → F . Then the map h is called differentiable at m if its
representative in these charts, namely the map

ψ ◦ h ◦ (ϕ)−1 : E → F (11.10)

(in its natural domain) is differentiable at the point ϕ(m). Map h is called
differentiable (smooth) if it is differentiable at each point. Below, we shall
assume that all the maps are C∞ differentiable.

Special case of manifolds are the Lie groups. Lie groupG is a manifold, such
that at the same time it is a group, and the group operations are smooth. In
other words, if (g, h) �→ gh is the group operation inG the mapM : G×G �→ G

M(g, h) = gh−1; g, h ∈ G (11.11)

is smooth. As easily seen, for each fixed g ∈ G the maps Lg : G �→ G and
Rg : G �→ G, as well as the map IG : G �→ G:
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Lg(h) = gh, Rgh = hg, IG(h) = h−1 (11.12)

are smooth maps. Lg are called left translations of the group, Rg right trans-
lations of the group and IG is called the inversion of the group G.

As in the finite dimensional case a tangent vector at the point m ∈ M
is defined through its representatives in the corresponding system of charts
– Xi,m ∈ E, m ∈ Ui. Two representatives Xi,m,Xj,p correspond to the same
vector Xm if p = m and

Xi,m = D(ϕij)|m(Xj,m); i, j ∈ I . (11.13)

The tangent space Tm(M) is then the set of all tangent vectors at the point
m ∈ M and naturally is a vector space. For the sake of brevity it sometimes
is denoted simply by Tm.

In a similar way, one can define the cotangent space T ∗
m(M) (sometimes

simply denoted by T ∗
m), that is, the set of covectors at the point m ∈ M.

Indeed, let us consider the family of covectors

αi,m ∈ E∗, i ∈ I, m ∈ Ui,

where E∗ is the dual space of E, or in other words the set of continuous linear
maps E → R (if the vector space E is over R). Let D∗(ϕji)|m be the dual
(adjoint) map of D(ϕij)|m, then

D∗(ϕij)|m : E∗ → E∗.

If
αi,m = D∗(ϕji)|m(αj,m); i, j ∈ I (11.14)

we say that αi,m is the representative of the covector αm in the chart (Ui, ϕi).
It is readily seen that 〈αi,m,Xi,m〉 does not depend on the chart, and therefore
one can put

〈αi,m,Xi,m〉 = 〈αm,Xm〉 . (11.15)

(In this formula 〈 , 〉 denotes the canonical pairing between E and E∗). In a
similar way one can define the space of (r, s) tensors (r-times contravariant
and s-times contravariant) at the point m ∈ M as elements from the tensor
product

T (r,s)
m (M) = Tm ⊗ Tm ⊗ . . .⊗ Tm

︸ ︷︷ ︸

r times

⊗T ∗
m ⊗ T ∗

m ⊗ . . .⊗ T ∗
m

︸ ︷︷ ︸

s times

. (11.16)

If Rm is (r, s)-type tensor at the point m ∈ M then its representatives Ri,m

are tensors from the tensor product

E(r,s) = E ⊗ E ⊗ . . .⊗ E
︸ ︷︷ ︸

r times

⊗E∗ ⊗E∗ ⊗ . . .⊗ E∗
︸ ︷︷ ︸

s times

(11.17)

and in the different charts are related as follows:
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Ri,m = [Am,ij ⊗Bm,ij ](Rj,m); i, j ∈ I (11.18)

Am,ij = D(ϕij)|m ⊗D(ϕij)|m ⊗ . . .⊗D(ϕij)|m
︸ ︷︷ ︸

r times

Bm,ij = D∗(ϕji)|m ⊗D∗(ϕji)|m ⊗ . . .⊗D∗(ϕji)|m
︸ ︷︷ ︸

s times

.

The corresponding tangent and the cotangent bundles, as well as the corre-
sponding tensor bundles over an infinite-dimensional manifoldM, can also be
introduced as in the finite dimensional case. For example, consider the space

T (M) = {(m, ξm) : m ∈M, ξm ∈ Tm(M)} . (11.19)

If pM is the projection pM (m, ξm) = m then the charts of T (M) are defined
in the following way: Suppose that (Ui, ϕi) is a chart of M about the point
m. Let us put Wi = p−1

M (Ui) and let Ψi be the map

Ψi : Wi → Ui × E

Ψi(m, ξm) = (m, ξi,m) . (11.20)

The maps Ψi are called local trivializations of T (M) at Wi, as locally T (M)
is identified with Cartesian product of two spaces. In unique way, the space
T (M) can be endowed with a topology in which all the maps Ψi are homeo-
morphisms over their images. Clearly,

⋃

i∈I

Wi = T (M) . (11.21)

Besides, from the definition of representative ξi,m, it follows that ifWi∩Wj 	= ∅
the maps Ψi ◦ Ψ−1

j and Ψj ◦ Ψ−1
i are smooth. Now recall that there is the

following classical result; see for example [3]:

Theorem 11.1. Let N be topological manifold and there exists a set of local
homeomorphisms Ψi : Wi → Ni into the manifolds Ni, where Wi ⊂ N are
open and

⋃

i∈J

Wi = N . (11.22)

Suppose that for every pair of indices (i, j) the maps Ψi◦Ψ−1
j are differentiable.

Then on N there exists unique structure of smooth manifold such that all the
maps Ψi : Wi → Ni are diffeomorphisms.

Via this theorem, T (M) is endowed with unique structure of differential man-
ifold and the trivializations of T (M) are local diffeomorphisms. The charts of
T (M) are constructed from the local trivializations Ψi and the charts of M.
We put

Φi = (ϕi ⊕ 1E) ◦ Ψi , (11.23)



11.1 Basic Objects: Manifolds, Vector and Tensor Fields 379

or in other words
Φi(m, ξm) = (ϕi(m), ξi,m) . (11.24)

The manifold T (M) is called total space of the tangent bundle τ(M), where
τ(M) is the triple

τ(M) = (T (M), pM ,M) (11.25)

(tangent bundle with total space T (M), base M and projection pM ).
The same construction is applied almost without any changes to obtain

the cotangent bundle:

τ∗(M) = (T ∗(M), qM ,M) (11.26)

(cotangent bundle with total space T ∗(M), base M and projection qM ). Here

T ∗(M) = {(m,αm) : m ∈M, αm ∈ T ∗
m(M)} , (11.27)

qM is the projection qM (m,αm) = m and the trivializations Ψ̄i are defined in
the following way:

Ψ̄i : q−1
M (Ui) = W̄i → Ui × E∗

Ψ̄i(m,αm) = (m,αi,m) . (11.28)

As to the charts of T ∗(M), they are introduced as follows:

Φ̄i = (ϕi ⊕ 1E∗) ◦ Ψ̄i , (11.29)

or equivalently
Φ̄i(m,αm) = (ϕi(m), αi,m) . (11.30)

The tensor bundless of tensors of arbitrary type (p, q) are defined in a similar
way.

Smooth vector fields, differential forms, and in general tensor fields are
considered as smooth sections of the corresponding vector bundles with base
M, see below. For example, smooth vector field X over the smooth manifold
M is a smooth map

X : M→ T (M), pM ◦X = idM . (11.31)

(We say that the map X is a smooth section of τ(M) over M).

Remark 11.2. Since all the objects we consider are smooth (differentiable) the
words smooth (differentiable) are sometimes omitted in the future.

We also denote the value of the vector field X at m ∈M by X(m) or by X|m.
As one can see from the definition, a vector field X is represented in the local
charts by the differentiable functions

m→ Xi,m ∈ E , (11.32)

such that (11.13) are true.
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In the same manner, a differential 1-form α (also simply 1-form, linear
form or field of covectors) is defined as a smooth section of the cotangent
bundle, that is, as a smooth map

α : M→ T ∗(M), qM ◦ α = idM . (11.33)

We shall denote the value of the 1-form α at m ∈ M by α(m) or by α|m.
Also, one can see from the definition that a 1-form α is represented in some
local chart by the differentiable functions

m→ αi,m ∈ E∗ , (11.34)

such that (11.14) are satisfied.
The definitions of smooth tensor fields are similar – they can be represented

as set of differentiable functions

m→ Ri,m ∈ E(r,s) , (11.35)

such that (11.18) are satisfied.

11.2 Basic Operations with Tensor Fields

In future, the set of all smooth vector fields on M shall be denoted by T (M)
and the set of all smooth differential 1-forms (or simply smooth 1-forms) onM
by Λ1(M). Further, we denote by D(M) the ring of all smooth functions on
M. Then T (M) and Λ1(M) can be regarded as modules over D(M). Another
important module is the module of the p-times covariant skew-symmetric
tensors, also called the module of (scalar) differential p-forms (forms of degree
p) over M. This module shall be denoted by Λp(M). The operations in the
above algebraical structures are defined in natural way – pointwise. If for
example X and Y are vector fields: (X,Y ∈ T (M)), f is smooth function
(f ∈ D(M)) and α, β are p-forms (α, β ∈ Λp(M)) then

(X + Y )(m) = X(m) + Y (m); m ∈M
fX(m) = f(m)X(m); m ∈M
(α+ β)(m) = α(m) + β(m); m ∈M . (11.36)

In case we are considering p-forms, there is one additional and very important
algebraic operation – the exterior product. It is induced by the corresponding
operation defined on Ap(E) ⊂ E(0,p); p = 1, 2, . . ., where Ap(E) are the spaces
of p-linear skew-symmetric forms on the “model” vector space E. If K is the
field of numbers, then β ∈ Ap(E) is a function

β : (x1, x2, . . . , xp) → β(x1, x2, . . . , xp) ∈ K (11.37)

such that
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1. It is linear in each of its arguments.
2. For each σ belonging to the group of permutations Gp of the elements

(1, 2, . . . , p), we have

β(xσ(1), xσ(2), . . . , xσ(p)) = ε(σ)β(x1, x2, . . . , xp) , (11.38)

where ε(σ) is the parity of the permutation σ.

By definition A0(E) = K.
The exterior product (wedge product “∧”) is then the bilinear operation

∧ : Ap ×Aq → A(p+q) . (11.39)

defined in the following way: For α ∈ Ap, β ∈ Aq; p, q ≥ 1, the wedge product
α∧β of α and β is a p+ q form such that if xi; i = 1, 2, . . . , p+ q are elements
of E we have:

α ∧ β(x1, x2, . . . , xp+q) =
1
p!q!

∑

σ∈Gp+q

ε(σ)α(xσ(1), xσ(2), . . . , xσ(p))β(xσ(p+1), xσ(p+2), . . . , xσ(p+q)) ,

(11.40)

where Gp+q is the group of the permutations of the elements 1, 2, . . . , p + q.
For p = 0 we set

α ∧ β = αβ . (11.41)

Then with respect to the wedge product, the module

A(E) =
∞
⊕

k=0
Ak(E) , (11.42)

is an algebra – the algebra of the exterior forms or simply the exterior algebra.1

This algebra is graded anticommutative associative algebra. Graded, because
of (11.39), anticommutative due to the identity:

α ∧ β = (−1)pqβ ∧ α; α ∈ Ap(E), β ∈ Aq(E) , (11.43)

and associative, because for any forms α, β, γ

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) . (11.44)

We introduce now another property of the wedge product which is used fre-
quently. Suppose that ix denotes the contraction with element x ∈ E (the
interior product) ix : Ap(E) → Ap−1(E) defined as:

1 When E is finite dimensional vector space with dimension r then for k > r we
have Ak(E) = 0, and the direct sum is finite. If E is infinite the sum is also
infinite.
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(ixβ)(x1, x2, . . . , xp−1) = β(x, x1, x2, . . . , xp−1); β ∈ Ap(E), p > 1
ixβ = 0, β ∈ A0(E) . (11.45)

Then for α ∈ Ap(E), β ∈ Aq(E), x ∈ E
ix(α ∧ β) = (ixα) ∧ β + (−1)pα ∧ ixβ . (11.46)

Remark 11.3. The notation x�α instead of ixα is also frequently used. More
generally, by R�S is denoted the contraction between an (r, 0) tensor R and
(s, r+ k) tensor S involving the first r covariant indices of S. Of course, R�S
is then a (s, k) tensor.

The pointwise wedge product operation defines the wedge product in the
module

Λ(M) =
∞
⊕

k=0
Λk(M) , (11.47)

thus endowing it with an algebra structure. It is called the algebra of differ-
ential forms over M or also simply the exterior algebra over M. By definition
Λ0(M) = D(M). The formula (11.43) is then true again for α and β being
now a p-form and a q-form, respectively. The interior product (11.45) has also
an analog – the interior product iX of the algebra Λ(M) with the same prop-
erties as (11.45). In more detail, if γ is p-form, X – vector field, then iXγ is
(p− 1)-form defined by

iXγ(X1,X2, . . . , Xp−1) = γ(X,X1,X2, . . . , Xp−1) . (11.48)

For 0-form (function) we have by definition iXf = 0. The equality (11.46) is
still true but now α and β must be p-form and q-form, respectively, and one
must put instead of element x ∈ E the vector field X. The formula (12.199)
is also true for any three differential forms. Of course, in all this formulae
α, β, γ,X are fields on the same manifold M.

From the above, we conclude that the algebra of the differential forms
Λ(M) is graded anticommutative associative algebra.

In a similar way, one can also define the graded algebra of the contravariant
skew-symmetric tensors (the product in it is also denoted by “∧”) but we
shall use this operation only in some formulae, in order to write them more
concisely.

Some additional operations with vector fields and differential forms arise if
one uses the tangent map. In order to introduce it, let h : M→N be a differ-
entiable map between the manifolds M and N . Then dhm is a linear map be-
tween Tm(M) and Th(m)(N ). It is most easily defined, if one considers how it
acts on the representatives of the vectors in the charts ofM and N . If (Ui, ϕi)
and (Vk, ψk) are charts of M and N , respectively, mapping the open sets Ui

and Vk onto the model spaces E and F then for m ∈ Ui, h(m) ∈ Vk, we set

(dhm(Xm))k,h(m) = D(ψk ◦ h ◦ ϕ−1
i )|ϕi(m)(Xi,m) . (11.49)

It follows that
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dhm : Tm(M) → Th(m)(N )
dh∗m : T ∗

h(m)(N ) → T ∗
m(N ) . (11.50)

The linear maps dhm are defined for each m ∈ M and induce the map hT

(called a tangent map) between the tangent bundles τ(M) and τ(N ), such
that the following diagram is commutative:

hT

T (M) → T (N )
pM ↓ ↓ pN

h
M → N

(11.51)

In other words,

T (M) � (m, ξm) → hT (m, ξm) = (h(m), dhm(ξm)) ∈ T (N ) . (11.52)

Definition 11.4. If h is a diffeomorphism and X is a vector field, hT ◦X◦h−1

is also a vector field. X is called invariant under h if hT ◦X ◦ h−1 = X.

The tangent map also induces a map h∗ : Λp(N ) → Λp(M), defined as follows.
Suppose that Xi ∈ T (M), i = 1, 2, . . . p, and α ∈ Λp(N ). Then for arbitrary
m ∈M,

[h∗α(X1,X2, . . . , Xp)] (m) =

α|m(dhm(X1|m), dhm(X2|m), . . . , dhm(Xp|m)) . (11.53)

The map h∗ is a homomorphism Λ(N ) → Λ(M), that is, for α, β ∈ Λ(N )

h∗(α ∧ β) = (h∗α) ∧ (h∗β) , (11.54)

and is called the pull-back map.

Definition 11.5. If h : M �→M is a diffeomorphism, a form ω ∈ Λp(M) is
called invariant under h if h∗ω = ω.

The tangent maps in the case when N is the field of the scalars R are of partic-
ular importance. If f : M→ R, then dfm maps Tm(M) into R. With its help
one can introduce the directional derivative Xf = X(f) of f along the vector
field X (also denoted by LXf and called the Lie derivative of the function f):

[X(f)](m) = [Xf ](m) = [LXf ](m) = 〈dfm,Xm〉 . (11.55)

Then the notion of the Lie brackets of two vector fields X and Y can be
introduced in the standard way:



384 11 Smooth Manifolds

[X,Y ]i,m = D
(

Yi,ϕ−1
i (x)

)

∣

∣

x=ϕi(m)(Xi,m) −D
(

Xi,ϕ−1
i (x)

)

∣

∣

x=ϕi(m)(Yi,m) ,
(11.56)

and it is easy to see that for each function f on the manifold M, and for each
two vector fields X and Y , we have

[X,Y ]f = X(Y f)− Y (Xf) . (11.57)

The Lie bracket endows the vector space T (M) with Lie algebra structure,
as can be seen from the following properties:

1. [aX, Y ] = a[X,Y ] X ∈ T (M), a ∈ R

2. [X,Y ] = −[Y,X], X, Y ∈ T (M)
3. [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 , (11.58)

for any X,Y,Z ∈ T (M). Actually the first of these equations is a particular
case of more general relation

[X, fY ] = f [X,Y ] + (Xf)Y ; f ∈ D(M) , (11.59)

which can be easily proved.
Since it is important for some generalizations, we shall discuss it at the

end of this book, but we also remind that a vector field X over a real manifold
M can be considered as a derivation of the ring of the differentiable functions
D(M). Indeed, derivation D of D(M) is defined as R-linear map D(M) �→
D(M), for which

D(f.g) = D(f).g + f.D(g); f, g ∈ D(M) (11.60)
D(f)(m) = 0, if f = const in some neighborhood of m . (11.61)

The derivations of D(M) do not form an associative algebra but form a Lie
algebra with respect to the commutator.

If X is a smooth vector field f �→ LX(f) = Xf as easily checked is a
derivation. In the finite dimensional case, the converse is also true, that is,
each derivation D of D(M) is of the form LY where Y is a smooth vector
field. Thus (11.57) shows that the correspondence between the derivations
and vector fields is a Lie algebra isomorphism between the derivations (as Lie
algebra with respect to the commutator) and the vector fields (with respect
to the Lie bracket).

Further, as we have already defined the Lie bracket of vector fields the ex-
terior derivative (Cartan derivative) dω of p-form ω is defined by the formula:

dω(X1,X2, . . . , Xp+1) =
p+1
∑

i=1

(−1)i−1Xi

(

ω(X1,X2, . . . , X̂i, . . . , Xp+1)
)

+

∑

i<j

(−1)(i+j)ω([Xi,Xj ],X1,X2, . . . , X̂i, . . . , X̂j , . . . , Xp+1) . (11.62)
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Here, Xn are vector fields, and the hat over the symbol of the vector field
means that in the corresponding expression this field must be omitted. Thus,
dω is (p+1)-form, and it is easy to see that d has the well-known coboundary
property d2 = 0. We have then the usual definitions of closed and exact forms:

Definition 11.6. The p-form α is called closed if dα = 0.

Definition 11.7. The p-form α is called exact if there exists (p-1)-form β,
such that dβ = α.

From d2 = 0 follows that each exact form is closed, and one can introduce
cohomologies. The closed p forms are the p-cocycles Zp(M), the exact forms
are the coboundaries Bp(M), and the de Rham cohomologies are defined as
the quotient spaces

Hp(M) = Zp(M)/Bp(M) . (11.63)

IfHp(M) = 0 each closed form is exact, but generally speaking this is not true.
Locally, however, it is always true. In the finite dimensional case, the famous
Poincaré lemma states that for each point there exists an open neighborhood
of it, such that on it each closed form is exact. It has also analog in the
infinite-dimensional case [2].

A very important property of the exterior product is that d commutes
with the pull-back map h∗. In other words if h : M→N is differentiable map
between two manifolds then

d ◦ h∗ = h∗ ◦ d . (11.64)

(Of course, one of these ds acts on the forms over M and the other on the
forms over N ). The exterior derivative already defined, we can define the Lie
derivative of p-form ω by the formula

LXω = iXdω + diXω . (11.65)

It is readily seen that from the definition it follows

d ◦ LX − LX ◦ d = 0 . (11.66)

After we have defined the Lie derivative for differential forms, we define it on
vector fields as

LX(Y ) = [X,Y ] (11.67)

and then extend this operation on tensor fields using the requirement that
LX behaves like differentiation with respect to the tensor product and the
contraction between tensor fields. All this procedure is quite classic; see for
example [1, 5], where it is applied in the finite dimensional case.

Example 11.8. Let m → Sm be (1, 1) tensor field, such tensor fields we shall
call also mixed tensor fields. Then for each X ∈ T (M) the contraction X�S
is a vector field, more precisely:
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m→ (X�S)(m) (11.68)

is vector field. (This is the reason the (1, 1) tensor fields are often referred
as fields of operators and X�S is written also as S(X) or S.X). Then for all
X,Y ∈ T (M)

LY (S(X)) = LY (S(X)) = LY (S)(X) + S(LY (X)) . (11.69)

Hence

LY (S)(X) = [Y, S(X)]− S([Y,X]), X, Y ∈ T (M) , (11.70)

and usually this equation is used if one wants to find LY S.

The Lie derivative has also the following useful properties: For any vector
fields X and Y

[LX , iY ] = LX ◦ iY − iY ◦ LX = i[X,Y ]

[LX , LY ] = LX ◦ LY − LY ◦ LX = L[X,Y ] . (11.71)

(Of course, in the first of these formulae is implied that LX and iY act on the
module of differential forms Λ(M)).

As mentioned already, we purposely avoid topological aspects and con-
centrate only on “calculus.” However, there are some constructions that are
difficult to generalize, and here we must say a few words about it. As men-
tioned, the infinite-dimensional vector spaces often are not reflexive. This
means that if E is a topological vector space one can no more identify E∗∗

and E. Therefore, a continuous linear map on E∗ is no more necessarily ele-
ment from E. Due to this circumstance one must be cautious, as definitions
which are equivalent in the finite dimensional case may be essentially different
in the infinite-dimensional case. For example, if R is continuous linear opera-
tor then in the finite dimensional case it is identified with tensor R̂ ∈ E(1,1)

and vice-versa. The relation between the two objects is the following

〈α,R(x)〉 = R̂(x, α); x ∈ E, α ∈ E∗ . (11.72)

In the above formula the tensor R̂ is understood as bilinear map

R̂ : E × E∗ → K , (11.73)

where K is one of the classical fields (R or C) and 〈 , 〉 is the canonical
pairing between E∗ and E. In the infinite-dimensional case, provided that R̂
is given, from (11.72) one can define only the linear map x→ R(x) ∈ E∗∗ and
E∗∗ 	= E. There are also some other difficulties; see [2, 4].
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11.3 Local Flows

If X is a vector field over M the smooth curve γ : I → M (here I is an
interval on the real axis) is called integral curve for X if

dγ

dt
= dγt(1) = X(γ(t)) . (11.74)

The system of the differential equations (11.74) is determined by X and vice
versa. For this reason, we shall call the field X dynamical system, and the
above equations – the equations corresponding to the dynamical system X.
In other words, in the future, we identify the vector fields and the systems
of differential equations that correspond to them. The points m for which
X(m) = 0 are called critical points of the dynamical system X.

From the local existence and uniqueness theorem about the solution of
differential equation on E (again we deliberately do not speak about the
restrictions one must impose in order to have such theorem for X; see [2] for
such a discussion) it follows that at least locally (in some neighborhood of
each point m ∈ M) there exists unique maximal solution of the differential
equation (11.74) such that γ(0) = m. Let us denote this solution by ϕt(m). It is
known then that from the smooth dependence of the solution of the differential
equation (11.74) on the initial conditions we obtain some additional properties
of ϕt(m). We collect all of them in the following theorem [2, 3, 4]:

Theorem 11.9. The map (t,m) → ϕt(m) is defined on the open subset V of
R ×M, such that (R × {m}) ∩ V is of the type Im × {m} where Im ⊂ R is
interval containing the zero. The function ϕt satisfies:

dϕt

dt
(m) = X(ϕt(m)), t ∈ Im . (11.75)

and has the properties

ϕ0 = idM

ϕt1+t2 = ϕt1 ◦ ϕt2 , t1, t2 ∈ R

ϕ−1
t = ϕ−t, t ∈ R . (11.76)

(All the equations are true for those m and t for which the corresponding maps
are defined).

Definition 11.10. The map ϕt(m) is called local 1-parametric group (of dif-
feomorphisms) generated by the vector field X or local flow of X.

Remark 11.11. Often the local flow is denoted by exp tX(m).

Definition 11.12. A vector field X over M is called complete, if ϕt(m) is
defined for each m ∈M and t ∈ R.
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If the manifold M is finite dimensional and compact, each field X over it is
complete.

Suppose that α ∈ Λ(M), then one has the following important relations:

lim
t→0

1
t
(ϕ∗

tα− α)|m = LXα|m . (11.77)

Also, if Y is vector field then

lim
t→0

1
t
(ϕT

−t ◦ Y ◦ ϕt − Y )|m = [X,Y ]|m . (11.78)

These relations make natural the definitions that will follow.

Definition 11.13. The function f is called a first integral, constant of motion
or conservation law for the vector field X (the dynamical system X) if LXf =
Xf = 0. The closed 1-form α is called first integral (sometimes generalized
first integral) of the vector field X (dynamical system) if iXα = 0.

If the closed form α is first integral, then locally, in some neighborhood
U ⊂ M of the point m there exists F ∈ D(U), such that α|U = dF . From
(11.77) it follows that F (ϕt(m)) does not depend on t, that is F is first integral
for the differential equation (11.74) in the “normal” sense.

If the function G is first integral G(ϕt(m)) = G(m) = const , that is, G
is constant on the integral curves of X, which explains the term “constant of
motion.”

We shall say that the vector field X (the dynamical system defined by X)
on the real, n-dimensional manifold M can be integrated in quadratures (or
is completely integrable) if it has n−1 independent first integrals. In the case
of forms, this means that there are n − 1 closed forms βs, 1 ≤ s ≤ n − 1,
such that for each m ∈M the covectors βs(m) are linearly independent. This
condition can be written also as:

(β1 ∧ β2 ∧ . . . ∧ βn−1)(m) 	= 0; m ∈M . (11.79)

If we are speaking of integrals of motion that are functions, then βs = dfs and
the condition that βs are linearly independent implies that fs are functionally
independent.

Definition 11.14. The field Y is called a symmetry of the vector field X if
LXY = [X,Y ] = 0.

It can be shown that if Y is a symmetry of X, then if we denote the flow
generated by Y with ψτ , the (11.78) entails

ψT
−τ ◦X ◦ ψτ = X

ψτ ◦ ϕt = ϕt ◦ ψτ (11.80)
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which explains the term “symmetry.”
We can also define the following 1-parametric group of maps acting on the

tensor fields Q of type (r, s):

(ψ(r,s)
t Q)|m =

dϕ−t ⊗ dϕ−t ⊗ . . .⊗ dϕ−t
︸ ︷︷ ︸

r times

⊗ dϕt
∗ ⊗ dϕt

∗ ⊗ . . .⊗ dϕt
∗

︸ ︷︷ ︸

s times

(Q|ϕt(m)) .

(11.81)

Then we have a more general definition:

Definition 11.15. If Q field of type (r, s) on the manifold M and h : M �→
M is a diffeomorphism, then the field

m �→ Qh|m =
dhm ⊗ dhm ⊗ . . .⊗ dhm
︸ ︷︷ ︸

r times

⊗ dh−1∗
m ⊗ dh−1∗

m ⊗ . . .⊗ dh−1
m

∗

︸ ︷︷ ︸

s times

(Q|h−1(m)) .

(11.82)

is also a tensor of type (r, s). We say that Q is invariant under h if Q =
Qh. This definition generalizes the definitions of invariant vector field and
invariant differential form we had earlier.

Remark 11.16. One can see that if Q is invariant under the diffeomorphism h,
then Q is invariant under h−1 as well.

Returning to the flow corresponding to the field X, it is not difficult to show
that one has the formula below, which generalizes the results we have intro-
duced earlier for the case of forms and vector fields:

LXQ|m = lim
t→0

1
t
(ψ(r,s)

t (Q)−Q)|m . (11.83)

Definition 11.17. We say that the vector field X ∈ T (M) is fundamental
for the (r, s)-type tensor field Q (or that X is an infinitesimal symmetry of
Q) if

LXQ = 0 . (11.84)

As can be seen from (11.83), the vector field X is fundamental for the ten-
sor field Q if and only if Q is invariant under the one-parametric group of
transformations ψ(r,s)

t .
The above formulae are in agreement with the already mentioned property

that if P and Q are two tensor fields, P ⊗ Q is their tensor product and by
dot “.” we denote the contraction between certain number of covariant and
contravariant components in P ⊗Q, then one has
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LX(P ⊗Q) = (LXP )⊗Q+ P ⊗ (LXQ) (11.85)
LX(P.Q) = (LXP ).Q+ P.(LXQ) . (11.86)

Let us give some examples of the above constructions which shall be useful
for our purposes. Suppose we have (1, 1) type tensor field N over a manifold
M. First of all we remark that this field can be regarded in two ways:

1. As a field m→ N̄m of linear maps (operators)

N̄m : Tm(M) → Tm(M)
〈αm, N̄m(Xm)〉 = Nm(Xm, αm) = Nm.(Xm ⊗ αm)
Xm ∈ Tm(M), αm ∈ T ∗

m(M) . (11.87)

2. As a field of linear maps (adjoint operators) m→ N̄∗
m :

N̄∗
m : T ∗

m(M) → T ∗
m(M)

〈N̄∗
m(αm),Xm〉 = Nm(Xm, αm) = Nm.(Xm ⊗ αm)

Xm ∈ Tm(M), αm ∈ T ∗
m(M) . (11.88)

One can define Lie derivative of the fields m→ N̄m and m→ N̄∗
m as:

LXN̄ |m = lim
t→0

1
t

(

dϕ−t ◦ N̄ ◦ dϕt − N̄
)

|m

LXN̄ |m = lim
t→0

1
t

(

dϕ∗
t ◦ N̄∗ ◦ dϕ∗

−t − N̄∗) |m , (11.89)

but it is not difficult to see that

ψ
(1,1)
t N = dϕ−t ◦ N̄ ◦ dϕt

(ψ(1,1)
t N)∗ = dϕ∗

t ◦ N̄∗ ◦ dϕ∗
−t , (11.90)

and we see that the action of the flow on the (1, 1) tensor(1-1) field N coincides
with the adjoint action of flow on N̄ and the coadjoint action of the flow on
N̄∗. Taking the above into account, we obtain the following proposition which
often is useful in the calculations:

Proposition 11.18. Let X be vector field, N be (1, 1) tensor field as above.
Then

(LXN̄)∗ = LXN̄
∗ . (11.91)

Corollary 11.19. If the vector field X is fundamental for the field N̄ then X
is fundamental for the field N̄∗.

Remark 11.20. In what follows, if there is no possibility of misunderstanding
we shall denote the (1, 1) tensor field N and the field of operators N̄ by the
same letter.
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11.4 Distributions (Fields of Subspaces)

The situation when we have a curve γ(t) which is tangent to the vector field
can be generalized in the sense that we can consider a set of vector fields
X1,X2, . . . Xp which are tangent to a submanifold N ⊂ M. We give the
following definition:

Definition 11.21. The subset N ⊂M of the manifold M is called submani-
fold if it itself is a manifold and the inclusion map j : N →M is an immersion
(that is djm is injective at each m ∈ N ).

(Recall that we assume all the maps to be smooth.)

Remark 11.22. Our definition for submanifold is what is usually called im-
mersed submanifold. If in addition we require that the topology on N ⊂ M
is the induced topology, the submanifold is called a submanifold embedded
in M. Since we are not going to discuss topological aspects the difference
between immersed and embedded submanifolds will not play a role in our
considerations.

Example 11.23. If U is some open set in M, it is obviously a submanifold.

Suppose that N ⊂ M is a submanifold and let j : N �→ M be the canonical
inclusion map. It is readily seen that j is differentiable. We have

Definition 11.24. For m ∈ N ⊂M a vector Xm ∈ Tm(M) is called tangent
to N if Xm ∈ djm(Tm(N )). Since djm is injective, sometimes Tm(N ) and
djm(N ) are identified and one just writes:

Tm(N ) ⊂ Tm(M), m ∈ N . (11.92)

The vector field X overM is tangent to the submanifold N if for each m ∈ N ,
X(m) is tangent to N . In this case, X induces on N unique vector field Y ,
such that jT ◦ Y = X ◦ j, called sometimes the restriction of X on N .

Definition 11.25. If ω is a p-form on M, then j∗ω is a p-form on N , called
the restriction of ω on N . In particular, for 0-form f (function) on M, we
have j∗f = f ◦ j.

Why we call j∗ω a restriction becomes clear, if we recall the identification
leading to (11.92).

Now, we shall give definition for distribution or as it is often called –
field of subspaces. The definitions and results that follow below are simplified
and, strictly speaking, are such that ought to be only for the finite dimen-
sional case. As already explained, there are some subtleties in the infinite-
dimensional case, see [2]. This subtleties are present both in the formulation
and in the proof of the Frobenius theorem, which is the main result about
distributions, but we deliberately avoid to speak about them here. However,
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when in the future we use these results, we shall usually find the integral sub-
manifolds explicitly, so the lack of rigor will not affect negatively our future
constructions.

Suppose thatM is a differentiable manifold, which is locally diffeomorphic
to some “model” space E (Banach space for example). Then for each m the
space Tm(M) is isomorphic to E. We shall denote the “model” spaces we are
working with by E and the set of their dual spaces by E∗.
Definition 11.26. A differentiable distribution (field of subspaces) on a man-
ifold M is a field S : m �→ Sm where Sm is some subspace of Tm belonging to
E and satisfying the conditions:

1. For each m ∈ M there exists E′
m such that E = E′

m ⊕ Sm ∼ E′
m × Sm,

where E′
m ∈ E.

2. For each m ∈ M and Xm ∈ Sm there exists a neighborhood U of M and
a smooth vector field X on U such that X(m) = Xm and for each q ∈ U ,
X(q) ∈ Sq.

If the spaces E′
m, S ′

m are isomorphic to some constant spaces E′ and S be-
longing to E, we shall call the distribution a regular distribution. In the finite
dimensional case regular means that Sm has dimension that does not depend
on the point, so in this case we speak about distributions of constant dimension
p = dim (Sm) and call p dimension of the distribution S.

Definition 11.27. A differentiable Pfaffian system on a manifoldM is a field
of subspaces J : m �→ Jm where Jm is some subspace of T ∗

m of belonging to
E∗ and having the properties:

1. For each m ∈ M, there exists S′
m such that E∗ = S′

m ⊕ Jm ∼ S′
m × Jm,

where S′
m is a space belonging to E∗.

2. For each m ∈M and αm ∈ Jm, there exists a neighborhood U of M and
a smooth covector field α on U such that α(m) = αm and for each q ∈ U ,
α(q) ∈ Jq.

If the spaces S′
m, Jm are isomorphic to some constant spaces S′ belonging to

E∗ we shall call the Pfaffian system a regular Pfaffian system. In the finite
dimensional situation regularity implies that the dimension p of Jm does not
depend on the point. In this case we speak about Pfaffian systems of constant
rank p and p is called the rank of J .

If S is a distribution, then for m ∈M we can define

S⊥
m = {αm ∈ T ∗

m : 〈αm,Xm〉 = 0 : Xm ∈ Sm} . (11.93)

Then, as it is easily checked m �→ S⊥
m is a differentiable Pfaffian system. If J

is a Pfaffian system, then for m ∈M we can define

kerJm = {Xm ∈ Tm : 〈αm,Xm〉 = 0 : αm ∈ Jm} . (11.94)

Then m �→ kerJm is a differentiable distribution.
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Definition 11.28. The submanifold N is called integral (sub)manifold for the
distribution m → Sm if for any m ∈ N we have Sm = djm(Tm(N )), where
j : N �→M is the inclusion map.

Definition 11.29. The distribution m → Sm is called completely integrable
(integrable in Frobenius sense or simply integrable) if at each point there exists
integral submanifold. For the sake of brevity, we shall usually say that the
distribution is integrable. We shall say that a Pfaffian system J is integrable
if the corresponding distribution m �→ kerJm is integrable.

The following theorem, called the Frobenius theorem, plays a central role
in the theory of distributions:

Theorem 11.30. Let the set of the model spaces E consist of complete spaces
(Banach for example) and let m→ Sm be a regular distribution. It is integrable
if and only if from X,Y ∈ S (that is for each m ∈M we have X(m), Y (m) ∈
Sm) follows that [X,Y ] ∈ S.

The above theorem has numerous applications in Geometry and Mechanics.
Suppose we have integrable field m → Sm ⊂ Tm(M) of subspaces of

constant dimension (distribution) on the finite dimensional manifold M. The
maximal integral submanifolds of this distribution are usually called (integral)
leafs of the distribution and the resulting geometric structure, that is the
representation of M as disjoint union of leafs is called foliation of M.

In case there exists the manifold N and smooth map p : M→N in such a
way that p−1(m); m ∈ N is either empty or coincides with exactly one leaf of
the foliation F , the foliation F is called projectable through p. A special case
of the above situation is when there exists submanifold N ⊂ M, such that
N intersects with the leafs only once (it is of course possible that N does not
intersect all the leafs) and is transversal to the foliation, that is, the tangent
space of Tm(N ) and the vector space Sm define splitting of Tm(M)

Tm(M) = Tm(N )⊕ Sm; m ∈ N . (11.95)

(Here Tm(N ) is identified by djm(Tm(M)) and j : N �→ M is the inclusion
map). The above is evidently related to the general concept of transversality
of manifolds:

Definition 11.31. Two submanifolds N ,P ⊂ M are called transversal if at
the points m ∈ N ∩ P we have

Tm(N )⊕ Tm(P) = Tm(M) . (11.96)

When N is transversal to the foliation F , they say sometimes that it is a
section of the foliation. In case N is a section of the foliation F , the projection
map p is defined in the following way. For m ∈ M, we take the leaf Lm that
passes through m. Then the domain of p is the set of all points m for which
Lp intersects N and p(m) ∈ N is the unique intersection point of N and Lm.
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The Frobenius theorem has also a dual formulation, which we shall not
introduce in all generality but only in the following situation. Assume that
we have a manifold M and suppose that on M is defined a finite family of
independent 1-forms {θi}k

i=1, such that the spaces

Sm =
k
∩

i=1
ker θi(m), m ∈M , (11.97)

are isomorphic to some constant space. Naturally, {θi}k
i=1 generate a Pfaffian

system J . If N is arbitrary integral manifold and j : N �→M is the inclusion
map we have j∗θi = 0.

In the finite dimensional situation, when dim (M) = d the field m �→ Sm

defines a (d−k)-dimensional distribution S. One can check that the Frobenius
theorem implies that J is integrable if and only if for each i we have

dθi(X,Y ) = 0 (11.98)

for any vector fields X and Y belonging to S. In the finite dimensional situ-
ation, this condition is equivalent to the condition that the form dθi belongs
to the ideal, generated by the family {θi}k

i=1 in the algebra of the exterior
forms. In particular, if all θi are closed, for each point m there exists local
coordinates xs; s = 1, 2, . . . ,dim (M) about m, such that locally θi = dxi for
i = 1, 2, . . . , k. If in addition k is equal to d – the dimension of the mani-
fold, the family {θi}d

i=1 is a basis in the space of 1-forms (it is often called a
frame). If θi are closed, the frame {θi}d

i=1 is called holonomic and is called
nonholonomic if this is not true.

11.5 Related Tensor Fields

Let M and N be two manifolds and h : M→N be some differentiable map.

Definition 11.32. Two vector fields X ∈ T (M), Y ∈ T (N ) are called related
through h (or h-related) if

hT ◦X = Y ◦ h . (11.99)

In other words, for arbitrary m ∈M, hT (X(m)) = Y (h(m)).

Of course, if X is vector field over M a vector field Y , h-related to X may
fail to exist. With the new notion the definition of the tangent field to a
submanifold can be cast in the following form:

Definition 11.33. Let N ⊂ M be a submanifold and let j be the inclusion
map j : N �→ M. We say that the vector field X ∈ T (M) is tangent to the
submanifold N if X is j-related to some vector field Y on N .
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Example 11.34.
Let h be diffeomorphism h : M → N . Let X be vector field over M. Then
the fields X and h∗(X) = hT ◦X ◦ h−1 are h-related.

One can prove the following without much difficulty.

Proposition 11.35. If the fields X1,X2 ∈ T (M) are h-related to the fields
Y1, Y2 ∈ T (N ), then [X1,X2] is h-related to [Y1, Y2].

Definition 11.36. If α ∈ Λp(M) and β ∈ Λp(N ) are two p-forms over M
and N respectively we say that they are h-related if α = h∗β.

Remark 11.37. We again emphasize that for given α the form β may fail to
exist. However, it can be proved that if N ⊂ M is a submanifold of M and
j : N �→ M is the corresponding inclusion map, then locally for each p-form
γ on N there exist a p-form α on M such that j∗α = γ. More exactly, for
m ∈ N there exists a neighborhood Vm in N , a neighborhood Wm of m in M
such that Vm ⊂Wm and a form α defined on Wm such that γ|Vm

= j∗α|Vm
.

It is not hard to prove.

Proposition 11.38. If the vector fields X ∈ T (M) and Y ∈ T (N ) are
h-related, and if α ∈ Λp(M), β ∈ Λp(N ) are two h-related p-forms, then

iXα = iXh
∗β = h∗iY β . (11.100)

Corollary 11.39. Let X1,X2, . . . , Xp ∈ T (M); Y1, Y2, . . . , Yp ∈ T (N ) be
pairwise h-related. Then if the forms α ∈ Λp(M), β ∈ Λp(N ) are two
h-related p-forms we have

α(X1,X2, . . . , Xp)(m) = β(Y1, Y2, . . . , Yp)(h(m)) . (11.101)

The notion of h-related tensor fields can be defined along the same lines.

Definition 11.40. Let m→ Rm and let n→ Sn be tensor fields of the same
type (q, p), over M and over N respectively, that is Rm ∈ T

(q,p)
m (M), Sn ∈

T
(p,q)
n (N ). We shall say that they are h-related if for any h-related sets of

fields X1,X2, . . . , Xp ∈ T (M) and Y1, Y2, . . . , Yp ∈ T (N ) and for each set of
1-forms β1, β2, . . . , βq over N at each point m ∈M we have

〈S,X1 ⊗X2 ⊗ . . .⊗Xp ⊗ h∗β1 ⊗ h∗β2 ⊗ . . .⊗ h∗βq〉(m) =
〈R, Y1 ⊗ Y2 ⊗ . . .⊗ Yp ⊗ β1 ⊗ β2 ⊗ . . .⊗ βq〉(h(m)) . (11.102)

Taking into account the definitions of h-related fields and the properties of
the Lie derivative and the exterior derivative one can check that.

Proposition 11.41. Let R and S be h-related tensor fields over M and over
N , respectively, and let X and Y be two h-related vector fields. Then the
tensor fields LXR and LY S are also h-related. If α and β are h-related forms
then the forms dα and dβ are also h-related.
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We see that if two tensor fields are h-related they have similar properties,
and if the sets of h-related 1-forms and vector fields are sufficiently large then
any relation over M written in terms of the operations d and LX for the first
set of these tensor fields has its analog over the manifold N for the second set
of tensor fields.

Definition 11.42. Let N ⊂M be submanifold and let j be the inclusion map.
Let Q be a tensor field over M. We shall say that the tensor field Q̄ over N
is restriction of Q on N if Q and Q̄ are j-related.

11.6 Local Form of the Geometric Objects

Often it is more convenient to work in a fixed system of charts, and so the
local form of the geometric objects is needed. The “representatives” of the
vector fields and tensor fields we have introduced earlier (see (11.32), (11.34),
(11.35)) are in fact the local forms, but they must be expressed through the
coordinates. Let us consider first the finite dimensional case. As the space E is
of dimension n it is isomorphic to the Euclidean space R

n (here we consider the
real case). Then we can safely assume that E = R

n and let ei; i = 1, 2, . . . , n
be the standard orthonormal basis in R

n. Let us consider the chart (Ui, ϕi)
of the manifold M. Let xs be the following functions on Ui ⊂M:

xs = ps ◦ ϕi , (11.103)

where ps is the projector onto the s-th component in the Cartesian product
R

n = R × R × . . . × R. Then, it is readily seen that (ϕi(m))s = xs(m);
s = 1, 2, . . . , n. The functions xs(m) are called coordinates of the point
m ∈ M. Let f(m) be a function on M. We shall write f(x) for the function
f(ϕ−1

i (x)) defined on ϕi(Ui). The use of the same symbol for two different
functions is slightly confusing, but it is convenient and universally accepted.
(The function f(x) is the same as f(m), but in different variables). f(x) is
called the expression of f in the coordinates xs or local form of f in the chart
(Ui, ϕi). (Earlier we called it also representative of f in the chart (Ui, ϕi)).

Let now ξm be a vector in Tm(M) and his representative in the above
chart be ξ ∈ R

n. The definition of the tangent map shows that

dxs(ξm) = ps(ξ) = ξs . (11.104)

Then clearly the 1-forms dxs form a basis of 1-forms on T ∗
m(M) and each

covector αm can be written as :

αm =
n
∑

s=1

asdx
s, as ∈ R . (11.105)

This is called local form of the covectors in the chart (Ui, ϕi).
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It is readily seen that dxs are in fact smooth fields of 1-forms in Ui and,
therefore, for m ∈ Ui each field of covectors (1-form) α can be written into
the form

α(x) =
n
∑

s=1

as(x)dxs , (11.106)

where as(x) are smooth functions on ϕi(Ui) ⊂ R
n.

Here, we have adopted the same convention as above and written α(x) for
the function α(ϕ−1

i (x)). The expression (11.106) is called local form of the
1-form α in the chart (Ui, ϕi). In particular, if f is a function one obtains

df(x) =
n
∑

s=1

∂f

∂xs
dxs . (11.107)

For arbitrary p-form β one has similar expression:

β(x) =
∑

1≤i1<i2<...<ip≤n

ai1i2...ip
(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxip . (11.108)

If ξ is the representative of ξm ∈ Tm(M) from the above considerations, we
easily get the following expression:

dfm(ξm)|m=ϕ−1(x) =
n
∑

s=1

∂f

∂xs
ξs . (11.109)

Now let X(m) be vector field with representative Xi,m. As in the above let
us denote by X(x) the following vector field on ϕi(Ui) ⊂ R

n:

x �→ X(x) = Xi,m=(ϕ−1
i (x)) . (11.110)

This field is called local form of the vector field X in the chart (Ui, ϕi). Usually
it is written using different notation which we shall introduce now. They
are quite natural if we calculate the local form of the function Xf , that is,
Xf(x) = df(X)(x) in the chart (Ui, ϕi). We find that

Xf(x) =
n
∑

s=1

∂f

∂xs
Xs(x) , (11.111)

and in particular

Xxm = dxm(X) =
n
∑

s=1

∂xm

∂xs
Xs(x) = Xm(x) . (11.112)

Suppose now Zs are vector fields on Ui, such that Zs(x) = es, where es are the
vectors of the canonical basis in R

n. These fields restricted to each tangent
space form a basis in it and a basis for the module of the vector fields on Ui.
We have
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Zsf =
∂f

∂xs
(11.113)

and in particular

Zsx
m(x) = dxm

(

∂xm

∂xs

)

= δm
s . (11.114)

Thus Zs form a basis in T (Ui), dual to the basis of the 1-forms dxs in Λ1(Ui).
Because of (11.113) the vector fields Zs are denoted in the following way:

Zs =
∂

∂xs
. (11.115)

Using this notation, we see that

dxs

(

∂

∂xm

)

= δs
m (11.116)

and if we apply this to (11.112) we get that

X(x) =
n
∑

s=1

Xs(x)
∂

∂xs
. (11.117)

This expression is then called a local form of the vector field X in the chart
(Ui, ϕi).

In the same manner, one can obtain the local form of tensor fields of
arbitrary type. For example, here are the local forms of:

1. (1, 1) tensor field N (field of operators Nm : Tm(M) → Tm(M)) :

N =
n
∑

k,m=1

Nm
k (x)

∂

∂xm
⊗ dxk , (11.118)

where Nm
k (x) are smooth functions on ϕi(Ui),

2. (1, 1) tensor field S (field of operators Sm : T ∗
m(M) → T ∗

m(M)) :

S =
n
∑

k,m=1

Sm
k (x)dxk ⊗ ∂

∂xm
, (11.119)

where Sm
k (x) are smooth functions on ϕi(Ui),

3. 2-form ω:
ω =

∑

1≤k<m≤n

akm(x) dxk ∧ dxm , (11.120)

where akm(x) are smooth functions on ϕi(Ui).

The fields dxs and ∂
∂xi we have just introduced are also used to produce the

coordinates on the tangent and cotangent bundles. Indeed, suppose in the
chart (Ui, ϕi) we have the coordinates xs; s = 1, 2, . . . , n, then taking into
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account (11.28) the following coordinates on q−1
M (Ui) ⊂ T ∗(M) are used: If

a = (m,αm) ∈ q−1
M (Ui) we introduce

qs(a) = ps ◦ π1 ◦ Φ̄i(a) = ps ◦ ϕ(m) = xs(m)

ps(a) =
〈

∂

∂xs
, π2 ◦ Φ̄i(a)

〉

=
〈

∂

∂xs
, αi,m

〉

, (11.121)

where qM is the projection of T ∗(M) over M: qM (m,αm) = m; π1, π2 are the
projections onto the first and the second component of the Cartesian product
Ui × E∗, respectively, and ps is the projection on the s-th component of the
Cartesian product R

n. Then (q, p) are coordinates on q−1
M (Ui).

Quite in the same way, on p−1
M (Ui) ⊂ T (M), taking into account (11.24),

we have the following coordinates: For b = (m, ξm) ∈ p−1
M (Ui) we set

qs(b) = ps ◦ π1 ◦ Φi(b) = ps ◦ ϕ(m)
ri(b) = dxs(π2 ◦ Φi(b)) = dxs(ξm) , (11.122)

where pM is the projection of T (M) over M: qM (m, ξm) = m; π1, π2 are
the projections onto the first and second component of the Cartesian product
Ui × E, respectively, and ps is the projection on the s-th component of the
Cartesian product R

n. Then (q, r) are coordinates on p−1
M (Ui).

The coordinates introduced in the above on T (M) and T ∗(M) are associ-
ated with the choice of the coordinates about the pointm ∈M and are usually
called canonical. As a matter of fact they are so convenient that seldom some
different coordinates are used.

Example 11.43 (The Liouville form). Let T ∗(M) be the total space of the
cotangent bundle of M. If a = (m,αm) is a point in T ∗(M), and τa is a
vector at a then qT

M (τa) ∈ Tm(M); m = qM (a), where qM is the projection
onto the base M of T ∗(M). The Liouville form λ is defined as:

λ(τa) = 〈qT
M (τa), αqM (a)〉 = αm(qT

M (τa)) . (11.123)

In the canonical coordinates (q, p), associated with some chart (Ui, ϕi), we
have

λ =
n
∑

s=1

psdq
s . (11.124)

For the infinite-dimensional case one can chose notation (though it is not
obligatory) making the formulae for the local form of the geometric objects as
similar as possible to the finite dimensional ones. In order to fix the ideas sup-
pose the “model” space E is the vector space of Schwartz-type r-dimensional
vector-functions on the line. In other words u ∈ E, if u = (u1, u2, . . . , ur),
where ui = ui(x) are Schwartz-type functions on the line. If (U,ϕ) is a chart
of some manifold, for which E is “model” space, then “coordinates” of m are
now the functions
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ϕ(m) = u = (u1(x), u2(x), . . . ur(x)).

As we have seen in the above, if F is differentiable functional, then the
variational derivative can be regarded as kernel of the integral operator dF
(sometimes in the sense of distributions). Similar notation can be adopted
for another geometric objects. For example, we have the “basis” of 1-forms
δui(x); x ∈ R, i = 1, 2 . . . , r. Here by δui(x) is denoted the functional

v = (v1(y), v2(y), . . . , vr(y)) → δui(x)(v) = vi(x), x− fixed . (11.125)

Then, for a field of covectors α (1 form α) we have the local expression

α =

+∞
∫

−∞

dy

r
∑

i=1

ai[u](y)δui(y) (11.126)

The symbol [u] in ai[u](y) simply reminds us that the functions ai[u](y) de-
pend on the point u = ϕ(m). This formal notation is interpreted as follows:
If Vm is tangent vector at the point m with representative

v = (v1(y), v2(y), . . . , vr(y))

then

α(Vm) =

+∞
∫

−∞

dy

r
∑

i=1

ai[u](y)δui(y)(v) =

+∞
∫

−∞

dy

r
∑

i=1

ai[u](y)vi(y) . (11.127)

As mentioned before, we put aside the question about what conditions ai(y)
must satisfy to ensure that the form α is differentiable. It is clear that in the
general case ai(y) are generalized functions (distributions). If F : M �→ R is
a function (of course it is a functional here) for dF we obtain:

dF =

+∞
∫

−∞

dy
r
∑

i=1

δF

δui
[u](y)δui(y) (11.128)

in accordance with what we had earlier.
In order to keep the analogy with the finite dimensional case, we also write

on E vector fields “dual” to the 1-forms δui(x). So we introduce the fields

δ

δuj(z)
, (11.129)

that satisfy the relations

δui(x)
(

δ

δuj(z)

)

= δi
jδ(x− z) (11.130)
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where δ(x− z) is the Dirac “function.” Of course, there are no such elements
in E, and thus we just introduce here some formal expressions and formal
calculus with them. These expressions have no other justification than the fact
that when one works properly with them they lead to results which themselves
have real meaning. For example, the vector field V with representative

V (m) = (v1(m), v2(m), . . . , vr(m)) = v[u], u = ϕi(m)

has local form

V =

+∞
∫

−∞

dz
r
∑

j=1

vj [u](z)
δ

δuj(z)
(11.131)

and acting according to the rule (11.130) for the value of α(V ) we get (11.127).
With these notations we write for the local forms of:

1. (1, 1) tensor field N (field of operators Nm : Tm(M) → Tm(M)) :

N =
n
∑

k,s=1

+∞
∫

−∞

+∞
∫

−∞

dxdyNs
k [u](x, y)

δ

δus(x)
⊗ δuk(y) , (11.132)

2. (1, 1) tensor field P (field of operators Pm : T ∗
m(M) → T ∗

m(M)) :

P =
n
∑

k,s=1

+∞
∫

−∞

+∞
∫

−∞

dxdyP s
k [u](x, y)δuk(y)⊗ δ

δus(x)
, (11.133)

3. 2-form ω

ω =
∑

1≤k<s≤n

+∞
∫

−∞

+∞
∫

−∞

dxdy aks[u](x, y)δuk(x) ∧ δus(y) . (11.134)

Let M = E = S be the space of the Schwartz-type functions on the line.
Then of course it is covered by one chart (S, id S), and in the above formulae
m = u; r = 1. Thus:

• Local expressions for vector fields:

ξ =

+∞
∫

−∞

dyξ[u](y)
δ

δu(y)
. (11.135)

• Local expressions for differential 1-forms:

α =

+∞
∫

−∞

dyα[u](y)δu(y) . (11.136)
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• As a more explicit example, on the same manifold, consider the smooth
function (functional)

F (u) =

+∞
∫

−∞

(ux)2dx . (11.137)

Then

dFu(ξ) = 2

+∞
∫

−∞

ξxuxdx; ξ ∈ Tu(S) = S . (11.138)

and the local expression of dF is

dF = −2

+∞
∫

−∞

+∞
∫

−∞

dydxδ′(x− y)uyδu(x) . (11.139)

• As a particular example of 2-form let us define

ω(ξ, η) =

+∞
∫

−∞

ξ(x)ηx(x)dx; ξ, η ∈ Tu(S) = S . (11.140)

Its local expression is

ω =
1
2

+∞
∫

−∞

+∞
∫

−∞

dxdyδ′(x− y)δu(x) ∧ δu(y) . (11.141)

• Consider also the field of linear maps u→ Pu; Pu : T ∗
u (S) → Tu(S) defined

as:
Pu(α) = αx; α(x) ∈ T ∗

u (S) . (11.142)

The local form of P is

P = −
+∞
∫

−∞

+∞
∫

−∞

dxdyδ′(x− y)
δ

δu(y)
⊗ δ

δu(x)
. (11.143)

The tensor P is in fact Poisson tensor (see Chap. 3) and defines the Hamil-
tonian structure of the Korteweg de Vries and Burgers equations hierarchies
[6, 7].

With the above notation, the calculations become very similar to those in
the finite dimensional case and that is in fact the main reason they have been
introduced.

We cannot avoid the question of the Stokes formula, because we use it
in some comments and illustrations of some ideas, and we shall give a brief
sketch of topic. The missing details can be found in practically any book of
Differential Geometry; we refer to one of the following monographs: [1, 2, 3, 4].
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We must introduce some necessary notions and definitions, first of which
will be the notion of a n-dimensional real manifold with a boundary. The
definition of a finite dimensional manifold M with a boundary is essentially
different from the one given above for the manifold without a boundary. As
before, we have a topological space M and a family of parameterizations
(atlas) {(Ui, ϕi)}i∈I of it. However, this time ϕi are homeomorphisms of the
open sets Ui ⊂M into ϕi(Ui) which are open sets in the half-space

H
n =

{

x1, x2, . . . , xn : xn ≥ 0
}

(11.144)

and not as before open sets in R
n. The transition maps

ϕij = ϕi ◦ ϕ−1
j : ϕj(Uj ∩ Ui) → ϕi(Ui ∩ Uj) (11.145)

are again assumed to be differentiable, but since ϕj(Uj ∩ Ui) are open in H
n

and not in R
n, we must say what a differentiable map is in this case. We

assume that ϕ : U �→ R
m where U ⊂ H

n is differentiable if there exists W –
open in R

n, such that V ⊂ W ∩ H
n and a differentiable map f : W �→ R

m

such that f |U = ϕ.
The boundary ∂H

n of H
n is then the plane xn = 0 and is identified with

R
n−1. By definition, the boundary of M is the collection of points that are

pre-images of R
n−1 under the parameterizations that is

∂M = ∪
i∈I

ϕ−1
i (∂H

n ∩ ϕi(Ui)) . (11.146)

An important fact is that the boundary ∂M is a manifold of dimension n− 1
(without boundary). Indeed, an atlas for it can be obtained restricting on the
boundary the charts of any atlas of M. In more detail, if A = (Ui, ϕi)i∈I is
an atlas of M, the family of charts

{(∂H
n ∩ ϕi(Ui), ϕ|∂Hn∩ϕi(Ui))}i∈I1 , (11.147)

where I1 labels those charts, for which ∂H
n ∩ ϕi(Ui) 	= ∅ is an atlas of ∂M.

With these definitions almost everything that was introduced for manifolds
without a boundary, together with the basic operations with the tensor fields,
can be introduced for manifolds with a boundary. An obvious exception is the
theorem of the existence of the local flow, which must be modified, because
we must consider only vector fields that at the points of the boundary are
tangent to it. We mention also that using the definition of the differential
structure on the manifolds M and ∂M it is easily proved that the inclusion
map j : ∂M �→M is differentiable.

Definition 11.44. An n-dimensional real manifold N is called orientable if
on it there exists n-form α, different from zero at each point. Such a form is
called a volume form.
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For example, in R
n with coordinates (x1, x2, . . . , xn), we have the following

volume form, which is called the canonical volume form of R
n:

α = dx1 ∧ dx2 ∧ . . . ∧ dxn . (11.148)

It can be shown that orientability is equivalent to the existence of an atlas
{(Ui, ϕi)}i∈I of N , such that the Jacobi matrices of all the transition maps
ϕij = ϕi ◦ ϕ−1

j (see (11.3)), have positive determinants:

detD(ϕij)|ϕj(m) > 0; m ∈ Ui ∩ Uj (11.149)

(of course, for all i, j for which ϕij makes sense). Such an atlas is called
oriented atlas and a choice of an oriented atlas is called an orientation of N .
It can also be proved that an orientation of an orientable manifold can also be
fixed, if we fix a volume form β. Then one can pick an atlas A = (Us, ϕs)s∈J

such that in the local expression

β|Ui
= fi(x1, x2, . . . , xn)dx1 ∧ dx2 ∧ . . . ∧ dxn (11.150)

of β in each (Ui, ϕi) ∈ A all the coefficient functions fi(x1, x2, . . . , xn) > 0.
Conversely, if we have an oriented atlas A there exist a volume form β such
that in the charts of the atlas the coefficient functions fi defined as in (11.150)
are always positive.

For example, R
n is always oriented using the volume form (11.148), and

in the atlas consisting of a single chart (Rn, id Rn) the coefficient function is
equal to 1.

Definition 11.45. We say that two orientations, defined by two oriented at-
lases A = (Us, ϕs)s∈I and B = (Vk, ψk)k∈J are equivalent (or are the same) if
the determinants of the Jacobi matrices of each of the transition maps ϕs◦ψ−1

k

are positive. (Of course, for those s ∈ I, k ∈ J for which ϕs◦ψ−1
k makes sense)

Definition 11.46. Two volume forms α1 and α2 are called equivalent, if there
exists a positive number c such that α1 = cα2.

The above relations are indeed relations of equivalence, and classes of equiv-
alent orientations and classes of equivalent volume forms become one to-one
correspondence. In case the atlas A = (Us, ϕs)s∈I and the volume form β
define the same orientation, the coefficient functions fi from the local expres-
sions (11.150) are positive. We say that the volume form is compatible with
the orientation.

One additional remark here is that if α is a volume form, then −α is a
volume form too. The orientations defined by α and −α are called opposite
orientations. It is not hard to prove that when N is connected on N there are
exactly two different orientations.

In what follows N will be connected, orientable, with a fixed orienta-
tion, that is with a fixed orientated atlas A = (Ui, ϕi)i∈I . If N is compact,
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n-dimensional manifold, or the n-form β has compact support, then for one
can define an integral of β over N . Suppose first that the support of β is
contained in the open set Ui, where (Ui, ϕi) is one of the charts belonging to
some oriented atlas, defining the orientation of N . Then for p ∈ Ui we have
on coordinates xs(p) = [ϕi(p)]s, and the form β has local form:

β|Ui
= hi(x1, x2, . . . , xn)dx1 ∧ dx2 ∧ . . . ∧ dxn . (11.151)

We set:
∫

N
β =

∫

ϕi(Ui)

hi(x1, x2, . . . , xn)dx1dx2 . . . dxn , (11.152)

where the integral is understood in the Riemann sense. The fact that we have
an oriented atlas can be used to show that this value is the same, if the support
of β is in some other parameterized neighborhood, and we use some different
parametrization for calculating the above integral. In the general case, when
the support of β is not in some Ui one can divide the support of β into pieces,
each of which has the above property, which is a little old technique or use
the so-called partition of the unity to write β as a locally finite sum of forms,
each of which have support lying in some Ui to define the integral. As can be
seen, the map:

α �→
∫

N
α (11.153)

is a linear functional from the linear space of the n-forms having compact
support (in case N is compact this is simply Λn(N )) to R.

The fact that if α is a volume form implies that there exists oriented
atlas such that in the local expressions (11.150) defined by that atlas all the
functions fi are positive. From here one can get the following important fact:

Proposition 11.47. Let N be oriented compact manifold and α is a volume
form compatible with the orientation of N . Then

∫

N
α > 0 . (11.154)

When N is a manifold with a boundary ∂N , the orientation of N defines
an orientation of ∂N in the sense that if we have an oriented atlas of N its
restriction to ∂N is oriented atlas of ∂N . The resulting orientation is called
the induced orientation.

If the orientation of N is given the so-called canonical orientation of ∂N
it is defined as follows: If n = dim (N ) is odd, the canonical orientation is
the induced orientation and when n is even, it is the opposite to the induced
orientation. With all these definitions and conventions, we have the following
result, known as Stokes formula (theorem):
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Theorem 11.48. Let N be oriented, connected and compact n-dimensional
manifold with boundary ∂N , canonically oriented. Let j : ∂N �→ N be the
inclusion map. Then if β is a n− 1 form on N we have

∫

N
dβ =

∫

∂N
j∗β . (11.155)

In the case the manifold N has no boundary, the above result reads:
∫

N
dβ = 0 . (11.156)

Concluding this section we stress again that apart from some difficulties of
topological and analytical character, almost all the principal geometric objects
can be generalized in a natural way to the infinite-dimensional case.
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12

Hamiltonian Dynamics

It is well known that the principal objects needed to define Hamiltonian
dynamics are the Poisson brackets, [1, 2]. In this chapter, we discuss the
different ways one can define them – through symplectic structures and more
generally through Poisson structures. Naturally, here arise the questions of
restriction of these structures on submanifolds, and we give some attention to
this topic, since we shall use the restriction techniques heavily in the future.
Finally, we discuss the questions of integrability of Hamiltonian systems and
introduce in relation with the integrability questions the principal geometric
object we study in this part of the book – the Nijenhuis tensor.

12.1 Symplectic Structures

The classical way to define Poisson brackets, known from any course of Me-
chanics, is the following. Let R

2n = R
n
p ×R

n
q be the 2n dimensional Euclidean

space. The notation R
2n = R

n
p×R

n
q means that the points x of R

2n are written
into the form:

x = (p, q) = (p1, p2, . . . , pn, q
1, q2, . . . , qn) . (12.1)

Suppose f(x), g(x) are smooth functions over R
2n. Then the classical Poisson

bracket {f, g} is defined as

{f, g} =
n
∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi
) . (12.2)

The Poisson bracket of f and g is a bilinear operation and {f, g} has the
properties:

{f, g} = −{f, g} (skew-symmetry)
{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 (Jacobi identity)
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{f, gh} = {f, g}h+ g{f, h} (Leibnitz rule) . (12.3)

In Classical Mechanics, the equations of motion of a mechanical system can
be written into the so-called Hamiltonian or canonical form:

ṗi =
dpi

dt
= −∂H

∂qi
, q̇i =

dqi

dt
=
∂H

∂pi
; i = 1, 2, . . . n , (12.4)

where H is some function on (p, q) called Hamiltonian function (or simply
Hamiltonian) of the system. The variables pi are then called the generalized
momenta and qi the generalized coordinates of the corresponding mechanical
system. Together, (p, q) are called canonical coordinates. The above form of
the equations of motion is called the canonical form of these equations.

As immediately checked, the equations of motion can be cast also into the
equivalent form

dpi

dt
= {H, pi},

dqi

dt
= {H, qi}; i = 1, 2, . . . n , (12.5)

and moreover, if (p(t), q(t)) = x(t) is solution of the canonical equations then
for each function f = f(x), we have

df(x(t))
dt

= {H, f}(x(t)) . (12.6)

Then on condition that the evolution equation

df

dt
= F (f(x(t))) (12.7)

can be written into the form (12.6), we say that it is in Hamiltonian form
with Hamiltonian function H.

Thus, for writing the evolution equation for some function on R
2n (the

phase space), one needs only to know how to calculate Poisson brackets. This
simple observation permits to make immediately important generalizations.
Indeed, suppose that we have some way of defining Poisson brackets on some
manifold M, that is, we can define on the space of the smooth functions on
M, a bracket operation satisfying (12.3). Then, one can write equations of
motion and generalize the whole Hamiltonian Mechanics, that is, one is no
more restricted to R

2n, the splitting into p and q coordinates, and so on. In
case we have Poisson brackets and the evolution equation of the type (12.7)
can be written in Hamiltonian form with some H, we say that (12.7) has (or
possesses) Hamiltonian structure.

Now we discuss how one can define Poisson brackets.
First of all, one must mention the direct generalization of the classical Pois-

son brackets. It turns out that the existence of Poisson brackets for functions
over R

2n is due to the existence of the following 2-form
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ω =
n
∑

i=1

dpi ∧ dqi , (12.8)

called canonical symplectic form of R
2n. It actually permits to establish iso-

morphism between the differentials of functions df and the so-called Hamil-
tonian vector fields: df �→ Xf , where Xf is defined uniquely by the property
Xf (g) = {f, g}. Taking a general point of view, we have

Definition 12.1. A symplectic form ω over the real manifold M is a closed,
nondegenerate 2-form. The manifold M equipped with symplectic form is
called a symplectic manifold and denoted by (M, ω). We say also that on
M it is defined a symplectic structure ω.

The nondegeneracy means that for each α ∈ Λ1(M), there exists unique vector
field Xα over M such that

iXα
ω = α . (12.9)

As can be seen, the nondegeneracy of ω entails that the dimension of the
manifold is even, so below we shall suppose that it is equal to 2n. Also, as
ωn 	= 0 (the product here is of course the exterior product), such manifolds
are always orientable; see definition (11.44).

Definition 12.2. If (M, ω) is a symplectic manifold, it is called exact if the
form ω is exact, that is, if there exists 1-form α, such that dα = ω.

All orientable geometric surfaces (the connected manifolds of dimension 2
embedded in R

3) are symplectic manifolds. In particular, the sphere S
2 is a

symplectic manifold. Indeed, as their dimension equals 2, for these manifolds
being orientable is equivalent to being symplectic.

Applying the Stokes theorem (11.155) to a compact, orientable geometric
surface S, we see that it cannot be an exact symplectic manifold. Indeed, if
ω = dα, then

∫

S

ω =
∫

∂S

α = 0 (12.10)

as the boundary ∂S = ∅. But this is a contradiction, since ω in that case is a
volume form and that integral cannot be equal to zero.

There exist manifolds of even dimension, which are not symplectic, for
example, the Möbius strip is a geometric surface which is not orientable, hence
it is not symplectic. Another example is provided by the spheres S

2k, k > 1,
which are not symplectic manifolds, though they are orientable. Indeed, it is
known that for k > 1 the de Rham cohomologies H2(S2k) = 0, that is, all
2-forms on S

2k are exact. Suppose that ω = dα is a symplectic form. In that
case, it is easily seen that since dω = 0, we have d(α ∧ ωk−1) = ωk. Then an
argument, analogous to that we used before, applied to the volume form ωk

leads to contradiction, since the integral of a volume form over S
2k cannot be

equal to zero.
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Definition 12.3. If H is some smooth function, then the unique vector field
XH satisfying iXH

ω = −dH is called the Hamiltonian vector field correspond-
ing to the Hamiltonian function H (or simply to the Hamiltonian H). If α is
a closed 1-form, then the field Xα such that iXα

ω = α is called the Hamil-
tonian vector field corresponding to α (sometimes generalized Hamiltonian
vector field corresponding to α).

Remark 12.4. Since locally each closed form is exact, it is clear that the two
notions of Hamiltonian fields locally coincide.

The theory of symplectic manifolds is rich and well developed; see [3, 4, 5] and
the series [6, 7]. Even a brief review of it is not an easy task and is not within
the scope of the present work. The reader can find extensive bibliography,
for example, in [5], where important generalizations as Poisson manifolds (we
shall discuss them later) are also discussed, together with some topological re-
sults. There are also generalizations for the infinite-dimensional case, see for
example, [8, 9], where the Hamiltonian structures of the soliton equations are
studied. The entire second part of the present book is also related to that issue.
The interest in Hamiltonian structures arose, after it was realized that the soli-
ton equations are Hamiltonian systems. A little later came the understanding
that for the infinite-dimensional system one can introduce the notion of Li-
ouville integrability [10]. Further development came with the discovery of the
so-called Adler scheme and its variations (see [11, 12, 13, 14, 15, 16, 17, 18])
which use Hamiltonian structures related to Lie algebras in a crucial way.
Finally, what is most important for our approach, F. Magri discovered the
bi-Hamiltonian formulation of the KdV equation [19]. This brought into light
another important geometric object – that of the Nijenhuis tensor.

Let us introduce some important notions and elementary facts for the finite
dimensional case.

It can be shown [3, 4, 5] that at least locally a finite dimensional symplectic
manifold is isomorphic to R

2n, equipped with the symplectic structure (12.8),
that is, (at least locally) there exists coordinate frame (local chart) with local
coordinates (pi, q

j), 1 ≤ i, j ≤ n in which the expression of ω is exactly given
by (12.8). This result is called Darboux theorem, the corresponding frame is
called Darboux frame, and the corresponding coordinates (pi, q

j) canonical
coordinates. One can check that in a Darboux frame the differential equations
corresponding to the dynamical system XH are exactly (12.8).

From what has been said it follows that nondegenerate 2-form ω defines
field of invertible linear maps1 m→ ω̄m :

ω̄m : Tm(M) → Tm(M)∗ , (12.11)

such that

ω(X,Y ) = 〈ω̄(X), Y 〉 = −〈X, ω̄(Y )〉; X,Y ∈ T (M) . (12.12)

1 Sometimes if no confusion is possible, we shall denote it by the same letter ω
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Example 12.5. Consider the manifold M = R
2n. Each symplectic form over

this manifold must be of the form

ω =
1
2

2n
∑

i,j=1

ωij(x)dxi ∧ dxj , (12.13)

where (ωij(x))1≤i,j≤2n is some skew-symmetric (ωij(x) = −ωji(x)), nonde-
generate matrix, possibly depending on x. The requirement that ω is closed
is equivalent to the requirement

∂

∂xi
ωjk(x) +

∂

∂xj
ωki(x) +

∂

∂xk
ωij(x) = 0 , (12.14)

for each three different indices i, j, k. Then the Hamiltonian vector field cor-
responding to the function f ∈ D(M) is

Xf = −
2n
∑

j=1,j

ωij ∂f

∂xi

∂

∂xj
, (12.15)

where the matrix (ωij(x))1≤i,j≤2n is the inverse of the matrix (ωij(x))1≤i,j≤2n.

Example 12.6. Let M = E = S be space of the Schwartz-type functions on
the line. By analogy with the finite dimensional case, we can assume that a
symplectic form can be written locally as

ω =
1
2

+∞
∫

−∞

+∞
∫

−∞

dx dyω[u](x, y)δu(x) ∧ δu(y) , (12.16)

the function ω[u](x, y) being some skew-symmetric, nondegenerate kernel. The
nondegeneracy means that if for some element f ∈ S

+∞
∫

−∞

+∞
∫

−∞

ω[u](x, y)f(x)g(y)dxdy = 0 (12.17)

for all g ∈ S then f = 0. The requirement dω = 0 is equivalent to

δω[u](x, y)
δu(z)

+
δω[u](y, z)
δu(x)

+
δω[u](z, x)
δu(y)

= 0 . (12.18)

Then the vector field XH will be Hamiltonian (corresponding to Hamiltonian
function H) if:

iXH
ω + dH = 0 , (12.19)
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which means that

+∞
∫

−∞

ω(x, y)XH [u](y)dy = − δH

δu(x)
. (12.20)

or
ω̄(XH)([u]) = −dH[u] , (12.21)

where the operator ω̄[u] : Tu(M) → T ∗
u (M) is given by

ξ(x) �→
+∞
∫

−∞

ω(x, y)ξ(y)dy . (12.22)

Let us take an example from the theory of the KdV equation

ut = −uux − uxxx . (12.23)

The vector field defining this equation is:

X =
∫ ∞

−∞
X[u](x)

δ

δu(x)
dx, X[u](x) = −uux − uxxx . (12.24)

As mentioned before, the operator ω̄ for the KdV equation is given by

ω̄ =

+∞
∫

−∞

+∞
∫

−∞

dxdyδ′(x− y)δu(x)⊗ δu(y) , (12.25)

where δ(x−y) is the Dirac “function,” and one can check that the Hamiltonian
for X is

H[u] = −
+∞
∫

−∞

(

−1
6
u2 +

1
2
u2

x

)

dx . (12.26)

Coming back to the general situation, the symplectic form on M, or as it
is usually called, a symplectic structure on M, permits to define Poisson
brackets on the ring D(M) of the smooth functions over M. Let us remind
this classical construction; for more details see [3, 4].

On the first place, the condition dω = 0, written in terms of the field ω̄
runs as follows:

[dω̄(X1)](X2,X3) + [dω̄(X2)](X3,X1) + [dω̄(X3)](X1,X2)
+ X1〈ω̄(X2),X3〉+X2〈ω̄(X3),X1〉+X3〈ω̄(X1),X2〉 = 0 , (12.27)

for arbitrary vector fields X1,X2,X3.
We need now one more identity. Suppose α = ω̄(X) is closed. Calculating,

we get that
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d[ω̄(X)](Y,Z) = Y 〈ω̄(X), Z〉 − Z〈ω̄(X), Y 〉 − 〈ω̄(X), [Y,Z]〉 . (12.28)

This means that the condition d[ω̄(X)](Y,Z) = 0 is equivalent to

Y 〈ω̄(X), Z〉 − Z〈ω̄(X), Y 〉 − 〈ω̄(X), [Y,Z]〉 = 0 (12.29)

for arbitrary vector fields Y and Z.
Now let us introduce

Definition 12.7. Let α1, α2 be two closed 1-forms, and let the corresponding
Hamiltonian fields be X1,X2. Then, we define the Poisson bracket of α1, α2

as
{α1, α2} = −d〈ω̄(X1),X2〉 = −d〈α1,X2〉 = d〈α2,X1〉 . (12.30)

We have

Theorem 12.8. The set of closed forms over a symplectic manifold is a Lie
algebra with respect to the Poisson bracket operation.

Proof. Since the bracket is skew-symmetric, it is clear that it is enough to
check that the brackets satisfy the Jacobi identity. For this, let Xi, i = 1, 2, 3
be vector fields, such that the forms αi = ω̄(Xi) are closed. Then, from (12.27)
we get

X1〈ω̄(X2),X3〉+X2〈ω̄(X3),X1〉+X3〈ω̄(X1),X2〉 =
〈X1, {α2, α3}〉+ 〈X2, {α3, α1}〉+ 〈X3, {α1, α2}〉 = 0 . (12.31)

Finally, applying the exterior derivative d, we get the Jacobi identity for the
bracket (12.30). The theorem is proved.

We have the following property of the bracket operation.

Proposition 12.9. If α1 = ω̄(X1), α2 = ω̄(X2) and dα1 = dα2 = 0 then
{α1, α2} = ω̄([X1,X2]).

Proof. We use again (12.27) with arbitrary X3 and X1,X2 as in the above
and get

d[ω̄(X3)](X1,X2) +X2〈ω̄(X3),X1〉 −X1〈ω̄(X3),X2〉+X3〈ω̄(X1),X2〉 = 0 .
(12.32)

Taking into account (12.28), we deduce that

〈ω̄(X3), [X1,X2]〉 = X3〈ω̄(X1),X2〉 = 〈X3, {α1, α2}〉 . (12.33)

In order to complete the proof, it remains to note that X3 is arbitrary.

The above proposition shows that the existence of the Poisson bracket
structure is due to the Lie algebra structure over the module T (M). It is
transferred to Λ1(M) via the isomorphism ω̄. We can define now Poisson
brackets of functions:
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Definition 12.10. Let f1, f2 be two functions, and let X1,X2 be vector fields,
such that ω̄(Xi) = −dfi; i = 1, 2. Then let us set

{f1, f2} = 〈ω̄(X1),X2〉 = ω(X1,X2) = X1f2 = −X2f1 . (12.34)

Theorem 12.11. The formula (12.34) defines Poisson brackets on the set of
smooth functions D(M) over M.

Proof. Again, it suffices to prove only the Jacobi identity. Let f1, f2, f3 be
three functions. Let us put αi = −dfi; i = 1, 2, 3. Clearly αi are closed,
and for them relation (12.31) is satisfied. This relation is exactly the Jacobi
identity. The theorem is proved.

Let us now give some definitions about the first integrals for the Hamilto-
nian systems (Hamiltonian vector fields).

Definition 12.12. Let α1, α2 be closed 1 forms on a symplectic manifold.
We say that they are in involution if {α1, α2} = 0. Let f1, f2 be two smooth
functions on a symplectic manifold. We say that they are in involution if
{f1, f2} = 0.

If X1,X2 are the Hamiltonian vector fields that correspond to closed 1-
forms α1, α2 the proposition (12.9) shows that the relation {α1, α2} = 0 im-
plies [X1,X2] = 0, and, therefore, the flows of the fields X1,X2 commute. If
α1 = −df1, α2 = −df2 and {f1, f2} = 0, we can say more; in this case, the
properties of the Poisson brackets (12.34) show that X1f2 = 0 and X2f1 = 0,
that is, f2 is first integral for X1 and f1 is first integral for X2. From the Jacobi
identity follows a well-known property of the first integrals for a Hamiltonian
system.

Proposition 12.13. Let XH be the dynamical system corresponding to the
Hamiltonian function H and let f1, f2 be first integrals of XH . Then their
Poisson bracket {f1, f2} is also a first integral of XH . Therefore, the first
integrals of XH form a Lie algebra.

From the general theory of systems of first-order differential equations,
one would expect that on symplectic manifold of dimension 2n, in order to
integrate a Hamiltonian vector field XH with Hamiltonian H in quadratures,
one needs 2n−1 functionally independent first integrals. As we shall see later,
the situation with a Hamiltonian vector field XH is different, for it, one needs
only n− 1 first integrals in involution, which together with H form a set of n
functionally independent first integrals.

12.1.1 Fundamental Fields of Symplectic Form

Let (M1, ω1) and (M2, ω2) be symplectic manifolds, and let h : M1 �→ M2

be a differentiable map. The map is called a symplectic map, if h∗ω2 = ω1.
It is called a symplectomorphism if h is symplectic and is a diffeomorphism.
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Also, when M1 = M2 and ω1 = ω2 instead of symplectomorphism, some
authors say that the map h is a canonical map (transformation). We shall
prefer to say that the map is symplectomorphism, since there can be con-
fusion with the maps (transformations) that preserve only the form of the
canonical equations (but not necessarily the Hamiltonian functions). These
transformations are also called canonical transformations, but they form a
bigger group than the group of symplectomorphisms. As is well known, the
canonical transformations play a crucial role in the Hamilton-Jacobi equation
formalism for solving the canonical equations.

As is common for geometric structures, it is interesting to study the fields
whose flows preserve this structure. Such fields are called fundamental fields
of the corresponding structure. In our case, we consider the fields whose flows
preserve the symplectic form of a given symplectic manifold (M, ω). Definition
(11.17) and equation (11.83) show that X is a fundamental field for ω if that
LXω = 0. This means that

LXω = iXdω + diXω = diXω = 0 , (12.35)

which shows that the fundamental fields correspond, through the isomorphism
is ω̄ to the closed 1-forms. If the local flow of X is ϕt, we get

ϕ∗
tω = ω , (12.36)

that is, the maps ϕt are symplectic maps.
Probably the most important example of a symplectic structure is the

so-called canonical symplectic structure on the cotangent bundle T ∗(M) of
a given finite dimensional manifold M of dimension n. If λ is the Liouville
form over T ∗(M), (see 11.124) one can define a symplectic structure setting
ω = dλ. In the coordinates pi, q

i, (see 11.121) dλ has exactly the form (12.8),
that is, equals

dλ|p−1
M (Ui)

= d

(

n
∑

i=1

pidq
i

)

=
n
∑

i=1

dpi ∧ dqi (12.37)

and the nondegeneracy of dλ, as well as its closure are evident. The symplec-
tic structure defined by dλ plays a central role in the Classical Hamiltonian
Mechanics; see for example [3, 4]. In case of R

2n endowed with the canonical
form (12.8), the volume form ωn is proportional to the canonical volume form
of R

2n:

α = dp1 ∧ dp2 ∧ . . . ∧ dpn ∧ dq1 ∧ dq2 ∧ . . . ∧ dqn . (12.38)

Though simple, the above facts have important applications. For example, a
direct consequence from it and (12.35), (12.36) is the Liouville theorem, which
is basic in the Classical Statistical Mechanics.
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Theorem 12.14. The local flow of a Hamiltonian vector field X over a sym-
plectic manifold M of dimension 2n with symplectic structure ω preserves the
volume form ωn. In other words, if G ⊂M is a bounded region in M, then

∫

G

ωn =
∫

ϕt(G)

ωn . (12.39)

12.1.2 Restriction of a Symplectic Structure on Submanifold

The question of restriction of symplectic structure on submanifolds is of great
importance for the applications, because the restriction on submanifold re-
duces the problem of dynamics with constraints. It is known that a number of
physical theories are formulated in terms of the so-called singular Lagrangian
functions, and this does not allow immediately a Hamiltonian formulation
over a symplectic manifold, [20]. However, the canonical coordinates are very
crucial for the quantization and for this reason, the technique devised by
Dirac (Dirac brackets, see below) and also other techniques of reduction, (see
for example [21]) play an important role in the quantization. We shall not
treat the Lagrangian formalism here, and so we cast the problem into purely
“symplectic” terms.

Let N ⊂M be a smooth submanifold of the symplectic manifold (M, ω).
Let j : N →M be the inclusion map. Then, though the restricted form j∗ω
is closed, nothing guarantees that it will be a symplectic form on N since it
can be degenerate. At that point naturally two questions arise.

First, assume that j∗ω is nondegenerate. Then, since we want to formulate
everything in terms of the quantities related of N , we want to know how to
calculate the Poisson brackets of the restrictions f∗ = f ◦ j, g∗ = g ◦ j of
functions f, g defined on M with respect to the new structure. This is the
so-called Dirac brackets problem.

The second question arises if j∗ω is degenerate. Then, it cannot be used to
define Poisson brackets on N , so we are forced to consider submanifolds of N
on which the restriction of ω is nondegenerate. We now concentrate only on
this issue and consider the following problem. Suppose N is a manifold and
ω0 is closed, but degenerate 2-form over it. Is it possible to restrict ω0 over
some submanifold of N , in order to obtain a symplectic form? For simplicity,
we shall assume that the kernel of the map (ω̄0)m : Tm(N ) → T ∗

m(N ) defined
by ω0 has constant dimension.2 They say also that the 2-form ω has constant
rank.

Remark 12.15. The rank of (ω0)m is the rank of the linear map (ω̄0)m :
Tm(N ) �→ T ∗

m(N ) that corresponds to ω0.
2 In the future, when there is no possibility of confusion, we shall denote by the same

letter ω a 2-form ω and the field of linear maps from Tm(N ) to T ∗
m(N ) induced

by it, but at present we keep the notation ω̄ for the field of the linear maps.
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We see that if the rank is constant the field of subspaces

m→ ker (ω̄0)m (12.40)

is a regular distribution.

Definition 12.16. A manifold N equipped with closed form ω0 having con-
stant rank is called a presymplectic manifolds and the form ω0 a presymplectic
form or presymplectic structure. The presymplectic manifold equipped with a
form ω0 is denoted by (N , ω0).

It is instructive to consider first the situation for vector spaces. So let E be a
vector space, equipped with 2-form ω0. If ω0 is nondegenerate we call E sym-
plectic vector space. If F is a subspace in E then, as easily seen, the restriction
of ω0 on F will be nondegenerate if and only if

F⊥ ∩ F = {0} , (12.41)

where
F⊥ = {X : ω0(X,Y ) = 0, for all Y ∈ F} . (12.42)

The space F⊥ is sometimes called skew-orthogonal to F , or in case ω0 is sym-
plectic, symplectically orthogonal to F . Let us give some definitions related to
the notions we introduced.

Definition 12.17. Let E be a vector space endowed with a skew-symmetric
form ω0 (not necessarily symplectic). Then

• If W ⊆W⊥, W is called isotropic.
• If W ⊇ W⊥, W is called coisotropic.
• If (E,ω0) is a symplectic vector space of dimension 2n and W is isotropic

and coisotropic, then W is called a Lagrangian subspace. As easily seen,
in this case dim (W ) = n.

If we have a symplectic structure on E, one can see that the maximal dimen-
sion of an isotropic vector subspace is the half of the dimension of E, because
dimW⊥ = dimE − dimW and the definition of an isotropic space entails
dimW ≤ dimW⊥. For manifolds, the analogs of the above definitions are as
below.

Definition 12.18. Let N be some submanifold of the presymplectic manifold
(M, ω).

• N is called isotropic (coisotropic) if for each point p ∈ N the space
djp(Tp(N )) ⊂ Tp(M), p ∈ N is isotropic (coisotropic) with respect to
ω(p), where j is the inclusion map j : N �→M.

• A submanifold N of the symplectic manifold (M, ω) is called Lagrangian
if for each p ∈ N the space djp(Tp(N )) ⊂ Tp(M), p ∈ N is Lagrangian
with respect to ω(p).
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Now let us return to the case of a vector space E with a 2-form ω0 on it. In
case we are interested in knowing whether the restriction of ω0 is nondegener-
ate on some fixed F , we must simply check the relation (12.41). But if we are
just looking for a space F on which ω0 is nondegenerate, there are immediate
candidates for such spaces. Indeed, suppose G is some space complementary
to ker (ω̄0), that is

G⊕ ker (ω̄0) = E . (12.43)

Then ω0, restricted to G, is nondegenerate. Indeed, suppose that it is not
true. Then there exists X 	= 0, X ∈ G, such that ω0(X,Y ) = 0 for all Y ∈ G.
Since arbitrary element Z ∈ E can be written into the form Z = Z1 +Z2 with
Z1 ∈ G, Z2 ∈ ker (ω̄0), we have ω0(X,Z) = 0 for all Z ∈ E. This means that
X ∈ ker (ω̄0), which is a contradiction.

Now, we want to present an analog of the above construction for manifolds.
Suppose that we have presymplectic structure ω0 on the manifold N . Then
we have a field of subspaces m → ker (ω̄0)m, which as we have seen is a
regular distribution. From the fact that ω0 is closed, there follows that this
distribution is integrable in the Frobenius sense. Indeed, if X,Y,Z ∈ T (N )
and Xm, Ym ∈ ker (ω̄0)m then dω0(X,Y,Z) = 0 gives

Xω0(Y,Z)− Y ω0(X,Z) + Zω0(X,Y )− ω0([X,Y ], Z)
+ω0([X,Z], Y )− ω0([Y,Z],X) = 0 . (12.44)

Evaluating at the point m we get that ω0([X,Y ], Z)|m = 0 for arbitrary Z.
This of course means that [X,Y ]m belongs to ker (ω̄0)m.

Now suppose that m �→ Sm is some field of subspaces, transversal to
ker (ω̄0)m that is at each point m ∈ N

ker (ω̄0)m ⊕ Sm = Tm(N ) . (12.45)

As the restriction of ω0 onto Sm is nondegenerate, it is clear that if there exists
a submanifold S ⊂ N such that at each point m ∈ S its tangent space Tm(S)
is equal to Sm, restricting ω0 on S, we shall obtain nondegenerate 2-form. In
this case, we say that S is transversal to the distribution (12.40). The above
discussion can be summarized as follows.

Theorem 12.19. If (M, ω0) is presymplectic manifold than each submanifold
N ⊂M transversal to the distribution (12.40) is a symplectic manifold.

Let us see how the constructions we outlined in the above works.
Let us define the following presymplectic structure on R

3\{0}. For x ∈ R
3\{0}

we set

ωx(z1, z2) = 〈x, z1 × z2〉; z1, z2 ∈ Tx(R3 \ {0}) = R
3 . (12.46)

(Here 〈 , 〉 stands for the inner product and × for the cross product in R
3).

The form ω is not symplectic, which is clear even from the fact that the man-
ifold is odd-dimensional. The distribution x → ker (ω̄x) = Rx is integrable,
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and the integral manifolds for it are the straight lines through the origin.
Equally simple is to find transversal manifolds – these are the spheres of radii
r embedded in R

3 \ {0} in the standard way:

S
2
r =

{

x = (x1, x2, x3) ∈ R
3 : x2

1 + x2
2 + x2

3 = r2 > 0
}

. (12.47)

According to the above theorem, these manifolds are symplectic manifolds.
Let us consider for example the unit sphere S

2 = S
2
1. The Poisson brackets of

the coordinate functions xi on S
2 can be calculated without difficulties. They

are:
{xi, xj} = εijkxk , (12.48)

where εijk is the antisymmetric Levi-Civita symbol.3 The structure we have
just described is often used to give the manifold

S2N = S
2 × S

2 × . . .× S
2

︸ ︷︷ ︸

N times

(12.49)

symplectic structure (taking it in each component to be that introduced in
the above). This structure plays an important role in some physical models
describing dynamics in magnetic chains.

The next theorem, named after Dirac, is about the brackets now called
Dirac brackets, [21, 22, 23], which as we mentioned have numerous applications
in Theoretical Physics and Mechanics.

Theorem 12.20. Let (M, ω) be 2n-dimensional symplectic manifold. Let the
submanifold N ⊂M be defined by the set of 2k smooth relations (constraints)
ϕs(m) = 0, or in other words:

N = {m : ϕs(m) = 0, s = 1, 2, . . . , 2k} ⊂ M . (12.50)

Assume that the matrix constructed from the Poisson brackets of the con-
straints is nondegenerate, that is, for each m ∈ N :

det{ϕl, ϕs}(m)1≤l,s≤2k 	= 0 . (12.51)

Then

• The symplectic form ω has nondegenerate restriction ω̄ on the submanifold
N , thus equipping it with symplectic structure.

• If f, g are two smooth functions on M and f∗, g∗ are their restrictions to
N , then their Poisson bracket with respect to the symplectic structure over
N can be calculated according to the following formula (Dirac Brackets’
Formula):

{f∗, g∗}(m) = {f, g}(m)−
2k
∑

i,j=1

{f, ϕi}Qij{ϕj , g}(m) , (12.52)

3 εijk = 0, if at least two of the indices coincide, and if (ijk) is a permutation of
the indices 1, 2, 3, then εijk is equal to the parity of that permutation.
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where the matrix (Qij(m))1≤l,s≤2k is the inverse of ({ϕl, ϕs}(m))1≤l,s≤2k

and m ∈ N .

Proof. First, we note that from the assumptions of the theorem, it follows that
the 1-forms dϕi, i = 1, 2, . . . , 2k are linearly independent, otherwise the matrix
({ϕl, ϕs})1≤l,s≤2k will be degenerate. Therefore the matrix (Qij(m))1≤l,s≤2k

exists. Next, as the symplectic structure defines an isomorphism between the
modules of vector fields and the module of 1-forms, the Hamiltonian vector
fields Xi = Xϕi

, corresponding to the functions ϕi, will be linearly indepen-
dent too. Also, by the definition of N

Tm(N ) = {Xm : dϕs|m(Xm) = 0; s = 1, 2, . . . 2k} . (12.53)

Clearly, the dimension of N is 2(n − k). It is not difficult to see that since
dϕs(Xl) = {ϕs, ϕl} the vector fields Xs are not tangent to the submanifold
N and as dϕs(X) = ω(X,Xs), at the points m ∈ N they span the space
(Tm(N ))⊥. Therefore,

Tm(N )⊕ (Tm(N ))⊥ = Tm(M).

Next, let us consider how the vectors decompose in the above splitting. If
Xm ∈ Tm(M), we can write

Xm = (Xm −
2k
∑

i=1

ci(m)Xi(m)) +
2k
∑

i=1

ci(m)Xi(m)

ci(m) =
2k
∑

s=1

Qsi(m)dϕs|m(Xm) . (12.54)

A simple calculation shows that the first term in the brackets belongs to
Tm(N ) and the second to (Tm(N ))⊥. According to our previous discussion,
(12.53) ensures that the restriction of ω on N endows it with symplectic
structure. Let us construct the bracket, corresponding to this structure. Sup-
pose that f, g ∈ D(M) are two smooth functions, and let Xf ,Xg be their
Hamiltonian fields. For Ym ∈ Tm(N ) consider the relations:

ωm(Xf (m)−
2k
∑

i,s=1

Qis(m){f, ϕs}(m)Xi(m), Ym) =

ω(Xf (m), Ym) +
2k
∑

i,s=1

Qis(m){f, ϕs}(m)dϕ|m(Ym) =

ωm(Xf (m), Ym) = −df |m(Ym).

Thus Xf −
2k
∑

i,s=1

Qis{f, ϕs}Xi is exactly the Hamiltonian vector field corre-

sponding to the restriction f∗ of f on N . But then,
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{f∗, g∗} = dg(Xf −
2k
∑

i,s=1

Qis{f, ϕs}Xi) =

{f, g} −
2k
∑

i,j=1

{f, ϕi}Qij{ϕj , g}.

This completes the proof.

12.2 Real and Complex Hamiltonian Systems

The questions about complex Hamiltonian structures and complex Hamilto-
nian Dynamics and their relation with the real ones is an interesting topic but
frequently not given much attention in the books about Hamiltonian Systems
(there are exceptions of course; see for example [18]). The relations of a com-
plex Hamiltonian system with the real Hamiltonian system are important, as
can be seen, for example, from the first part, where there have been consid-
ered reductions of some general complex hierarchies of equations. The above
topics also provide interesting examples of restrictions to submanifolds. We
shall consider the finite dimensional case; the infinite-dimensional is treated
along the same lines. However, in order to avoid the complications related
to complex manifolds, we shall consider only the case of finite dimensional
symplectic vector spaces.

12.2.1 Complexified Hamiltonian Systems

Let us start with the standard formulation of the Hamiltonian equations of
motion for a real dynamical system with n degrees of freedom:

dqk

dt
= {H, qk} =

∂H

∂pk
,

dpk

dt
= {H, pk} = −∂H

∂qk
, (12.55)

where we have the canonical Poisson brackets

{qk, qm} = {pk, pm} = 0, {pk, q
m} = δm

k , (12.56)

between the variables qk, ps; k, s = 1, 2 . . . , n, which we shall denote by (p, q).
As we know, these brackets exist, because on the phase space M(n) = R

2n,
there exist canonical symplectic structure, defined by the symplectic form

ω =
n
∑

k=1

dpk ∧ dqk . (12.57)

In what follows, we shall consider the case when H = H(p, q) is a real-analytic
function on (p, q) ∈ R

2n = M(n). In order to follow the argument better, the
reader can assume at the beginning that the Hamiltonian is of the form:
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H(p, q) = c+
2n
∑

m+k≥1

n
∑

i1, . . . , ik = 1
j1, . . . , jm = 1

H
(k,m)
i1,...,ik;j1,...,jm

qi1 . . . qikpj1 . . . pjm
,

(12.58)
where the coefficients H(k,m)

i1,...,ik;j1,...,jm
are real. Such choice contains nontrivial

examples and outlines perfectly the ideas.
The Hamiltonian function H defines the Hamiltonian vector field XH , that

is, the unique field satisfying the relation −dH = iXH
ω. The field XH has the

form

XH =
n
∑

k=1

(

∂H

∂pk

∂

∂qk
− ∂H

∂qk

∂

∂pk

)

. (12.59)

Our next step is to complexify the phase space and to consider complex-valued
dynamical variables. To this end, we construct :

CM(n) =M(2n)
C

=M(n) ⊕ iM(n) . (12.60)

The above relation means that the k-th component zk of z ∈ M(2n)
C

is rep-
resented uniquely as xk + iyk with real xk and yk, or in other words that
z = x + iy, where x,y ∈ M(n). In terms of the coordinates (p, q), the same
will be written as

pk = p0
k + ip1

k, qk = qk
0 + iqk

1 ; k = 1, 2, . . . , n , (12.61)

or introducing n-dimensional column vectors p,q, the same can be written
into the form

p = p0 + ip1, q = q0 + iq1 . (12.62)

In other words, we denote by superscript (or subscript) “0” the real part and
with superscript (or subscript) “1” the imaginary part of the corresponding
variable.

We can treat z, p and q also as real column vectors with twice more
components:

p = p0 + ip1 −→
(

p0,p1
)t
, q = q0 + iq1 −→

(

q0,q1
)t

, (12.63)

where the superscript “t” denotes the transposition. Then naturally z = x0 +
iy1 will be equivalent to a 4n-component column vector:

z = x + iy −→
(

p0,p1,q0,q1
)t

, (12.64)

in case we regard the space M(2n)
C

as 4n dimensional real vector space. The
fact that we denote by the same letter the vectors in the real and complex
space will not lead to ambiguity, as it will be clear what case we have in mind.

Each function F on M(n), that is real-analytic in (p, q), can be extended
uniquely to analytic functions on M(2n)

C
simply setting the arguments p,q
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in F to be complex. In order to distinguish the extended functions from the
original ones, we shall write FC = F 0 + iF 1 for the extended function. By
assumption, among these functions is the Hamiltonian H, so we write

HC = H0
(

p0,p1,q0,q1
)

+ iH1(p0,p1,q0,q1) , (12.65)

where H0 and H1 are real and depend on twice more real variables then
before.

We can introduce also a complex symplectic form, simply assuming that
p, q are as in (12.62):

ωC = ω0 + iω1 =
n
∑

k=1

dpk ∧ dqk =

n
∑

k=1

(

dp0
k ∧ dqk

0 − dp1
k ∧ dqk

1

)

+ i

n
∑

k=1

(

dp0
k ∧ dqk

1 + dp0
k ∧ dqk

1

)

, (12.66)

where

ω0 =
n
∑

j=1

(dp0
j ∧ dqj

0 − dp1
j ∧ dqj

1), ω1 =
n
∑

j=1

(dp1
j ∧ dqj

0 + dp0
j ∧ dqj

1) . (12.67)

This of course means that we have two symplectic forms, ω0 and ω1, defined
on M(2n)

C
considered as a real vector space.

Now, in (12.58), we can assume that all the values p, q are complex and
H is changed to HC but of course, the time continues to be real. Thus, we
obtain a new dynamical system, which we call the complexified Hamiltonian
system. The system reads

dp0
s

dt
+ i

dp1
s

dt
= −∂H

C

∂qs
= −

(

∂H0

∂qs
0

+ i
∂H1

∂qs
0

)

,

dqs
0

dt
+ i

dqs
1

dt
=
∂HC

∂ps
=
(

∂H0

∂p0
s

+ i
∂H1

∂p0
s

)

. (12.68)

We shall see that the complexified system can be cast in the form of a real
Hamiltonian system, but with twice more degrees of freedom. To this end,
we use the analyticity properties of HC, which entail that HC satisfies the
Cauchy–Riemann equations with respect to each of the complex variables:

∂H0

∂qk
0

=
∂H1

∂qk
1

,
∂H1

∂qk
0

= −∂H
0

∂qk
1

,

∂H0

∂p0
k

=
∂H1

∂p1
k

,
∂H1

∂p0
k

= −∂H
0

∂p1
k

, (12.69)

for all k = 1. . . . , n. These relations allow to write the right-hand sides of
(12.68) only in terms of the function H0, considered as a function on the real
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variables p0
k, p

1
k, q

k
0 , q

k
1 . A simple calculation shows that (12.68) can be cast

into the block matrix form:

dz
dt

= S0
∂

∂z
H(2n), S0 =

⎛

⎜

⎜

⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞

⎟

⎟

⎠

, (12.70)

where z is given by the right-hand side of (12.64), ∂
∂zH

(2n) is the gradient of
H(2n), and in order to distinguish the new situation from the old one, we use
the notation:

H(2n) = H0(p0,q0,p1,q1) . (12.71)

The equations (12.70) contain only the real variables q0, p0, q1, p1, and as
can be readily checked, they have the form of equations of motion for a real
Hamiltonian system with 2n degrees of freedom. This system has Hamiltonian
given by (12.71), and the corresponding symplectic form is

ω(2n) = ω0 =
n
∑

k=1

dp0
k ∧ dqk

0 −
n
∑

k=1

dp1
k ∧ dqk

1 . (12.72)

This form is defined on the spaceM(2n)
C

considered a 4n-dimensional real vec-
tor space. The corresponding Poisson brackets between the coordinate func-
tions read:

{p0
k, q

m
0 }ω0 = δm

k , {p1
k, q

m
1 }ω0 = −δm

k ,

{p0
k, q

m
1 }ω0 = 0, {p1

k, q
m
0 }ω0 = 0 , (12.73)

and the Hamiltonian vector field, corresponding to H(2n), has the form:

XC

H =
n
∑

j=1

(

∂H0

∂p0
j

∂

∂qj
0

− ∂H0

∂p1
j

∂

∂qj
1

− ∂H0

∂qj
0

∂

∂p0
j

+
∂H0

∂qj
1

∂

∂p1
j

)

. (12.74)

The Cauchy–Riemann equations can be used also to express the right-hand
sides of (12.68) in terms of H1, considered a function of the real variables p0

k,
p1

k, qk
0 , qk

1 . Everything is done in analogous way, as in the case we expressed the
right-hand sides throughH0, and we obtain a Hamiltonian system with Hamil-
tonian H1. This system is defined on the M(2n)

C
considered a 4n-dimensional

real symplectic vector space but this time with the symplectic form is ω1. Of
course, we have another Poisson bracket here, and we denote it by {F,G}ω1 .
We leave it to the reader to show that the Hamiltonian vector field, XH1 , cor-
responding to H1, after taking into account the Cauchy–Riemann equations,
is equal to XC

H , and therefore it defines the same dynamics. Also, one easily
checks that the Cauchy–Riemann equations entail

{H0,H1}ω0 = {H0,H1}ω1 = 0 . (12.75)
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Summarizing, we have obtained that the complexification of a generic Hamil-
tonian system with a real-analytic Hamiltonian, having n degrees of freedom
(on 2n-dimensional phase space), can be rewritten as a real Hamiltonian sys-
tem, having 2n degrees of freedom (on 4n-dimensional phase space) in two
different ways.

Liouville Integrability4

If the initial Hamiltonian system is Liouville integrable, i.e. possesses n in-
dependent integrals of motion Ij in involution , then this property can be
inherited by XC

H , provided Ij are also real-analytic functions on M(n). In-
deed, let us denote by IC

j = I0
j + iI1

j their analytic continuation to M(2n)
C

.
Using the Cauchy–Riemann equations, one verifies that H0 and H1, as well
as all I0

j and I1
j , are in involution with respect to both the brackets we have

introduced:

{Hr, Is
j }ω0 = {Hr, Is

j }ω1 = 0, {Ir
j , I

s
k}ω0 = {Ir

j , I
s
k}ω1 = 0 , (12.76)

for r, s = 0, 1 and 1 ≤ j ≤ n. Consequently, if the I0-s and the I1-s are
functionally independent, XC

H becomes a real Hamiltonian system with 2n
degrees of freedom, which is Liouville integrable.

Even without complete integrability, given a solution

ps(t; pk(0), qk(0)), qs(t; pk(0), qk(0)); s, k = 1, 2, . . . , n (12.77)

of the initial system (12.55), which depends analytically on the initial condi-
tions (q(0), p(0)), this solution can be extended to a solution of the complexi-
fied system, and also to a solution of (12.70). (It is enough to consider qk(0),
pk(0) complex). This simple remark will become useful when we discuss the
real Hamiltonian forms of (12.68).

We shall establish now the relation between the dynamics defined by XC

H

(the complexified dynamics) and by XH (the original one). To this end, we use
again that the function H is real analytic. From this property easily follows,
that

HC(p0 + ip1,q0 + iq1) =
HC(p0 + ip1, q0 + iq1) = HC(p0 − ip1,q0 − iq1) , (12.78)

where the “bar” stands for the complex conjugation. As a result,

H0(p0,p1,q0,q1) = H0(p0,−p1,q0,−q1)
H1(p0,p1,q0,q1) = −H1(p0,−p1,q0,−q1) , (12.79)

4 We shall discuss the Liouville integrability later, in Sect. 12.4, so the reader who
is not familiar with this topic can go to 12.4 for the necessary definitions.
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and we see that on M(n), where by definition p1 = 0 and q1 = 0, we have
H1 = 0. Moreover, the above equations, together with the Cauchy–Riemann
equations, entail that on M(n) we have

∂H0

∂p1
=
∂H0

∂q1
= 0 . (12.80)

Looking back at (12.74), we see that the Hamiltonian vector field XC

H is tan-
gent to the subspace M(n) ⊂ M(2n)

C
and on it XC

H equals XH . Thus the
complexified dynamics, projected on the real space M(n), that is putting

p1 = 0, q1 = 0,
∂H0

∂p1
= 0,

∂H0

∂q1
= 0 , (12.81)

gives the old dynamics. We see that the two dynamics are consistent, but
apparently we did not obtain something new. However, one can regard these
results in a completely different way. The point is that one and the same com-
plex space can be obtained complexifying different real spaces (there are dif-
ferent real forms of the same complex space) and the same complex dynamics
is obtained through different real ones. Thus complexifying one real dynamics
and then “projecting” onto different real form can give interesting results.

In order to make the considerations of complexifying and projecting to
the real form more transparent, we shall cast all that was done until now in
a coordinate free form. For this, we shall use the vector field XC

H , see (12.74),
defining the complexified dynamics on the space M(2n)

C
(considered a real

vector space). In the first place, we have

iXC

H
ω0 = −dH0 , (12.82)

where ω0 is given in (12.67) because XC

H is a Hamiltonian vector field. Next,
one can check that the Cauchy–Riemann equations are equivalent to the fol-
lowing relation

iXC

H
ω1 = −dH1 , (12.83)

where ω0 is as in (12.67). We can write these two equations together:

iXC

H
ωC = −dHC , (12.84)

where, HC was introduced in (12.65) and ωC was introduced in (12.66); need-
less to say, we consider all the coordinates p0

k, p
1
k, q

k
0 , q

k
1 as real. Of course,

similar relations can be written for any function F which is real analytic on
M(n) and has extension FC on M(2n)

C
. The equations (12.82), (12.83) give

{H0,H1}ω0 = {H0,H1}ω1 = 0,

and also, if Ij , Ik are real-analytic on M(n), one immediately recovers (12.76).
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Now, let us introduce onM(2n)
C

the conjugation J defined by the complex-
ification (12.60), that is,

J(p0 + ip1) = p0 − ip1, J(q0 + iq1) = q0 − ip1 . (12.85)

In other words J , considered on M(2n)
C

as real space, acts as

J(p0) = p0, J(p1) = −p1, J(q0) = q0, J(q1) = −q1 . (12.86)

Naturally, J is involutive linear map (J2 = id ). It is immediately checked
that

J∗ω0 = ω0, J∗ω1 = −ω1 , (12.87)

where J∗ is the pull-back map. If we introduce

ω̄C = ω0 − iω1 , (12.88)

we can write both equations in (12.86) as

J∗ωC = ω̄C . (12.89)

Now, the condition of real analyticity of H can be written with the help of J
in the following concise way

J∗HC = HC , (12.90)

or, in terms of H0 and H1, as

J∗H0 = H0, J∗H1 = −H1 . (12.91)

Applying the well-known property of tensor fields related through a diffeo-
morphism (this time it is J), and the fact that the pull-back map commutes
with the exterior derivative d, from (12.84) we get the relation

J∗
(

iXC

H
ωC

)

= i(J−1)∗(XC

H)(J
∗ωC) = −dJ∗HC , (12.92)

where as usual for arbitrary vector field X, we write

((J−1)∗X)(z) = dJ−1(X(J(z))).

But, as J is involutive, this expression is equal to J(X(J(z))) and the prop-
erties (12.89), (12.90) of J permit to cast (12.92) into the form:

iXC

JH
ω̄C = −dHC , (12.93)

where
XC

JH(z) = JXC

H(Jz) . (12.94)

The relation (12.94) can be written also into the form
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iXC

JH
ωC = −dHC , (12.95)

which shows that XC

JH = XC

H . Thus, the vector field XC

H satisfies:

XC

H(z) = JXC

H(Jz) . (12.96)

Now, consider this relation on the subspace M(n) ⊂ M(2n)
C

. On it J(z) = z,
and, therefore,

XC

H(z) = JXC

H(z) . (12.97)

This means that on M(n) all the components, corresponding to the vectors

∂

∂qj
1

,
∂

∂p1
j

; j = 1, 2, . . . , n,

are zero, or, in other words, that on M(n) we have the equations (12.80). This
shows of course that the complex dynamics projects into the initial real one.
Also, (12.91), (12.89) immediately give that restricting on M(n) ⊂ M(2n)

C

we have H1 = 0, H0 = H and ω1 = 0, ω0 = ω (we do not write in these
formulae the canonical inclusion map j : M(n) �→ M(2n)

C
, because we do not

want to complicate them unnecessarily). So, we have obtained the coordinate-
free formulation which we shall use considering other real forms. Let us first
remind some facts about them.

12.2.2 Real Hamiltonian Forms

The construction of real forms of complex symplectic spaces follows the usual
scheme for real forms of vector spaces and real forms of Lie algebras. This is
not surprising, as the Poisson brackets on M(n) define actually a Lie algebra
structure. As is well known, if V is a complex vector space, a map J : V �→ V
is called a conjugation map (or simply conjugation), if it satisfies:

J(λx) = λ̄x; x ∈ V, λ ∈ C

J(x + y) = x + y; x,y ∈ V
J2 = id V . (12.98)

If V is considered a real space with a double dimension, the conjugation
becomes a linear map. A real form of V is a real vector space, W ⊂ V , such
that after a complexification it gives V , in other words, any z ∈ V has unique
representation z = x + iy with x,y ∈ W . Such real form naturally defines a
conjugation

J(x + iy) = x− iy . (12.99)

Conversely, each conjugation J defines a real form WJ , one simply must put

WJ = {z : J(z) = z} ⊂ V . (12.100)
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Different conjugations J1, J2 give different real forms. However, as readily
checked, the map S = J1 ◦ J−1

2 is an involution, that is, S : V �→ V is linear,
and S2 = id V . This circumstance shows that the study of the real forms
can be reduced to the study of one fixed real form and the involutions of V .
The things, however, are not so simple and are additionally complicated when
we have a Lie algebra structure, in this case S must be also an isomorphism
of the Lie algebra. We cannot enter in all detail in this theory; we shall only
mention that in the semisimple case, roughly speaking, the above can be done,
and the things can be reduced to the study of one real form WJ1 of V and an
involutive automorphism5 S, leaving this form invariant (this happens when
J1 and J2 commute). As a result, the restriction of S on WJ1 will also be an
involutive automorphism of WJ1 , commuting with J2. Precisely, this situation
will be interesting for us.

For reasons that we believe now have become clear, we shall assume that
on the space M(n) = R

2n there exists an involutive linear map C, acting
canonically on M(n):

C∗ω = ω; C2 = id . (12.101)

We shall require also that H is invariant under C, that is :

C∗(H) = H . (12.102)

Remark 12.21. Note that the requirement (12.101) on C implies that for any
smooth functions F , G, we have C∗{F,G} = {C∗F, C∗G}, that is, property
(12.101) is an analog of the requirement to have involutive automorphism in
the case of Lie algebras.

Now, the map C is naturally extended to M(2n)
C

. We denote it by the same
letter and, as easily seen, it satisfies

C∗ωC = ωC; C2 = id . (12.103)

Also, for the analytically extended HC we have:

C∗(HC) = HC . (12.104)

But, on M(2n)
C

there exists the canonical conjugation J (defined by the real
form M(n)), and we can combine it with C in order to obtain another conju-
gation. In other words, we assume that C and J commute, and we define the
map J̃ :

J̃ = C ◦ J = J ◦ C . (12.105)

As readily seen, it is again a conjugation, that is, J̃ is involutive, and J̃(λz) =
λ̄J̃(z). The properties of J , listed at the end of the previous subsection permit
to obtain that J̃ satisfies:
5 We speak about automorphisms, because there is an additional algebraic structure

on V .
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J̃∗ωC = ω̄C , (12.106)

J̃∗HC = HC . (12.107)

Absolutely in the same way as before, applying the pull-back map J̃∗ to the
identity

iXC

H
ωC = −dHC , (12.108)

we get that the vector field XC

H satisfies

XC

H(z) = (J̃−1)∗XC

H(z) = J̃XC

H(J̃(z) . (12.109)

This time, instead of looking for a space on which Jz = z, we look for a space
such that J̃z = z, that is, we define the real form of M(2n)

C
, as:

M(n)
R

= {z ∈M(2n)
C

: J̃(z) = z} , (12.110)

and we have the corresponding splitting:

M(2n)
C

= M(n)
R
⊕ iM(n)

R
(12.111)

(of course, as real vector spaces). On the real vector space M(n)
R

we have

XC

H(z) = J̃XC

H(z); z ∈M(n)
R

, (12.112)

which means that XC

H ∈ M(n)
R

, that is, the projection of XC

H on iM(n)
R

are
zero. This ensures that the dynamics defined by XC

H is projectable onM(n)
R

. In
order to see that the projected dynamics is Hamiltonian, we apply the pull-
back map J̃∗ to the Equation (12.84). Taking into account (12.109) yields

iXC

CH
J̃∗ωC = −d J̃∗HC , (12.113)

where in order to write simpler expressions, we have put

XC

CH(z) = J̃XC

H(J̃(z)) . (12.114)

Restricting on M(n)
R

, we get that the dynamics is Hamiltonian, with Hamil-
tonian function given by

HR(z) = J̃∗H0(z) = (j∗H0) = H0(j(z)) . (12.115)

where j is the canonical inclusion map j : M(n) �→ M(2n)
C

. The relation
(12.115) simply means that

HR(z) = H0(z); z ∈M(n)
R

. (12.116)

The Hamiltonian vector field is of course XC

H(z), and the corresponding sym-
plectic form is:
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ωR = J̃∗ω0 = j∗ω0 . (12.117)

As in the case of the initial real form, relations (12.107), (12.106) give that
restricting on M(n)

R
⊂M(2n)

C
and we have analogs of all the relations we had

when we restricted on the real form M(n), namely j∗H1 = 0, j∗H0 = HR

and j∗ω1 = 0, j∗ω0 = ωR, where as before j is the canonical inclusion map
j : M(n)

R
�→ M(2n)

C
.

In order to calculate the new symplectic form and the new Hamiltonian, we
need to calculate the map j. To this end, let us note that since C is involution
on M(n), its eigenvalues are ±1, and M(n) splits into two eigenspaces of C:
M(n) =M(n+)

+ ⊕M(n−)
− , where 2n± = dimM(n±)

± . The above subspaces are
indeed of even dimension, for the identity C∗ω = ω is equivalent to ω(x,y) =
ω(Cx, Cy), where x,y are arbitrary vectors. Taking x ∈ M(n+)

+ , y ∈ M(n−)
− ,

we see that ω(x,y) = 0, and since ω is nondegenerate, its restriction on the
spaces M(n±)

± must be nondegenerate too. The last circumstance entails that
their dimension is even. Next, we have also the following splitting of M(n)

R

M(n)
R

=M(n+)
+ ⊕ iM(n−)

− , (12.118)

for any element of M(n)
R

can be represented as:

z = x + iy , (12.119)

where x,y ∈ M(n), and the condition J̃(z) = z readily gives that in this
case we must have x ∈ M(n+)

+ and y ∈ M(n−)
− . We have already seen that

the involution C guarantees that each of the subspaces M(n+)
+ , M(n−)

− is a
symplectic subspace ofM(n). Let us assume that on the spacesM(n+)

+ ,M(n−)
−

we have chosen canonical coordinates
(

p+
k , q

k
+

)n+

k=1
on M(n+)

+ ,
(

p−k , q
k
−
)n−

k=1
on M(n−)

− . (12.120)

This means that the symplectic forms ω± (the restrictions of ω) on the spaced
M(n+)

+ and M(n−)
− can be written into the form:

ω+ =
n+
∑

k=1

dp+
k ∧ dqk

+, ω− =
n−
∑

k=1

dp−k ∧ dqk
− . (12.121)

and that ω = ω+ +ω−. For the sake of brevity we shall denote the coordinates
on M(n+)

+ , M(n−)
− , respectively, by zk,+ and zk,−. The fact that the above

spaces are eigenspaces of the involution C entails that p±k , qk
± satisfy:

C∗(p±k ) = ±p±k , C∗(qk
±) = ±qk

± , (12.122)

for all k = 1, 2, . . . , n±. The same, written in terms of zk,±, reads C∗(zk,±) =
±zk,±. Now it is easy to perform the restriction. Indeed, we must do the
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following. First, we must complexify the space, that is, assume that all zk;±
are complex. We write zk;± = z0

k;± + iz1
k;± and then express the form ω0 and

the function HC through the variables zα
k;±, α = 0, 1. Next, we set in all the

formulae zk,+ to be real and instead of zk,− we set izk,−, in other words, if
z = (zk,+, zs,−) (real) are chosen to be coordinates on M(n)

R
, the canonical

inclusion map j : M(n)
R
�→ M(2n)

C
is given by

j(z)0k,+ = zk,+, j(z)1k,+ = 0, j(z)0k,− = 0, j(z)1k,− = zk,− . (12.123)

Now let us find the symplectic form. We have ωC = ω0 + iω1, where

ω0 =
n+
∑

k=1

(

dp0
k,+ ∧ dqk,+

0 − dp1
k,+ ∧ dqk,+

1

)

+
n−
∑

k=1

(

dp0
k,− ∧ dqk,−

0 − dp1
k,− ∧ dqk,−

1

)

,

ω1 =
n+
∑

k=1

(

dp0
k,+ ∧ dqk,+

1 + dp1
k,+ ∧ dqk,+

0

)

+
n−
∑

k=1

(

dp1
k,− ∧ dqk,−

0 + dp0
k,− ∧ dqk,−

1

)

. (12.124)

Then (12.123) readily yields:

ωR =
n+
∑

k=1

dp+
k ∧ dqk

+ −
n−
∑

k=1

dp−k ∧ dqk
− . (12.125)

Finally, if

H0(z0
k,+ + iz1

k,+ , z0
k,− + iz1

k,−) = H0(z0
k,+ , z1

k,+, z
0
k,−, z

1
k,−) , (12.126)

then
HR(zk,+, zk,−) = H0(zk,+, 0, 0, zk,−) , (12.127)

or simply
HR = H(zk,+, izk,−) = H(p+

k , q
k
+, ip

−
k , iq

k
−) . (12.128)

Let us recapitulate. We started from real Hamiltonian system {(M(n), ω),H}
and an involutive symplectic linear map C, and we were able to construct
another real Hamiltonian system {(M(n)

R
, ωR),HR}:

M(n)
R

= M(n+)
+ ⊕ iM(n−)

− ,

ωR =
n+
∑

k=1

dp+
k ∧ dqk

+ −
n
∑

k=n++1

dp−k ∧ dqk
−



12.2 Real and Complex Hamiltonian Systems 433

HR = H(p+
k , q

k
+, ip

−
k , iq

k
−) , (12.129)

which we called a real Hamiltonian form of the complex dynamical system
defined by the initial system.

Both systems have the same number of degrees of freedom. Moreover,
the solutions of {(M(n), ω),H}, depending analytically on the initial val-
ues q(0) = q(t)|t=0, p(0) = p(t)|t=0, can be mapped onto solutions of
{(M(n)

R
, ωR),HR}, because due to the analyticity properties they will pass

through both the operations:

• complexification and extension to M(2n)
C

;
• projection on the real form M(n)

R
of the complex space M(2n)

C
. The con-

struction amounts to putting instead of (p0
+(0),q0

+(0),p1
−(0),q1

−(0)) the
values (p0

+(0),q0
+(0), ip1

−(0), iq1
−(0)).

Let us illustrate these ideas on a particular Hamiltonian system; see [24].
It is interesting, because it is completely integrable. This will demonstrate
also that our construction preserves the integrability The example is provided
by the Toda chain (TC), related to the algebra sl (n). Its Hamiltonian and
symplectic form are given by

HTC =
n
∑

k=1

p2
k

2
+

n−1
∑

k=1

exp 〈q, αk〉+ c0 exp 〈q, α0〉, (12.130)

ωTC =
n
∑

k=1

dpk ∧ dqk = (dp ∧ dq) , (12.131)

where6 αk = ek − ek+1 for k = 1, . . . n− 1, α0 = e1 − en. The vectors ek form
the canonical orthonormal basis in R

n and by 〈., .〉 is denoted the standard
inner product. Depending on the choice of the real constant c0 we have two
different versions of the Toda chain:

• c0 = 0 corresponds to Toda chain with free ends;
• c0 = 1 gives the so-called affine Toda chain.

Our considerations will be valid for both these cases.
Let us first complexify the TC model. As we explained above, the complex-

ified system can be considered as real Hamiltonian system with 2n degrees of
freedom. In our case this system is characterized by the following Hamiltonian
and symplectic form:

HCTC =
〈p0,p0〉

2
− 〈p

1,p1〉
2

+
n−1
∑

k=1

exp 〈q0, αk〉 cos〈q1, αk〉

6 Those familiar with the theory of the semisimple Lie algebras will recognize in
the set αk, k = 1, . . . , n − 1 the set of the simple roots of sl (n) and in α0 the
minimal root of sl (n).
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+ c0 exp〈q, α0〉 cos〈q1, α0〉 , (12.132)

ωCTC = (dp0 ∧ dq)0 − (dp1 ∧ dq1) , (12.133)

where, as above, p0, p1 and q0, q1 are the real and the imaginary parts
of the complexified vectors p, q. Now, we introduce an involution for which
C∗(H) = H holds. We take:

C∗(pk) = −pk̄, C∗(qk) = −qk̄ . (12.134)

where k̄ = n+ 1− k. Here, it is convenient to consider separately the cases of
even and odd values of n.

(1) n = 2r. On the subspaces M(n±)
± , we can choose the coordinates :

p±k =
1√
2

(pk ∓ pk̄) , qk
± =

1√
2

(

qk ∓ qk̄
)

, (12.135)

for k = 1, . . . , r. We have dimM(n+)
+ = dimM(n−)

− = 2r and in terms of p±k ,
qk
± the initial Hamiltonian and 2-form can be expressed as:

HTC1 =
1
2

r
∑

k=1

((p+
k )2 + (p−k )2) + exp(−

√
2qr

+) + c0 exp(
√

2q1+)

+ 2
r−1
∑

k=1

exp((qk+1
+ − qk

+)/
√

2) cosh
qk+1
− − qk

−√
2

, (12.136)

ωTC1 =
r
∑

k=1

dp+
k ∧ dqk

+ +
r
∑

k=1

dp−k ∧ dqk
−. (12.137)

The function HTC1 (12.136) is even function on the variables qk
− and p−k , and,

therefore, the condition (12.102) is satisfied; see (12.122). The corresponding
real form RTC1 of the complexified TC model can be obtained from (12.136),
(12.137), replacing qk

−, p−k with iqk
− and ip−k , respectively, which yields:

HRTC1 =
1
2

r
∑

k=1

((p+
k )2 − (p−k )2) + exp(−

√
2qr

+)

+ 2
r−1
∑

k=1

exp((qk+1
+ − qk

+)/
√

2) cos
qk+1
− − qk

−√
2

, (12.138)

ωRTC1 =
r
∑

k=1

dp+
k ∧ dqk

+ −
r
∑

k=1

dp−k ∧ dqk
− . (12.139)

(2) n = 2r + 1. Then in the subspaces M(n±)
± , one can choose the coordi-

nates:
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• On M(n+)
+ :

p+
k =

1√
2
(pk − pk̄), qk

+ =
1√
2
(qk − qk̄) , (12.140)

• On M(n−)
− :

p−k =
1√
2
(pk + pk̄), qk

− =
1√
2
(qk + qk̄);

p−r+1 = pr+1, q
r+1
− = qr+1 , (12.141)

for 1 ≤ k ≤ r. Note that dimM(n+)
+ = 2r, dimM(n−)

− = 2r + 2. In terms of
p±k , qk

±, the initial Hamiltonian and 2-form can be expressed as:

HTC2 =
1

2

r
∑

k=1

((p+
k )2 + (p−

k )2) + 2 exp(−qr
+/

√
2) cosh

(

qr+1
− − qr

−√
2

)

+ 2

r−1
∑

k=1

exp((qk+1
+ − qk

+)/
√

2) cosh
qk+1
− − qk

−√
2

+ c0 exp(
√

2q1
+) , (12.142)

ωTC2 =
r
∑

k=1

dp+
k ∧ dqk

+ +

r+1
∑

k=1

dp−
k ∧ dqk

−. (12.143)

HTC2 (12.142) is also even function of qk
− and p−k and the condition (12.122)

is satisfied. The corresponding real form RTC2 of the complexified TC model
can be obtained from (12.142), (12.143) by replacing qk

−, p−k with iqk
− and ip−k

respectively, yielding :

HRTC2 =
1
2

r
∑

k=1

((p+
k )2 − (p−k )2) + 2 exp(−qr

+/
√

2) cos
(

qr+1
− − qr

−√
2

)

+ 2
r−1
∑

k=1

exp((qk+1
+ − qk

+)/
√

2) cos
qk+1
− − qk

−√
2

+ c0 exp(
√

2q1+),

(12.144)

ωRTC2 =
r
∑

k=1

dp+
k ∧ dqk

+ −
r+1
∑

k=1

dp−k ∧ dqk
− . (12.145)

These two models are generalizations of the well-known Toda chains, related
to the simple Lie algebras7. The reader, familiar with the theory of simple
Lie algebras, will identify the action of the automorphism C (12.134) with the
dual action of the unique outer automorphism of sl (n). The roots that are
fixed under this action define the simple roots system of the algebras sp (2r)
and o (2r + 1). Therefore, it is not accidental that after putting qk

− = 0 and
p−k = 0 in (12.138) and (12.144), we get the Toda chains associated to the Lie
algebras sp (2r) and o (2r + 1), respectively.
7 The simple Lie algebras are semisimple Lie algebras that do not have nontrivial

ideals
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12.3 Poisson Structures

As already discussed, the requirement that a closed form ω on M is non-
degenerate sometimes is too restrictive. From the other side, if ω is degener-
ate additional constructions are needed to define Poisson brackets, and these
brackets are defined only on some submanifolds. Certainly, if we want to con-
sider Poisson brackets of functions on M, this is a flaw. Fortunately, there
exists another way to define the Poisson brackets on manifolds based on the
so-called Poisson tensors. The most simple way to approach this topic is to
see that actually we do not need the tensor field m→ ω̄m for the construction
of Poisson brackets, but we need its inverse m → Pm, that is, the field that
satisfies: Pm ◦ ω̄m = idTm(M); ω̄m ◦ Pm = idT∗

m(M). Indeed, suppose that αi;
i = 1, 2, 3 are 1-forms and Xi; i = 1, 2, 3 are fields, such that ω̄(Xi) = αi. The
condition (12.27) then gives:

dα1(X2,X3) +X3〈α1,X2〉+ dα2(X3,X1)
+X1〈α2,X3〉+ dα3(X1,X2) +X2〈α3,X1〉 =
〈LX2α1,X3〉+ 〈LX3α2,X1〉+ 〈LX1α3,X2〉 = 0 . (12.146)

A brief calculation shows that the above expression can be put into the form

〈α1, PLPα3α2〉+ 〈α2, PLPα1α3〉+ 〈α3, PLPα2α1〉 = 0 , (12.147)

for arbitrary choice of the 1-forms αi, i = 1, 2, 3. But the last formula is
written only in terms of P . One can check that if P satisfies (12.147), then
one can define the Poisson brackets of closed forms and functions exactly as
it was done before, that is, setting

{α1, α1}P = d〈P (α1), α2〉
{f1, f2}P = −〈P (df1), df2〉 , (12.148)

for two closed 1-forms α1, α2 and two functions f1, f2. Thus, our attention is
driven to another geometric object – the tensor field P , called Poisson tensor;
see [25] for modern introduction into this topic. More precisely,

Definition 12.22. The Poisson tensor is a field of tensors of type (2, 0), that
is a field of linear maps :

m→ Pm : T ∗
m(M) → Tm(M) , (12.149)

satisfying the following conditions:

a) P ∗ = −P
b) [P, P ]S = 0 . (12.150)

A manifold M, equipped with Poisson tensor, is called Poisson manifold or
P -manifold. It is said also that on M is defined Poisson structure.
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In (12.150), we have denoted by [ , ]S the so-called Schouten–Nijenhuis
bracket of two tensor fields, (see [26, 27]), which in the case of (2, 0) tensors
P and Q can be defined through the relation

[P,Q]S(γ1, γ2, γ3) = 〈QLPγ1(γ2), γ3〉+ 〈PLQγ1(γ2), γ3〉+ cycl (1, 2, 3) ,
(12.151)

which must be satisfied for arbitrary choice of the 1-forms γ1, γ2, γ3.
One can check that [P,Q]S is 3 times contravariant tensor, in other words,

tensor field of type (3,0). The symbol cycl (1, 2, 3) means that to the expression
before cycl one must add all the analogous expressions that can be obtained
through cyclic permutation of the indices 1,2,3. As one can see [P, P ]S = 0
is equivalent to (12.147). Also, one immediately checks that if P is a Poisson
tensor, then for arbitrary constant c 	= 0 the tensor cP is also a Poisson tensor.

It is rather difficult to trace where the notion of the Poisson tensor has ap-
peared for the first time. According to [28, 29] the S. Lie’s book, [30] contains
the essentials of the theory of the Poisson manifolds (called in [30] “func-
tion groups”) and not only, as generally believed, the so-called “Poisson-Lie”
structures on duals of Lie algebras (we introduce them later in (12.172), see
also the discussion before that formula). Also, in a book by Carathéodory,
[31] there has been a rather complete exposition of the theory based on even
earlier work of S. Lie.

As for modern sources, the properties of the Poisson tensors in general, as
mentioned before, are studied in [25], the properties of the algebras of vector
fields associated with Poisson tensor structure are also studied in [26, 29, 32],
together with some cohomological aspects arising from the above bracket, see
also [33] for this topic. Comprehensive bibliography and the most important
results about the finite dimensional Poisson manifolds can be found in [5].
There exist also some interesting generalization of the notion of the Poisson
structure, see [34, 35] and [36].

Below and in the next subsection we introduce some of the principal prop-
erties of the Poisson manifolds.

Let us start with the observation, made in [37, 38], that the condition
[P, P ]S = 0 allows equivalent formulation:

P [LP (α)(β)− LP (β)(α) + d (〈α, P (β)〉)] + LP (β)(P (α)) = 0 , (12.152)

for arbitrary choice of the 1-forms α, β. Indeed, the equation [P, P ]S = 0
means that for arbitrary γi

〈PLPγ1(γ2), γ3〉+ 〈PLPγ2(γ3), γ1〉+ 〈PLPγ3(γ1), γ2〉 = 0 . (12.153)

We have

〈PLPγ2(γ3), γ1〉 = −〈LPγ2(γ3), Pγ1〉 =
LPγ2〈γ1, Pγ3〉+ 〈LPγ2(Pγ1), γ3〉 , (12.154)
〈PLPγ3(γ1), γ2〉 = −〈LPγ3(γ1), Pγ2〉 =
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〈LPγ3(Pγ2), γ1〉 − LPγ3〈γ1, Pγ2〉 =
〈γ3, Pd〈γ1, Pγ2〉〉 − 〈LPγ2(Pγ3), γ1〉 =
〈γ3, Pd〈γ1, Pγ2〉〉 − LPγ2〈γ1, Pγ3〉 − 〈PLPγ2(γ1), γ3〉 . (12.155)

Inserting (12.154, 12.155) in (12.153) we get

〈P [LP (γ1)(γ2)− LP (γ2)(γ1) + d (〈γ1, P (γ2)〉)] + LP (γ2)(P (γ1)), γ3〉 = 0 .
(12.156)

Finally, taking into account that γi; i = 1, 2, 3 are arbitrary, we arrive at the
relation (12.152).

The relation (12.152) is convenient, in order to see why the Poisson tensor
defines Poisson brackets. First of all, note that if the 1-form α is closed, then
for arbitrary vector field X we have

LXα− d〈α,X〉 = 0 (12.157)

and vice versa. Indeed,

LXα = diXα+ iXdα = d〈α,X〉 . (12.158)

Suppose now that Xα = Pα, Xβ = Pβ where α and β are closed 1-forms.
Then

LP (α)(β)− LP (β)(α) + d〈α, P (β)〉 = d〈β, P (α)〉 (12.159)

and from (12.152), we get that

−{α, β}P = Pd〈β, P (α)〉 = [Pα, Pβ] . (12.160)

Thus again, as it was in the case of a symplectic structure, the tensor field P
“transfers” the Lie algebra structure from the module of vector fields to the
module of 1-forms. It is then natural to give the following definitions.

Definition 12.23. The field Xα = P (α) is called the Hamiltonian vector field
corresponding to the 1-form α, and the field Xf = −P (df) is called the Hamil-
tonian vector field corresponding to the function f .

Of course, if P is invertible (Pm is invertible at any point m) the tensor
field P−1 defines symplectic structure. Thus Poisson and symplectic structures
are dual, and some authors call the Poisson structure (the Poisson tensor)
implectic structure.

Let us mention also that if {f, g}; f, g ∈ D(M is Poisson bracket (Poisson
bracket structure) on the manifold M, then {f, g}c = c{f, g}, where c 	= 0
is some constant is also a Poisson bracket. We shall say that these Poisson
brackets are not essentially different. If the brackets {f, g} are defined through
a Poisson tensor P , then {f, g}c are defined through the Poisson tensor cP .
For this reason, we shall call P and cP not essentially different. Also, by the
same logic, we shall call two symplectic forms essentially different if they are
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not proportional. As we shall see later, it is possible to have two essentially
different Poisson brackets on the same manifold, and this situation is very
interesting and important.

As mentioned, it seems that the notion of Poisson tensor goes back to S.
Lie, [30], though at that time it was not called by that name. Actually, S. Lie
has introduced on a manifold M skew-symmetric tensor field of type (2, 0)
(which in the finite dimensional case is the same as introducing field of linear
maps Pm : T ∗

m(M) → Tm(M)). In local coordinates xi; i = 1, 2, . . . n, and in
modern notation this field can be written as:

P =
n
∑

i,j=1

P ij(x)
∂

∂xi
⊗ ∂

∂xj
, P ij = −P ji . (12.161)

S. Lie then proved that the expression

{f1, f2} =
n
∑

i,j=1

P ij(x)
∂f1
∂xi

∂f2
∂xj

(12.162)

defines Poisson brackets if and only if

n
∑

s=1

P si ∂P
jk

∂xs
+ cycl (i, j, k) = 0, (12.163)

which is the coordinate expression of the condition [P, P ]S = 0.
S. Lie has also discovered remarkable Poisson structure looking for Poisson

tensor P ij over R
n with linear dependance on the coordinates:

P ij =
n
∑

k=1

Ck
ijx

k . (12.164)

The constants Ck
ij , which of course must be skew-symmetric with respect to

the lower indices, satisfy the condition (12.162) if

n
∑

s=1

(

Cm
siC

s
jk + Cm

sjC
s
ki + Cm

skC
s
ij

)

= 0 . (12.165)

But this means that Ck
ij are structure constants of some Lie algebra. In other

words, if g is n-dimensional vector space (for example over R) with basis {Ij}n
1 ,

one can define the bracket of two vectors

X =
n
∑

s=1

xsIs, Y =
n
∑

s=1

ysIs (12.166)

as

[X,Y ] =
n
∑

i,j,s=1

xiyjCs
ijIs . (12.167)
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and then g will be Lie algebra. Indeed, due to the skew-symmetry of the
coefficients, Ck

ij , one has [X,Y ] = −[Y,X] and (12.165) ensures the Jacobi
identity

[[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0; X,Y,Z ∈ g . (12.168)

However, Lie’s construction apparently has been forgotten, and later the same
result has been rediscovered by Kirillov, Souriau, and Kostant, [39, 40, 41].
Now different names are used for it – Poisson-Lie structure, Kirillov structure,
Berezin structure, etc. We shall prefer the name Poisson-Lie structure and
for the corresponding tensor field P the name Kirillov’s tensor or Poisson-
Lie tensor. The modern way to introduce the above notions is the following.
Let g be a Lie algebra (over R or C) and let g∗ be its dual space (called
also the coalgebra). Consider the adjoint representation of g. The adjoint
representation is linear map g→ Hom (g, g) : X → ad X , where

ad X(Y ) = [X,Y ]; X,Y ∈ g . (12.169)

The coadjoint representation of g is then the linear map g → Hom (g∗, g∗):
X → −ad ∗

X , where ad ∗
X is the adjoint of ad X . The adjoint map ad ∗

X is
defined in the usual way

〈ad ∗
X(μ), Y 〉 = 〈μ, ad X(Y )〉 = 〈μ, [X,Y ]〉 , (12.170)

for μ ∈ g∗; X,Y ∈ g where by 〈 , 〉 is denoted the canonical pairing between
g and g∗. Let us identify g∗∗ with g. Then the Kirillov tensor K is a field
μ→ Kμ of linear maps

Kμ : g∗∗ ∼ g→ g∗, Kμ(X) = ad ∗
Xμ . (12.171)

The Poisson tensor already defined, the Poisson bracket of two functions
f1(μ),f2(μ) over the dual space g∗ can be constructed according to the gen-
eral scheme. In more detail, the procedure is the following: First, we take
the derivatives df1(μ), df2(μ). They are elements of g∗∗ and, therefore, can be
regarded as vectors from g. Finally, we put

{f, g}(μ) = 〈ad ∗
df1

(μ), df2〉 = 〈μ, [df1(μ), df2(μ)]〉 . (12.172)

As already mentioned, this bracket is called Poisson-Lie bracket or Kirillov
bracket. The above Poisson structure is quite important, both from the theo-
retical viewpoint and for the applications; see [1, 4, 41].

The case when g is a semisimple Lie algebra is of particular interest, since
in that case there is canonical way to identify g and g∗. As is well known,
(see [42, 43]) the semisimple Lie algebras over R and C are characterized by
the fact that the following form, called the Killing form of the algebra g, is
nondegenerate:

B(X,Y ) = tr (ad X ◦ ad Y ); X,Y ∈ g . (12.173)
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From the Jacobi identity it follows that each ad X is skew-symmetric with
respect to the Killing form, that is

B(ad X(Y ), Z) = −B(Y, ad X(Z)); X,Y,Z ∈ g . (12.174)

Since B is nondegenerate, g∗ and g can be identified through it. In detail, for
μ ∈ g∗ there exists a unique element X ∈ g, such that

〈μ, Y 〉 = B(X,Y ) , (12.175)

for all Y ∈ g and we identify μ with X. We shall denote B(X,Y ) by 〈X,Y 〉,
using the same notation as for the canonical pairing between g, g∗, thus show-
ing explicitly that we made the above identification. The property (12.174)
allows then to identify also the adjoint and the coadjoint representation. Fi-
nally, since g∗ ∼ g, we can define Poisson brackets for functions on g. The
construction is the following. If f1(X), f2(X) are two functions on g, then
df1(X), df2(X) ∈ g∗ ∼ g, and we set

{f1, f2}(X) = 〈[df1(X), df2(X)],X〉 . (12.176)

12.3.1 Fundamental Fields of a Poisson Tensor

Now let us consider the question about the fundamental fields of a Poisson
tensor. Having in mind the properties of the Hamiltonian fields in the case of
a symplectic structure the following result is not surprising.

Proposition 12.24. The Hamiltonian vector fields are fundamental fields for
the tensor field P .

Indeed, it is easy to see that (12.152) can be cast into the following equiv-
alent forms

P [LP (α)(β) + d (〈α, P (β)〉)] + LP (β)(P )(α) = 0 (12.177)

(true for arbitrary α, β ∈ Λ1(M)) or

P [iP (α)dβ] + LPβ(P )(α) = 0 , (12.178)

for arbitrary α, β ∈ Λ1(M). Let β be some fixed closed 1-form. Then from
(12.178) follows LPβ(P ) = 0, and, therefore, Pβ is fundamental field for the
Poisson tensor P . The proposition is proved.

12.3.2 Restriction of Poisson Tensor on Submanifold

It often happens that the bracket { , }P defined through the Poisson tensor
P is degenerate, that is, there exists nonconstant functions g, such that
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{f, g}P = 0

for arbitrary function f . (Such functions are called Casimir functions.) Nat-
urally, if Casimir functions exist, the Poisson tensor has a nontrivial kernel.
But, as we explained before, sometimes we need P to be nondegenerate, so
we can to try to restrict the Poisson tensor onto submanifold, where it will be
nondegenerate. Thus we naturally arrive at another type of restriction prob-
lem. The main result in this direction is given by a theorem, proved in general
form, in [44]; see also [45, 46]. We shall use a simplified version of it, proved
in [37, 38]. In the same Chap. 2 numerous applications of the restriction tech-
niques to the soliton equation theory are considered, see also [38, 47] for such
applications. We present below the version of [37, 38] and in the future refer
to it as The Restriction Theorem:

Theorem 12.25. Let M be Poisson manifold and N ⊂M be a submanifold.
Let us denote by j the inclusion map of N into M, by X ∗

P (N )m the subspace
of covectors α ∈ T ∗

m(M) such that

Pm(α) ∈ djm(Tm(N )) = Im(djm); m ∈ N , (12.179)

(where Im denotes the image) and by T⊥(N )m – the set of all covectors
at m ∈ M vanishing on the subspace Im(djm), m ∈ N (also called the
annihilator of Im(djm) in T ∗

m(M)). Let the following relations hold:

X ∗
P (N )m + T⊥(N )m = T ∗

m(M); m ∈ N (12.180)

X ∗
P (N )m ∩ T⊥(N )m ⊂ ker (Pm); m ∈ N . (12.181)

Then there exists unique Poisson tensor P on N , j-related to P , that is

Pm = djm ◦ Pm ◦ (djm)∗; m ∈ N . (12.182)

Proof. Let γ be a covector from T ∗
m(N ). As the map djm : Tm(N ) → Tm(M)

is injective, the map (djm)∗ : T ∗
m(M) → T ∗

m(N ) is subjective and ker (djm)∗ =
T⊥(N )m. Therefore, there exists ε ∈ T ∗

m(M) such that γ = (djm)∗ε. Accord-
ing to our assumptions

ε = ε1 + ε2; ε1 ∈ X ∗
P (N )m, ε2 ∈ T⊥(N )m.

We define
Pm(γ) = Pm(ε1) . (12.183)

If γ has another representation of the same type:

γ = (djm)∗μ, μ = μ1 + μ2; μ1 ∈ X ∗
P (N )m, μ2 ∈ T⊥(N )m,

then (ε − μ) ∈ T⊥(N )m, which due to (12.181) entails (ε1 − μ1) ∈ ker (Pm),
and, thus, the definition of Pm contains no ambiguity. It is not difficult to
check that Pm is linear and that the field m → Pm is smooth. It can also
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be checked that P obeys the first condition in (12.150). Thus in order to
prove that it is a Poisson tensor, it suffices to prove that [P , P ]S = 0. Let γi;
i = 1, 2, 3 be 1-forms on N . We know (see remark (11.37) in Sect. (11.5)) that,
at least locally, there exist 1-forms βi on M such that γi and βi are j-related.
Then, according to the definition of P the fields Pγi and Pβi are j-related.
Therefore, LPγi

γs is j-related to LP (βi)βs (see proposition (11.41)) and as a
result

〈LPγi
γs, γk〉(m) = 〈LPβi)βs, βk〉(j(m)) .

Finally, from the expression of the Schouten–Nijenhuis bracket (12.151), one
gets that

[P , P ]S(γ1, γ2, γ3)(m) = [P, P ]S(β1, β2, β3)(j(m)) = 0 .

The theorem is proved.

Corollary 12.26. If the distribution m → Im(Pm) is regular (has constant
dimension) it is integrable in the Frobenius sense. The Poisson bracket can
be restricted on any of the integral leaves of this distribution, and the corre-
sponding restricted Poisson tensor is nondegenerate.

Proof. The fact that the distribution m → Im(Pm) is integrable is a simple
consequence from the definition of the Poisson tensor; see (12.152). Suppose
N is some integral leaf and suppose j : N �→ M is the inclusion map. For
each m ∈ N we have

X ∗
P (N )m = T ∗

m(M) . (12.184)

On the other hand, using the condition P ∗ = −P , we easily get that
T⊥(N )m = Im(Pm)⊥ = ker (Pm). The theorem we just proved applies im-
mediately, and we see that the Poisson tensor can be restricted onto N . The
resulting tensor Pm is kernel free. Indeed, from the construction of Pm, it fol-
lows that Pm(γ) = Pm(ε), γ = (djm)∗ε. Then Pm(γ) = 0 entails Pm(ε) = 0.
This means that ε ∈ Im(Pm)⊥ and then γ = (djm)∗ε = 0. This completes the
proof.

Remark 12.27. Closely related to the above result is the so-called Marsden–
Weistein theorem, [5, 46, 48] showing how to reduce a Hamiltonian system
with symmetry group to a symplectic space having lower dimension than the
original one.

Let us say a few words about the infinite-dimensional case. We have men-
tioned already that in this case the property

T ∗∗
m (M) = Tm(M)

holds no more. Thus strictly speaking, we cannot write P ∗ = −P and must
substitute this condition with the weaker one
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〈α, P (β)〉 = −〈P (α), β〉 (12.185)

for arbitrary 1-forms α, β, assuming that P is linear and continuous with
respect to some suitable topology. However, usually, we write as before P ∗ =
−P , having in mind the above restrictions. An other thing that must be taken
into account is that in the infinite-dimensional case, even if the kernel of a
continuous liner map is zero, the inverse continuous map may fail to exist.
Thus the duality between Poisson structure and symplectic structure is not
so simple as in the finite dimensional case, and the corresponding maps can
be inverted only on some dense subset of “good” elements.

12.4 Mixed Tensor Fields and Integrability

We pass now to the principal geometric object of this book – the Nijenhuis
tensor. However, we think that it is not instructive to introduce it just by a
formal definition, so we shall try to show how one can come to it in a natural
way, considering the question of integrability of dynamical systems.

A classical integrability criterion for Hamiltonian systems is given by the
Liouville theorem, which we shall remind below in the form given by Arnold,
(see [5]), and because of this it is called the Liouville–Arnold theorem.8

Theorem 12.28. Let (M, ω) be 2n-dimensional symplectic manifold, let ri,
i = 1, 2 . . . , n be smooth functions defined on M such that {ri, rj} = 0, i, j =
1, 2 . . . , n. Let dr1, . . . , drn be linearly independent for each point belonging to
the level manifold Mh

Mh = {m : ri(m) = hi = const ; i = 1, 2, . . . , n} ⊂ M (12.186)

(or equivalently, the functions ri are functionally independent). Let H0 = r1,
and let us consider the Hamiltonian field XH0 (Hamiltonian system) corre-
sponding to H0 and the flow corresponding to it9. We shall call it simply the
flow of H0.

Then

• Mh is a smooth manifold, invariant under the flow of H0.
• If the submanifold Mh is compact and connected, it is diffeomorphic to

the n-dimensional torus

T
n = {(φ1 (mod 2π), φ2 (mod 2π), . . . , φn (mod 2π))} . (12.187)

(The functions φ are called angle variables).

8 We shall introduce later another variant of the same theorem, called Liouville–
Cartan theorem.

9 Of course, we can choose here H0 to be equal to any of the functions ri, and
everything remains the same.
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• The Hamiltonian flow, generated by H0, defines on Mh almost periodic
motion, that is, the evolution of the angle coordinates is given by

dφi

dt
= νi(h); i = 1, 2, . . . , n , (12.188)

where h = (h1, h2, . . . , hn).
• The Hamiltonian equations for H0 are integrable in quadratures.

Definition 12.29. In the above situation, the Hamiltonian system XH0 , cor-
responding to the Hamiltonian functions H0 is called completely integrable in
the Liouville sense.

The functions (ri, φ
j)1≤i,j≤n can be taken locally as coordinates, but in the

above situation, there are some other very useful coordinates, the so-called
action variables (H1,H2, . . . , Hn), which together with the coordinates φj

form the so-called set of action-angle coordinates (variables) (Hi, φ
j)1≤i,j≤n.

In the realms of the Liouville–Arnold theorem, when the submanifold Mh is
compact, they are defined in its neighborhood and have the properties:

1. The symplectic form ω in terms of the action-angle variables has canonical
form:

ω =
n
∑

i=1

dHi ∧ dφi , (12.189)

that is, the action-angle coordinates are Darboux coordinates for ω.
2. The functions νi are functions only on H = (H1,H2, . . . Hn). Thus, in the

action-angle coordinates the Hamiltonian vector field X, corresponding to
H0, takes the form

X =
n
∑

i=1

νi(H)
∂

∂φi
=

n
∑

i=1

νi(H)Xi , (12.190)

where Xi = ∂
∂φi are the Hamiltonian vector fields, corresponding to the

Hamiltonian functions Hi.

Perusing the proof of this theorem (see for example [5]) one can see that such
a beautiful splitting of the evolution is due to the following circumstances:

(a) There are n linearly independent fields Yi (the Hamiltonian fields corre-
sponding to the functions ri)

(b) The fields Yi define an integrable distribution (each Mh is their integral
leaf).

(c) The fact that Mh is compact entails that the fields Yi are complete, that
is, the corresponding flows exist for all values of the time and commute
({ri, rj} = 0 leads to [Yi, Yj ] = 0). Finally, since for each h, the manifold
Mh is connected, the flows of Yi define on it transitive action of the
Abelian group R

n. After factoring over a discrete stationary subgroup
of some point, we obtain the torus that appears in the Liouville–Arnold
theorem.
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Some additional effort is needed to obtain the action-angle variables, but the
circumstances we outlined are the most important.

We are able to present now conditions that create the same situation as
above, without involving a symplectic structure (at least from the beginning).
We describe this construction in the following two sections and also show
how within this frame arise a multi-Hamiltonian description of some type of
dynamical systems and an interesting new object.

LetM be a smooth 2n-dimensional manifold, and suppose that on it there
exist n linearly independent vector fields X1,X2 . . . , Xn (at each point) and
n functionally independent functions F1, F2 . . . , Fn. We can represent these
conditions in the analytic form

X1 ∧X2 ∧ . . . ∧Xn(m) 	= 0
dF1 ∧ dF2 ∧ . . . ∧ dFn(m) 	= 0 , (12.191)

for each m ∈ M, where in the first equation, the symbol ∧ is used for the
skew-symmetric tensor product (defined similarly as the wedge product of
forms). Next, we require that Fi,Xj ; i, j = 1, 2 . . . n satisfy

[Xi,Xj ] = 0, LXi
Fj = 0 . (12.192)

(If it turns out that (12.191, 12.192) are satisfied only on some open subman-
ifold N , then we can restrict the considerations to N ). Now, assume that the
level sets of the submersion map

F : M→ R
n, F = (F1, F2, . . . , Fn) (12.193)

are compact and connected and suppose that a dynamical system X on M
has the form

X =
n
∑

i=1

νiXi, νi = νi(F1, F2, . . . Fn) . (12.194)

We are able to show that X is integrable onM in the same sense as Liouville–
integrable systems are. Indeed, the vector fields Xi are tangent to each level
surface F−1(a), a ∈ R

n, and since these surfaces are compact and connected
the fieldsXi are complete on them and define a transitive action of the Abelian
group R

n just as before. Even if the surfaces F−1(a) are not compact, on each
of them we can find 1-forms α1, . . . , αn, such that

αi(Xj) = δi
j ; i, j = 1, 2, . . . , n . (12.195)

The forms αi are closed. Indeed,

dαi(Xs,Xk) = Xs(αi(Xk))−Xk(αi(Xs))− αi([Xs,Xk]) = 0 (12.196)

and the fields {Xi}n
1 form a basis in the module of the vector fields. Next,

at least locally, there exist functions φi such that dφj = αj , and also locally
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one can choose as coordinates the functions (Fi, φ
j)1≤i,j≤n. As a result, the

vector field X in (12.194) can be explicitly integrated in some neighborhood of
each point on the surface F−1(a), because in the coordinates (Fi, φ

j)1≤i,j≤n

its integral curves satisfy

φ̇i = νi(F1, F2, . . . , Fn), Ḟi = 0 , (12.197)

where, as is usually done in Mechanics, the time derivative is denoted by a
dot. The solutions of this system are

φi(t) = tνi(F (m0)) + φi(m0), Fi(t) = Fi(m0) , (12.198)

where m0 ∈ M is the initial point. When the variables φj are of angle type
and the integral curves are closed, the functions νi play the role of frequencies,
so in what follows we shall call them frequencies.

The above construction, though very simple, is important for understand-
ing integrability. It stresses the fact that the dynamics of the system in some
coordinate frame separates – some of the coordinates are constants and the
evolution of the others is simple (usually linear).

There are also some additional points related to the Liouville theorem that
attracted attention only recently. In order to introduce them, let us remark
that considering some dynamical system, the symplectic structure is supposed
to be already given. In Classical Analytical Mechanics, we obtain it in some
standard and canonical way. The system is considered on the phase space
T ∗(P), which is the cotangent space of the configuration space P, and T ∗(P)
has canonical symplectic structure on it defined by the Liouville form. How-
ever, if we consider again the situation of the Liouville–Arnold theorem, we
can see that the systems Xi and X introduced there are completely integrable
not only with respect to the structure (12.189) but also to the set of structures
defined by

ωf =
n
∑

i=1

dfi(H) ∧ dφi , (12.199)

where fi(H) = fi(H1,H2, . . . ,Hn) are smooth functions, satisfying only the
requirement that ωf must be nondegenerate. The above discussion suggests
that the integrability in Liouville–Arnold sense is related to the existence
of several symplectic (or Poisson) structures, for which the same dynamical
system can be written in Hamiltonian form.

12.4.1 Multi-Hamiltonian Formulations of the Integrable Systems

We shall show now how we can obtain the so-called recursion operators
(Nijenhuis tensors in geometric terminology) in case we have an integrable
system. To this end, we shall assume that we have the situation described
in the previous subsection when we tried to generalize the constructions of
the Liouville–Arnold theorem. In other words, let on the manifold M there
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exist sets of functions F1, F2 . . . , Fn and fields X1,X2 . . . , Xn obeying the con-
ditions (12.191, 12.192). Let us also have the dynamical system (the vector
field) X as in (12.194). Maintaining the analogy with the Liouville–Arnold
case, we can define then a class of closed 2-forms by the formula

ωf =
n
∑

i=1

dfi(F ) ∧ αi , (12.200)

where fi are some smooth functions we shall specify later, while F =
(F1, F2 . . . , Fn) and αi are the same as before. It is not hard to see that
ωf is nondegenerate if

df1 ∧ . . . ∧ dfn 	= 0 . (12.201)

For all 2-forms of the above type, the action of the Abelian group R
n defined

by the flows of the fields Xi, is canonical. Indeed, by the construction of ωf

we have
iXj

ωf = −dfj ; j = 1, 2, . . . , n , (12.202)

which shows that Xj are Hamiltonian vector fields. For the vector field X in
(12.194), we have

iXωf = −
n
∑

i=1

νidfi . (12.203)

Hence X can be cast in Hamiltonian form if iXωf is exact. A necessary con-
dition for this is diXωf = 0, which leads to the equation

n
∑

i=1

dνi ∧ dfi = 0 . (12.204)

If this equation holds, then at least locally there exists a Hamiltonian for
X. The solutions f1, f2, . . . , fn of (12.204) satisfying also (12.201) will yield
Hamiltonian formulations for the dynamical system X. If it is already Hamil-
tonian with respect to some given structure, we shall have alternative formu-
lations. If not, then we can cast it in a Hamiltonian form.

Moreover, on each integral leaf Fi = const ; i = 1, 2 . . . n (the level surface
Fi = const ; i = 1, 2 . . . n is clearly an integral leaf for the distribution defined
by the fields Xi), the field X will be completely integrable in the Liouville–
Arnold sense. Indeed, as easily checked, the functions f1, f2, . . . , fn due to
(12.192) are integrals of motion in involution:

{fi, fj}f = ωf (Xi,Xj) = LXi
fj = 0 , (12.205)

and the sets of functions fj and Fi can be expressed through each other
because of (12.201).

Definition 12.30. A symplectic form for which X is Hamiltonian vector field
shall be called admissible form.
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There exist two limit cases when it is easy to obtain solutions of (12.204).

1. The constant case. All the frequencies νi are constants, then dνi = 0 and
(12.204) is satisfied.

In this case any 2-form of the type (12.200) is admissible symplectic form and
the corresponding Hamiltonian function for X is given by

H =
n
∑

i=1

νifi . (12.206)

Example 12.31. A system for which the above situation takes place is the n-
dimensional harmonic oscillator. We can write the field X on the manifold
M = R

n
p × R

n
q in the standard way

X =
n
∑

i=1

ηiZi

Zi =
1√
miki

pi
∂

∂qi
−
√

mikiqi
∂

∂pi
; ηi =

ki

mi
. (12.207)

For each i, the parameters mi and ki are the mass and the elastic constant of
the i-th oscillator and the functions Fi are the “partial” Hamiltonians

Fi =
1
2
(
p2

i

mi
+ kiq

2
i ); i = 1, 2, . . . , n . (12.208)

The frequencies are the constants ηi.

2. The nonresonant case. None of the frequencies νi is constant and

dν1 ∧ · · · ∧ dνn 	= 0 . (12.209)

The above, of course, means that det( ∂νi

∂Fj
) 	= 0, so we can choose νi as part

of the coordinates. We can assume Fj to be functions on νi, i = 1, 2, . . . , n,
so we can write everything in terms of νi instead of Fi. In the nonresonant
case, there exists a class of simple solutions of (12.204) consisting of linear
functions

fi =
n
∑

j=1

Aijν
j ; i = 1, 2 . . . n (12.210)

Aij = Aji, det(Aij) 	= 0.

The Hamiltonian form of X is given then by the quadratic Hamiltonian
function

HA =
1
2

n
∑

i,j=1

Aijν
iνj , (12.211)
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and the symplectic form can be chosen to be

ωA =
n
∑

i,j=1

Aijdν
i ∧ αj . (12.212)

Still in the nonresonant case, we can also consider any other symplectic struc-
ture of the form

ωf =
n
∑

i=1

dfi(νi) ∧ αi , (12.213)

where for each i the function fi depends only on the frequency νi. Then ωf will
be admissible as long as it is nondegenerate, i.e. as long as df1 ∧ . . .∧ dfn 	= 0.
The corresponding Hamiltonian functions depend on the explicit form of the
functions fi. For example, if fi = ∂Gi

∂νi (νi), the Hamiltonian can be written as

HG =
n
∑

i=1

(Gi − νi ∂Gi

∂νi
) . (12.214)

Example 12.32. The n-dimensional harmonic oscillator can again be used as
an illustration. We can write it as

X =
n
∑

i=1

FiYi , (12.215)

where Fi is given by (12.208) and Yi = ηi(Fi)−1Zi; Zi as in (12.207). We can
see that now the partial Hamiltonians Fi play the role of frequencies.

Remark 12.33. The intermediate cases are more involved, see [49].

Remark 12.34. It is worth while mentioning that there can exist admissible
Hamiltonian structures for X, which cannot be obtained through the con-
struction we have outlined.

12.4.2 Recursion Operators for Integrable Systems

As we have seen, given the dynamical system (12.194), we can construct in-
finitely many Hamiltonian structures, for example, as in (12.200) or (12.213).
If a system can be cast into Hamiltonian form in two essentially different ways
(that is, with respect to two essentially different Poisson brackets), we shall
say that it allows (has) a bi-Hamiltonian formulation, has a bi-Hamiltonian
structure or simply that it is bi-Hamiltonian. We have seen that integrabil-
ity of Liouville–Arnold type implies that we have bi-Hamiltonian properties
(and even multi-Hamiltonian properties). As we shall also see, the existence
of two essentially different structures for which a given dynamical system is
Hamiltonian allows to construct also mixed tensor fields, interlacing two such
structures and these tensor fields (recursion operators, Nijenhuis tensors) play
an important role in the integrability. Let us consider again the two limit cases.
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1. The constant case: dνi = 0; i = 1, 2 . . . , n.

Two admissible symplectic structures can be obtained from (12.200):

ω1 =
n
∑

i,j=1

δijdFi ∧ αj =
∑

k

ω(k) , (12.216)

where ωk = dFk ∧ αk, and

ωf =
n
∑

i,j=1

δijfi(Fi)dFi ∧ αj =
∑

k

fk(Fk)ω(k) , (12.217)

with the condition df1∧ . . .∧dfn 	= 0. Using the above structures, we can con-
struct a (1, 1) (mixed) tensor field N∗ onM, which relates the two symplectic
structures:

N∗ = ω̄f ◦ ω̄−1
1 =

n
∑

k=1

fk(Fk)Ik , (12.218)

where by Ik is denoted the identity operator on the k-th two dimensional
“plane” of T ∗(M) with “coordinates” (dFk, α

k).

2. The nonresonant case: dν1 ∧ · · · ∧ dνn 	= 0.

In this case again, two admissible symplectic structures are obtained from
(12.213):

ω0 =
n
∑

i,j=1

δijdν
i ∧ αj =

∑

k

ω(k) , (12.219)

where as before ω(k) = dFk ∧ αk, and

ωf =
n
∑

i,j=1

δijf
i(νi)dνi ∧ αj =

∑

k

fk(νk)ω(k) , (12.220)

with the requirement df1 ∧ . . . ∧ dfn 	= 0. From these structures, we can con-
struct a (1, 1) tensor field N∗ on M through the formula

N∗ = ω̄f ◦ ω̄−1
0 =

n
∑

k=1

fk(νk) Ik , (12.221)

where Ik is the identity operator on the k-th two-dimensional “plane” of
T ∗(M) with “coordinates” (dνk, αk), and according to our conventions ω̄,
ω̄0 stand for the fields of linear maps

m �→ ω̄m, (ω̄0)m : Tm(M) �→ T ∗
m(M)

corresponding to the forms ω, ω0. The fields m �→ N∗
m are fields of endomor-

phisms of the vector space T ∗
m(M).
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Liouville–Arnold Integrable Systems

Let us consider again the situation we had in the Liouville–Arnold theorem.
Let (M, ω0) be a symplectic manifold, let the vector fields X1, . . . , Xn we used
in the construction that is described after (12.192) be complete vector fields
corresponding to the independent functions H1, . . . , Hn, which are in involu-
tion. (This ensures the conditions (12.192) with Fi = Hi). In this situation,
one can find “angle” 1-forms α1, . . . , αn, such that αi(Xj) = δi

j and dαi = 0
(if we use the action-angle variables, we shall have of course αi = dφi).

Suppose the dynamical vector field X on M has the form (12.194), where
we must put now Fi = Hi. Suppose that X is Hamiltonian system correspond-
ing to the Hamiltonian H.

If F is arbitrary function of the Hj , we have dF ∧ dH1 ∧ . . . ∧ dHn = 0.
Suppose now that F is such that det( ∂2F

∂Hi∂Hj
) 	= 0 (we shall call such F

nondegenerate). Then one can see that the exact 2-form

ωF =
n
∑

i=1

d(
∂F

∂Hi
αi) (12.222)

is an admissible symplectic form for all the dynamical systems Xi. In partic-
ular, if

F =
1
2

n
∑

i=1

H2
i (12.223)

we recover the original structure. If we use the existing action-angle variables
(Hk, φ

k) we shall have:

X =
n
∑

k=1

νk ∂

∂φk

ω0 =
n
∑

k=1

dHk ∧ dφk

iXω0 =
n
∑

k=1

νkdHk = −
n
∑

k=1

∂H

∂Hk
dHk = −dH , (12.224)

and we obtain
νk =

∂H

∂Hk
; k = 1, 2 . . . , n.

The condition dν1 ∧ . . .∧ dνn 	= 0 is equivalent to det( ∂νk

∂Hl
) 	= 0 and, as easily

seen, is also equivalent to the nondegeneracy of the Hamiltonian function,
that is, to det

(

∂2H
∂Hi∂Hj

)

	= 0. Thus the nonresonant case corresponds to

nondegenerate H. We also see that we can use the functions νk as part of the
coordinates and write immediately one admissible symplectic structure:
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ων =
n
∑

k=1

dνk ∧ dφk . (12.225)

Then the Hamiltonian for X will be the quadratic function

Hν =
1
2

n
∑

k=1

(νk)2 . (12.226)

In the same way, we can obtain that in the nonresonant case the completely
integrable system X has infinitely many admissible symplectic structures,
some of them having the form

ωf =
n
∑

i=1

dfi(νi) ∧ dφi , (12.227)

where, of course, the functions fi satisfy df1 ∧ . . . ∧ dfn 	= 0. Note, however,
that in general ω0 cannot be obtained in this way.

Thus the systems we are speaking about admit recursion operators given
by expression (12.221).

Example 12.35. Consider now the following completely integrable system, in-
troduced in [50].

Let M = R
2 × T

2 = {(x, y, θ, η)}. (T2 is the two-dimensional torus). The
manifold M is endowed a structure of symplectic manifold by the 2-form

ω0 = dx ∧ dθ + dy ∧ dη . (12.228)

Let the dynamical system be defined by the Hamiltonian H = x3 + y3 + xy.
The vector field corresponding to H is easily calculated:

X = νθ
∂

∂θ
+ νη

∂

∂η

νθ = 3x2 + y, νη = 3y2 + x . (12.229)

The previous discussion shows that this system admits infinitely many alter-
native Hamiltonian formulations on the dense open submanifold M0 of M,
characterized by the condition dνθ ∧ dνη 	= 0, that is, by 36xy − 1 	= 0. M0

coincides with the submanifold on which H is nondegenerate. Two symplectic
structures of the type we consider are given by

ω1 = dνθ ∧ dθ + dνη ∧ dη (12.230)
ω2 = f(νθ)dνθ ∧ dθ + g(νη)dνη ∧ dη , (12.231)

where f and g are arbitrary functions such that df∧dg 	= 0. The corresponding
recursion operators are given by
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N∗ = ω̄2 ◦ ω̄−1
1 = f(νθ)

(

dνθ ⊗
∂

∂νθ
+ dθ ⊗ ∂

∂θ

)

+ g(νη)
(

dνη ⊗
∂

∂νη
+ dη ⊗ ∂

∂η

)

. (12.232)

We point out that ω0 does not belong to the family of symplectic structures
given in (12.231) and that our recursion operators (12.232) cannot be “fac-
tored” through ω0, that is, written into the form ω̄ ◦ ω̄−1

0 .

After the above discussion and examples, our attention is now driven to the
mixed tensor fields N∗, we have obtained in (12.232),(12.217), and (12.221).
We have seen that they interrelate different symplectic structures. For reasons
that shall become clear later, we prefer to state not the properties of the fields
N∗ but the properties of the fields of their adjoint operators:

m �→ Nm : Tm(M) �→ Tm(M).

They are fields of endomorphisms of the tangent spaces Tm(M). In all the
examples we have given, the fields m �→ Nm have the following properties:

• N is invariant under X (LXN = 0), where X is the dynamical system
we consider, the same that possesses bi-Hamiltonian formulation.

• N is semisimple and has double degenerate eigenvalues without critical
points. This is a short way of saying that at each point m the operator
Nm is semisimple, its eigenvalues λi(m) are smooth functions, the corre-
sponding eigenspaces are two-dimensional and dλi|m 	= 0. The expression
“without critical points” comes from the fact that when dλi|m 	= 0 the
Hamiltonian vector fields that correspond to the functions λi do not have
critical points.

• N has vanishing Nijenhuis torsion RN (or Nijenhuis bracket), that is

[NX,NY ]−N [NX,Y ]−N [X,NY ] +N2[X,Y ] = 0

for any choice of the vector fields X,Y .

From the above properties, only the third one needs a proof, but that can
be done by simple, though tedious calculations. We shall not do that here,
because later we shall be able to give some general results which ensure that
the Nijenhuis torsion vanishes, so the above will be a simple consequence from
the general theory.

Tensor fields as obtained above are known to arise in the theory of the
soliton equations and are called recursion operators, generating operators,
Λ-operators, hereditary operators, or Nijenhuis operators (tensors). Usually
what is called Λ-operators are the adjoint operators N∗; recursion operators
is used both for N and N∗, and in the geometric approaches for N is used the
name Nijenhuis tensor. Their role in the geometric theory of the integrable
systems has been realized after the pioneer work of F. Magri [19]; see also
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[51], and the works of another authors as I. Ya. Dorfman [52]; A. S. Fokas
and B. Fuchssteiner, [53, 54] (under the name of hereditary operators);
V.E. Zakharov and B. G. Konopelchenko [55] (under the name recursion oper-
ators). We are trying to cite the earliest sources here, but for the contemporary
developments of the theory see the monographs [56, 57, 58]; in the monographs
[58], the Nijenhuis tensor is a central geometric object and the finite and infi-
nite case are studied on the same grounds. We refer only to sources (and maybe
in an incomplete way), treating the geometric and Hamiltonian properties of
the field N (N∗). As already mentioned, the same object appeared under the
name Λ-operator in the spectral approaches. Probably the understanding of
the geometric importance of N in the theory of integrable systems could have
been discovered earlier, if the rarely cited works of A.P. Stone [59, 60] had
been widely known, because they contain a lot of the necessary information
for that understanding. However, historically only after the work of F. Magri
[19], the central role of the operator (tensor) N in the geometric approaches
as an operator, relating two symplectic (Poisson) structures became clear.

From the other side, tensor fields with vanishing Nijenhuis torsion also
turned out to be known earlier in the Differential Geometry, but their study
has been motivated by their applications to some other topics (almost complex
structures for example). We prefer to elaborate on the abstract properties of
the Nijenhuis tensors in a separate section, namely, Sect. 13.3 of the next chap-
ter. Here we just intend to convince the reader that these interesting fields
already arise naturally in the theory of finite dimensional completely inte-
grable Hamiltonian systems. We hope to justify further this opinion in Chap.
14. Up to now, however, the most interesting applications of the Nijenhuis ten-
sors (operators) have been in the study of the infinite-dimensional dynamical
systems.
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13

Vector-Valued Differential Forms

The goal of this chapter is to introduce the mixed tensor fields with vanishing
Nijenhuis bracket, which we do at the end. However, at the beginning, we
adopt a more general viewpoint, and together with the Nijenhuis bracket of
two fields of operators, we describe the more general notion of the bracket of
two vector-valued differential forms. We believe that the applications of rich
calculus related to these objects is not limited only to the Nijenhuis tensors,
and that is one of the reasons we present them here. Another reason is that
this topic is more specific, and usually it is treated only in journal papers.
Finally, this more general viewpoint will be useful in the generalizations we
are going to present in the Appendix.

We present the theory of vector-valued differential forms following [1].

13.1 Derivations of the Graded Ring
of the Exterior Forms

Let M be a manifold and Λ(M) be the exterior algebra over M. We have
considered already the operations iX , d, LX defined on Λ(M) and their proper-
ties, but it turns out that these operations are particular cases of more general
operations – the so-called derivations of Λ(M). In order to avoid confusion,
we must clarify the notation we use. First, the set of the constant functions
on M is naturally isomorphic to R and for that reason we shall denote it by
R. Then R ⊂ Λ(M) is a subring of Λ(M). We have the following:

Definition 13.1. A derivation D of degree r of the ring Λ(M) related to the
subring R (or simply derivation of degree r) is an endomorphism, such that

(1) D(R) = 0
(2) D(Λs(M)) ⊂ Λs+r(M); s = 0, 1, 2 . . .
(3) D(ω ∧ π) = D(ω) ∧ π + (−1)qrω ∧D(π) , (13.1)

where ω ∈ Λq(M), π ∈ Λp(M).
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All the operations we have introduced – the interior product, the exterior
derivative (Cartan derivative), and the Lie derivative are derivations of Λ(M)
of degrees −1, +1 and 0, respectively. If f ∈ D(M) is a smooth function and
D is a derivation of Λ(M) of degree r, then fD is derivation of degree r too, so
the set Der r(Λ(M)) of the derivations of degree r is a module over D(M), as
well as the set of all derivations Der (Λ(M)). However, Der (Λ(M)) possesses
additional algebraic structure, as stated by the next proposition.

Proposition 13.2. Let D1 and D2 are two derivations of degree r1 and r2,
respectively. Then the endomorphism

[D1,D2] = D1 ◦D2 − (−1)r1r2D2 ◦D1 (13.2)

is a derivation of degree r1 + r2 called the graded commutator of D1 and D2.

(The proof of the proposition amounts to simple calculation).
The definition of [D1,D2] entails

[D1,D2] = −(−1)r1r2 [D2,D1] , (13.3)

and, therefore, with respect to the commutator, the module of the derivations
of Λ(M) is graded anticommutative ring.

Also by a computation one can prove the following:

Proposition 13.3. For each choice of the derivations D1,D2,D3 of degrees
r1,r2,r3, respectively, the following identity, called the Jacobi identity, holds

(−1)r3r1 [D1, [D2,D3]] + cycl(1, 2, 3) = 0 . (13.4)

Here, as usual, by cycl (1, 2, 3), we denote the set of two additional terms
that can be obtained from the first one by cyclic permutation of the indices
(1, 2, 3). Thus, with respect to the commutator Der (Λ(M)) is also a graded
Lie algebra over R.

It is important that one can construct derivations of degree n−1 from the
so-called vector-valued differential forms of degree n. Let us introduce these
new objects.

Definition 13.4. We call vector-valued differential form of degree n ≥ 1 a
smooth field N of linear skew-symmetric maps:

M� m→ Nm : Tm(M)n → Tm(M) . (13.5)

One can also say that a vector-valued form N of degree n is (1, n)-type ten-
sor field over the manifold M, skew-symmetric with respect to the covariant
indices. In a natural way, one can define the multiplication of N by function,
and then clearly the set of all vector-valued differential forms V (n)(M) of de-
gree n becomes a module over D(M). We also set by definition V (0)(M) to
be the module T (M) of the vector fields overM and then V (n)(M) is defined
for n ≥ 0.
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Definition 13.5. The module

V (M) =
∞
⊕

n=0
V (n)(M) (13.6)

is called the module of vector-valued differential forms.

There are also some natural operations between vector-valued forms and be-
tween vector-valued forms and differential forms. The first operation simply
generalizes the exterior product. If ω ∈ Λp(M), p ≥ 1; N ∈ V (n)(M), n ≥ 1
and if X1,X2, . . . , Xp+n ∈ Tm(M), we define m → (ω ∧N)m to be the field
of skew-symmetric maps:

(ω ∧N)m(X1,X2, . . . , Xp+n) =
1

p!m!

∑

σ∈Gp+n

ε(σ)ωm(Xσ(1),Xσ(2), . . . , Xσ(p))×

Nm(Xσ(p+1),Xσ(p+2), . . . , Xσ(p+n)) . (13.7)

Here, as in the definition of the wedge product, Gp+n stands for the permu-
tation group of {1, 2, . . . , p+ q} and ε(σ) is the parity of σ ∈ Gp+n. Further,
for X ∈ V (0)(M), ω ∈ Λp(M), p ≥ 0 we put

ω ∧X = ω ⊗X , (13.8)

where the tensor product is taken over the ring D(M) and for f ∈ Λ0(M),
N ∈ V (n)(M), n ≥ 0 we set

f ∧N = fN . (13.9)

We also define
N ∧ ω = (−1)pnω ∧N (13.10)

for ω ∈ Λp(M), N ∈ V (n)(M). Of course, if ω ∈ Λp(M), N ∈ V (n)(M) then
ω ∧N ∈ V (n+p)(M).

Thus, the operation introduced in the above has properties similar to the
wedge product of differential forms.

There is also another operation with vector-valued forms. Suppose we have
P ∈ V (p)(M), p ≥ 1; N ∈ V (n)(M), n ≥ 1. Then for

X1,X2, . . . , Xp+n−1 ∈ Tm(M)

we define m→ (P "N)m to be the field of skew-symmetric maps:

(P "N)m(X1,X2, . . . , Xp+n−1) =
1

(n− 1)!p!

∑

σ∈Gp+n−1

ε(σ)Nm

(

Pm(Xσ(1),Xσ(2), . . . , Xσ(p))

Xσ(p+1),Xσ(p+2), . . . , Xσ(p+n−1)

)

. (13.11)
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It is clear that P "N is vector-valued differential form of degree p+ n− 1.
Next, for M ∈ V (0)(M), we put iNM = 0, and for X ∈ V (0)(M) (vector

field), M ∈ V (p)(M), p ≥ 1, we define

iXM(X1,X2, . . . , Xp−1) = M(X,X1,X2, . . . , Xp−1) . (13.12)

Quite in the same way, if P ∈ V (p)(M), p ≥ 1; α ∈ Λn(M), n ≥ 1 and
X1,X2, . . . , Xp+n−1 ∈ Tm(M), we define m → (iPα)m to be the following
differential form:

(iPα)m(X1,X2, . . . , Xp+n−1) =
1

(n− 1)!p!

∑

σ∈Gp+n−1

ε(σ)αm

(

Pm(Xσ(1),Xσ(2), . . . , Xσ(p)),

Xσ(p+1),Xσ(p+2), . . . , Xσ(p+n−1)

)

. (13.13)

It is easily seen that iPα is differential form of degree p+n−1. For α ∈ Λ0(M),
we put iNα = 0, and forX ∈ V (0)(M), we define iX to be the interior product.

Example 13.6. Let I be the field of identity operators and let N ∈ V (n)(M),
then

I "N = nN, N " I = N . (13.14)

The example shows that generally speaking N "M 	= M "N .

Example 13.7. Let I be again the field of identity operators, let N ∈ V (1)(M),
suppose that X1,X2, . . . , Xp+n−1 ∈ Tm(M) and α ∈ Λp(M), then

iIα = pα

[iNα]m(X1,X2, . . . , Xp) =
p
∑

j=1

αm(X1,X2, . . . , Xj−1, N(Xj),Xj+1,Xj+2, . . . , Xp) . (13.15)

It is not hard to establish some useful properties of the operations we have
introduced:

1. For N ∈ V (n)(M), α ∈ Λp(M), β ∈ Λq(M), we have:

α ∧ (β ∧N) = (α ∧ β) ∧N
iα∧Nβ = α ∧ iNβ

iN [α ∧ β] = (iNα) ∧ β + (−1)(n−1)pα ∧ iMβ . (13.16)

2. For N ∈ V (n)(M), M ∈ V (m)(M), hold the relations

iN iM − (−1)(n−1)(m−1)iN iM = iM�N − (−1)(n−1)(m−1)iN�M . (13.17)
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The last relation in (13.16) shows that iN is a derivation of degree n−1. Using
the graded commutator, (13.17) can be written into the form

[iN , iM ] = iM�N − (−1)(n−1)(m−1)iN�M . (13.18)

We shall present now the most essential properties of the derivations of the
graded ring of the differential forms. One of the main facts is presented by
the following theorem [1].

Theorem 13.8. Any derivation D of the graded ring Λ(M) is completely
determined by its action on Λ0(M)⊕ Λ1(M). Any map satisfying (13.1) for
ω ∈ Λp(M), π ∈ Λq(M), p + q ≤ 1 can be extended uniquely to a derivation
of degree r.

From these results it easily follows that nontrivial derivations of degree less
than −1 do not exist and that all the derivations of degree −1 act trivially on
Λ0(M). Another essential result of the theory is the following.

Theorem 13.9. Every derivation of degree r acting trivially on Λ0 is of the
type iN , where N is vector-valued differential form of degree r + 1.

The particular case of this result for r = −1 is classical, it means that
only the interior products iX , where X is some vector field, are derivations of
degree −1.

Remark 13.10. Sometimes different terminology is used, and the derivations
having even degree are called “derivations”, while the derivations of odd degree
are called “antiderivations” [2].

Definition 13.11. The derivations of the type iM , where M is vector-valued
differential form of degree m, are called derivations of type “ i.”

Definition 13.12. The derivations of the type

dM = [iM , d] = iMd− (−1)(m−1)diM , (13.19)

where M is vector-valued differential form of degree m and d is the exterior
derivative, are called derivations of type “ d.”

One can prove the following results; see [1]:

Theorem 13.13. The derivations of type “d”, and only these derivations,
commute with the Cartan derivative d. Derivations of this type are completely
determined by their action on Λ0(M).

Theorem 13.14. Each derivation can be written in a unique way as a sum
of two derivations, the first one being of the type “i” and the second one of
the type “d.”
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In other words, we have the decomposition

Der (Λ(M)) = Der i(Λ(M))⊕Der d(Λ(M))

Der i(Λ(M)) =
∞
⊕

s=−1
Der s

i (Λ(M))

Der d(Λ(M)) =
∞
⊕

s=0
Der s

d(Λ(M)) , (13.20)

where Der s
i (Λ(M)) and Der s

d(Λ(M)) are the sets of derivations of degree s
of the types “i” and “d”, respectively. The relation (13.18) and the Jacobi
identity show that

[Der i(Λ(M)),Der i(Λ(M))] ⊂ Der i(Λ(M))
[Der d(Λ(M)),Der d(Λ(M))] ⊂ Der d(Λ(M)) , (13.21)

or, in other words, that Der i(Λ(M)) and Der d(Λ(M)) are subalgebras of
Der (Λ(M)). Therefore, the Lie algebra operation, defined over Der (Λ(M)),
gives rise to two Lie bracket operations over the graded module of the vector-
valued differential forms V (M), which we denote below by bracket [ , ] and
by asterisk ∗

[iM , iN ] = iM∗N

[dM , dN ] = d[M,N ] . (13.22)

The equation (13.17) shows that

M ∗N = M "N − (−1)(n−1)(m−1)N "M . (13.23)

As to the operation (M,N) �→ [M,N ], it is a new one. Both the above op-
erations we introduced are bilinear and obey the following identities which
are a consequence of the “skew-symmetry” of the commutator and the Jacobi
identity:

M ∗N = −(−1)(n−1)(m−1)N ∗M
[M,N ] = −(−1)nm[N,M ] , (13.24)

for any vector-valued forms M and N of degrees m and n, respectively, and

(−1)(n3−1)(n1−1)N1 ∗ (N2 ∗N3) + (−1)(n1−1)(n2−1)N2 ∗ (N3 ∗N1) +
(−1)(n2−1)(n3−1)N3 ∗ (N1 ∗N2) = 0 (13.25)
(−1)n3n1 [N1, [N2, N3]] + (−1)n1n2 [N2, [N3, N1]] +
(−1)n2n3 [N3, [N1, N2]] = 0 (13.26)

for any three vector-valued forms N1, N2, N3, of degrees n1, n2, n3, respec-
tively. The operation ∗ is of pure algebraic character and does not seem to
have much application in Differential Geometry. In what follows, we shall
concentrate on the operation [ , ], which endows the module of vector-valued
differential forms V (M) with a structure of a graded Lie algebra over R.
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Definition 13.15. If M and N are vector-valued forms of degrees m and n,
respectively, then [M,N ] is called differential concomitant or Nijenhuis bracket
of M and N .

It can be verified that in the case m = n = 0, the Nijenhuis bracket
coincides with the Lie bracket of two vector fields.

Example 13.16. If I is the field of identity maps, then dI = d, and as for
arbitrary M , we have [d, dM ] = 0 it follows that [I,M ] = 0.

There are some more relations between the objects we have already in-
troduced. The first part of them concerns the multiplication of vector-valued
forms with scalar forms. We have the following

Proposition 13.17. The multiplication (α,D) �→ α ∧D, defined by

(α ∧D)β = α ∧ (D(β)) (13.27)

endows the module of the derivations Der (Λ(M)) with a structure of a graded
module over the graded ring Λ(M), that is

Λn(M) ∧Der p(Λ(M)) ⊂ Der n+p(Λ(M)) , (13.28)

where Der p(Λ(M)) is the set of derivation of degree p. The submodule of the
forms of type “i” is invariant under the above multiplication:

Λ(M) ∧Der i(Λ(M)) ⊂ Der i(Λ(M)),

in fact,
α ∧ iN = iα∧N , (13.29)

and the submodule of the derivations Der d(Λ(M)) is invariant provided α is
closed, since for α ∈ Λp(M), N ∈ V (n)(M), we have

α ∧ dN = dα∧N + (−1)(p+n−1)idα∧N . (13.30)

It is not hard to establish the following formulae:

[α ∧ iM , iN ] = α ∧ [iM , iN ]− (−1)(m+p−1)(n−1)(iNα) ∧ iM
[α ∧ dM , dN ] = α ∧ [dM , dN ]− (−1)(m+p)n(dNα) ∧ dM , (13.31)

where M and N are two vector-valued forms of degree m and n, respectively,
and α is p-form.

The second type of relations originates from the decomposition of the
commutator [iM , dN ] into a sum of derivation of type “i” and derivation of
type “d.” We have

Theorem 13.18. If M and N are vector-valued forms of degree m and n,
respectively, then

[iM , dN ] = dM�N + (−1)ni[M,N ] . (13.32)



466 13 Vector-Valued Differential Forms

Applying this theorem to the second relation in (13.31), one can get the
following identity

[α ∧M,N ] = α ∧ [M,N ] + (−1)(p+m)dα ∧M "N

−(−1)(p+m)n(dNα) ∧M , (13.33)

for two vector-valued forms M and N of degree m and n, respectively, and
for a scalar form α of degree p.

Also, with the help of the above theorem, and making use of Jacobi identity
for the derivations dL, dM , iN , where L ∈ V (l)(M), M ∈ V (m)(M), and
N ∈ V (n)(M), we get

[N " L,M ] + (−1)l(n−1)[L,N "M ]−N " [L,M ] =
(−1)(l−1)m[N,M ]" L+ (−1)(l−1)[N,L]"M . (13.34)

13.2 Vector-Valued Forms of Degree One

We apply now the general results for the case of vector-valued differential
forms of degree 1 and we obtain some useful identities. First of all, let us note
that in case N and M are vector-valued forms of degree 1 (fields of operators)
some of the operations introduced earlier have natural meaning. For example,
it is readily seen that N "M = M ◦N = MN , where M ◦N = MN is the
field m �→ Mm ◦ Nm. If S is vector-valued differential form of degree 2, we
have

N " S(X1,X2) = S(NX1,X2) + S(X1, NX2); X1,X2 ∈ T (M).

Taking into account the above, the relation (13.34) between three fields of
operators reads

[N,L ◦M ](X1,X2) + [N ◦M,L](X1,X2)
−[N,L](MX1,X2)− [N,L](X1,MX2) =
N ◦ [L,M ](X1,X2) + L ◦ [N,M ](X1,X2) , (13.35)

for any two vector fields X1,X2.

Remark 13.19. The notation [M,N ], which is universally accepted, can un-
fortunately be confused with the commutator. In order to avoid misunder-
standing, note that if M and N are vector-valued forms of degree 1, then
[M,N ] is vector-valued form of degree 2, that is, we have [M,N ](X1,X2) =
−[M,N ](X2,X1), for arbitrary vector fields X1,X2. However, see (13.36), we
have [M,N ] = [N,M ].

Applying directly the identity (13.32), we get that if X1,X2 are two arbitrary
vector fields then
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[N,M ](X1,X2) =
[NX1,MX2] + [MX1, NX2]−M [NX1,X2]−N [MX1,X2]
−M [X1, NX2]−N [X1,MX2] +N ◦M [X1,X2] +M ◦N [X1,X2].

(13.36)

Here, as usual, the symbol [X1,X2] stands for the Lie bracket of two vector
fields). The equation (13.36) is often taken as an independent definition of the
Nijenhuis bracket in the case when both N and M are of degree 1. However,
if (13.36) is given as definition, one must prove that the right-hand side of
the above equation depends linearly on the components of the vector fields
and does not depend on their derivatives – that is to show that [N,M ] is
indeed vector-valued differential form of degree 2. This of course can be done
by routine calculations.

The case N = M is of particular interest for us. If N = M then

1
2
[N,N ](X1,X2) = RN (X1,X2) =

[NX1, NX2] +N2[X1,X2]−N [NX1,X2]−N [X1, NX2] . (13.37)

Therefore, RN is a (1, 2) tensor field, called (just as [N,N ]) Nijenhuis bracket
of N or Nijenhuis torsion of N and usually denoted again by [N,N ]. Fortu-
nately, this notation is used mainly when [N,N ] = 0, and thus the difference
does not create problems.

Definition 13.20. Let N be (1, 1) tensor field (field of operators). The mixed
(1, 1) tensor filed N is called Nijenhuis tensor if its Nijenhuis torsion vanishes,
that is if [N,N ] = 0.

We see that if N is Nijenhuis tensor, then for any two vector fields X and
Y we have

[NX,NY ] +N2[X,Y ]−N [NX,Y ]−N [X,NY ] = 0 . (13.38)

We give also the expression of the above condition in local coordinates. If xi,
i = 1, 2, . . . , n are local coordinates on the n-dimensional manifold M, and
the local expression of N in these coordinates is

N =
n
∑

i,j=1

N j
i (x)

∂

∂xj
⊗ dxi , (13.39)

then
n
∑

h=1

(Nh
i

∂Nk
j

∂xh
−Nh

j

∂Nk
i

∂xh
+Nk

h

∂Nh
i

∂xj
−Nk

h

∂Nh
j

∂xi
) = 0 (13.40)

is the expression of (13.38) in local coordinates.
Now, let us mention one simple result which is immediate consequence of

(13.38). One can consider the tensor field as a linear map from the module
T (M) into itself. Then (13.38) yields
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Proposition 13.21. The image of T (M) under N is a Lie subalgebra in
T (M) (with respect to the Lie bracket structure).

13.3 Nijenhuis Tensors

Definition 13.22. If a manifold is equipped with Nijenhuis tensor, we say
that it is Nijenhuis manifold or that on the manifold is defined a Nijenhuis
structure and sometimes refer to the tensor N as Nijenhuis operator. We shall
describe now the principal properties of the Nijenhuis tensors.

We shall describe now the principal properties of the Nijenhuis tensors and
start with the fundamental fields of a Nijenhuis tensor N . By definition, the
fundamental fields of N are the fields for which LXN = 0. Of course, this
means that the local flow ϕt of X preserves the field N . The fundamental
fields of a Nijenhuis tensor, possess remarkable “hereditary” property, stated
in the following proposition:

Proposition 13.23. If the vector field X is fundamental for the Nijenhuis
tensor N then the vector field NX is also fundamental field for N .

The proof easily follows from the fact that the relation (13.38) is equivalent
to the relation:

[LNX(N)−NLX(N)] (Y ) = 0 (13.41)

for two arbitrary vector fields X,Y or that

LNX(N)−NLX(N) = 0 (13.42)

for arbitrary vector field X. Then if LXN = 0, it follows that LNX(N) = 0.
From (13.42) and the properties of the Lie derivative, it follows that the

condition [N,N ] = 0 can be written into another form:

LNX(N∗)− LX(N∗)N∗ = 0 . (13.43)

This permits to establish another interesting property of the Nijenhuis tensor
field.

Proposition 13.24. If α is 1-form and dα = 0, dN∗α = 0, then d(N∗)2α = 0
too. As a consequence, all the forms (N∗)kα; k = 1, 2, . . . are closed.

Proof. The condition dα = 0 is equivalent to the condition LXα = d[α(X)] =
d〈α,X〉 for arbitrary vector field X. Having this in mind, let X be arbitrary
vector field. We have then

LX [(N∗)2α]− d〈(N∗)2α,X〉 = LX [N∗N∗α]− d〈N∗α,NX〉 =
LX(N∗)(N∗α) +N∗LX(N∗α)− d〈N∗α,NX〉 =
[LX(N∗)N∗]α+N∗d〈N∗α,X〉 − d〈N∗α,NX〉 . (13.44)
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As LX(N∗)N∗ = LNXN
∗, the above expression can be written into the form

[LNXN
∗](α) +N∗d〈N∗α,X〉 − d〈N∗α,NX〉 =

LNX(N∗α)−N∗(LXα) +N∗d〈N∗α,X〉 − d〈N∗α,NX〉 = 0 .(13.45)

This shows that (N∗)2α is closed which proves the first part of the proposition.
Repeating the argument we get the second part of the proposition.

We would like to mention some other properties of the Nijenhuis tensor:

Proposition 13.25. If N is Nijenhuis tensor then Ns; s = 1, 2, . . . are also
Nijenhuis tensors.

Proof. Let us consider [Nn+1, Nn+1], where n is a natural number. For arbi-
trary vector fields X,Y we have

[Nn+1, Nn+1](X,Y ) = −Nn+1LX(Nn+1)Y + LNn+1X(Nn+1)Y . (13.46)

Next, from one side

−Nn+1LX(Nn+1)Y = −Nn+1{
n
∑

m=0

NmLX(N)Nn−m}Y . (13.47)

From the other side

LNn+1X(Nn+1)Y = {
n
∑

p=0

NpLNn+1X(N)Nn−pY } =

{
n
∑

p=0

Np
(

NLNnX(N)Nn−pY + [N,N ](NnX,Nn−pY )
)

} =

{
n
∑

p=0

Nn+1NpLX(N)Nn−pY }

+{
n
∑

p=0

Np
n
∑

s=0

Ns[N,N ](Nn−sX,Nn−pY )} . (13.48)

Inserting (13.47) and (13.48) into (13.46) we get

[Nn+1, Nn+1](X,Y ) = {
n
∑

p=0

Np
n
∑

s=0

Ns[N,N ](Nn−sX,Nn−pY )} . (13.49)

Since [N,N ] = 0, the tensor [Nn+1, Nn+1] is also equal to zero.

Other results that can be obtained immediately, are the following:

Proposition 13.26. If N is Nijenhuis tensor, then N−1 (if it exists) is also
a Nijenhuis tensor.
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Corollary 13.27. If N is invertible Nijenhuis tensor, then

Ns; s = ±1,±2, . . .

are also Nijenhuis tensors.

One of the applications of Nijenhuis bracket is described in the following
theorem, formulated in its present form by Haantjes [3]. The proof we present
here is due to Frölicher and Nijenhuis [1] and concerns the finite dimensional
case. We believe that the infinite-dimensional case can be treated along the
same lines, but there are some elements in the proof that are not easy to
generalize.

Theorem 13.28 (Haantjes). Let N be a field of linear maps on the
manifold M:

m→ Nm : Tm(M) → Tm(M),

(field of operators). Let for each m ∈M the operator Nm be semisimple with
real eigenvalues λ(m), μ(m) ... and let the multiplicity of each eigenvalue be
constant. Let Sλ be the field of eigenspaces corresponding to the eigenvalue λ

m→ Sλ(m) ⊂ Tm(M); m ∈M

and let
Sλ ⊕ Sμ ⊕ . . .⊕ Sν

be the field of the direct sums

m �→ Sλ(m)⊕ Sμ(m)⊕ . . .⊕ Sν(m); m ∈M.

Let us assume that the functions λ, μ ... are smooth and that the corresponding
fields of subspaces are also smooth distributions. Then each Sλ and each Sλ⊕
Sμ ⊕ . . . ⊕ Sν is integrable (in Frobenius sense) if and only if for any vector
fields X,Y

RN (X,Y ) =
N2RN (X,Y ) +RN (NX,NY )−NRN (NX,Y )−NRN (X,NY ) = 0

(13.50)

where RN is the torsion of the tensor field N .

Proof. Let X, Y be two vector fields which are fields of eigenvectors for N .
Let the eigenvalue of X be λ, and the eigenvalue of Y be μ (of course, since
N is a field of linear maps the eigenvalues are scalar fields, that is functions).
Then one can calculate that

RN (X,Y ) = (N − λ)(N − μ)[X,Y ] + (λ− μ)((Y λ)X + (Xμ)Y ) . (13.51)

Making use of (N − λ)X = (N − μ)Y = 0 we find from here that

RN (X,Y ) = (N − λ)2(N − μ)2[X,Y ] = 0 . (13.52)
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Since N is semisimple, the above means that

[X,Y ] ∈ Sλ ⊕ Sμ,

which is the necessary and sufficient condition for the integrability of the
distribution m �→ Sλ(m)⊕ Sμ(m). If λ = μ, then

RN (X,Y ) = (N − λ)4[X,Y ] = 0,

and arguments similar to those we used in the above show that [X,Y ] ∈ Sλ

which is the necessary and sufficient condition form �→ Sλ(m) to be integrable.

The following theorem (often referred to as Nijenhuis theorem) is a direct
consequence from the Haantjes theorem.

Theorem 13.29 (Nijenhuis). Let N be Nijenhuis tensor on the manifold
M. Suppose the eigenvalues and eigenspaces of N have the same properties
as in theorem (13.28). Then using the same notation as in the above we have:

• Each Sλ and each Sλ ⊕ Sμ ⊕ . . .⊕ Sν is integrable in the Frobenius sense.
• If λ 	= μ, Y ∈ Sμ then Y (λ) = LY λ = 0. In other words, the eigen-

value λ depends only on the coordinates of the integral submanifold of the
distribution m→ Sλ(m).

Proof. It is evident that one needs to prove only the second statement of the
theorem. To this end, let, as in the above, the eigenvalue of X be λ, and the
eigenvalue of Y be μ. (Of course, they are smooth functions over M). Then

RN (X,Y ) = (N −λ)(N −μ)[X,Y ]+ (λ−μ)((Y λ)X+(Xμ)Y ) = 0 . (13.53)

From the Haantjes’ theorem, we know already that [X,Y ] ∈ Sλ ⊕ Sμ, so the
first term in the above equation vanishes. Then (λ−μ)((Y λ)X+(Xμ)Y ) = 0,
and if λ 	= μ it follows that Y λ = Xμ = 0. This completes the proof.
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14

Integrability and Nijenhuis Tensors

In this chapter, we link the theory of the Nijenhuis tensors and the questions
of integrability, trying to give some general view on integrability based on the
theory of Nijenhuis tensors and their fundamental fields. In the example of
several finite and infinite dimensional dynamical systems, we show how these
ideas work. Finally, we show the natural way the Nijenhuis tensors arise when
we have compatible Poisson tensors. The development of these ideas leads to
the notion of Poisson-Nijenhuis manifold (P-N manifold), which we introduce
here. This notion is crucial for our treatment of the integrable Hamiltonian
systems.

14.1 Integrability Criteria and Nijenhuis Tensors

Nowadays the inverse scattering transform method (IST) is universally recog-
nized as one of the important techniques for integration of partial differential
evolution equations [1], provided the corresponding equation can be cast into
Lax form. Its applications are numerous, and without exaggeration it is one
of the significant mathematical discoveries of the 20-th century. However, in
spite of its success, a compact a priori criterion of complete integrability is, to
date, not available. On the other hand, if we consider the soliton equations as
dynamical systems on infinite-dimensional manifolds, the IST can be regarded
as transformation so to say from “generic coordinates” (potentials) to action-
angle variables [2], and this gives hopes that such criterion could be found in
terms of the original Lax pairs. These hopes are strengthened by the natural
way, in which, using the Lax representation, one calculates an important op-
erator, (the Λ operator, squared eigenfunctions operator, recursion operator),
as has been shown in the first part of the present book. The point is that,
as we shall see, the adjoint of this operator fits in the geometric picture as a
mixed tensor field N on the phase manifold M and plays on it the same role
as it does in the finite dimensional case. Such a tensor field N has usually the
following properties:
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DOI 10.1007/978-3-540-77054-1 14 c© Springer-Verlag Berlin Heidelberg 2008



474 14 Integrability and Nijenhuis Tensors

1. It is invariant under the dynamics (this is also known as N being a strong
symmetry, or in other words, if Γ is the dynamical system (vector field),
we have LΓ (N) = 0.

2. Its Nijenhuis torsion vanishes (also known as hereditary property).
3. It has a doubly degenerate continuous spectrum (in a certain well-defined

manner), and when dealing with generic potentials it has a finite num-
ber of discrete eigenvalues. The set of the discrete eigenvalues defines
the so-called soliton sector. The eigenspaces corresponding to the discrete
eigenvalues are invariant with respect to the evolution and generically are
two-dimensional. We have two possibilities here, which have been investi-
gated up to now:
(a). There exist exactly two eigenvectors in each such space. We shall

call this case a diagonalizable case.
(b). Each eigenspace in the soliton sector is spanned by a “true” eigenvec-

tor and a generalized one; this corresponds to a matrix with a single
2× 2 Jordan block. We call this case nondiagonalizable.

In both cases, the set of the eigenvectors (true and generalized) in the
soliton sector, together with eigenvectors for the continuous spectrum,
forms a complete set.

Using the first two properties there has been constructed a geometric inte-
grability scheme, see [3, 4], and in the recent years much attention has been
given to the diagonalizable case, because when we have it, we are able to
construct sequences of conservation laws, Abelian algebras of symmetries and
hierarchies of integrable nonlinear equations [5, 6, 7, 8].

However, in spite of the fact that the diagonalizable case occurs more fre-
quently, the nondiagonalizable case can also occur. That is why we would
like to propound an a priori separability criterion, which can include this new
spectral option. In what follows, we deal with the nondiagonalizable case; from
the very construction, it will be clear how one can deal with the diagonalizable
one. We shall see also that, as far as soliton dynamics is concerned, integra-
bility can be proved without further hypotheses. For background-radiation
dynamics (the part described by the continuous spectrum), it is still unclear
how to formulate a priori integrability criterion. The considerations we give
below probably can be formulated directly in the terms of the corresponding
Lax representations (considered in terms of the bundles for which the phase
manifold is the base) [9], provided these representations could be put into the
frames of the above geometric picture, but in our opinion up to now conclusive
results in that direction have not been obtained.

Suppose that on the manifold M one has a vector field Γ , and Nijenhuis
tensor field N (that is a mixed tensor field with vanishing Nijenhuis bracket)
which is invariant for the flow of Γ , that is LΓN = 0. Suppose that N has
the properties listed in the above. We propose the following.

Integrability criterion. The dynamics defined by the vector field Γ com-
pletely separates into 1-degree of freedom dynamics. The components associated
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to the degrees of freedom corresponding to eigenvalues λ which are not
stationary (depend on the time) are integrable and Hamiltonian [10].

Below, we shall give a sketch how the above criterion can be obtained,
assuming that the calculations we perform can be justified.

Denote by λi the generic discrete eigenvalue of N , and just in order to fix
the ideas, assume that the continuous spectrum of N fills the real semiaxis
R+ and does not overlap with the discrete spectrum. Then the vanishing of
the Nijenhuis torsion RN associated with N means that for all α ∈ Λ1(M)
and X,Y ∈ T (M)

RN (α, Y,X) = 〈α, [(LNXN)−N(LXN)]Y 〉 = 0 . (14.1)

(Here 〈., .〉 is the natural pairing between the 1-forms and vector fields).
According to our assumptions there exists a basis

{ei, εi, f1,(k), f2,(k); i = 1, 2, . . . , n, k ∈ R
+}

of T (M), such that

Nei = λiei

Nεi = λiεi + ei; i = l, 2, . . . , n
Nfl,(k) = kfl,(k); l = 1, 2, and k ∈ R+ . (14.2)

Let us now introduce the corresponding dual basis,

{ti, θi, γ1,(k), γ2,(k); i = 1, 2, . . . , n, k ∈ R+} (14.3)

of Λ1(M), that is a basis, for which

〈ti, ej〉 = 〈θi, εj〉 = δi
j

〈γl,(k), fp,(h)〉 = δl,(k)
p,(h)

〈ti, εj〉 = 〈θi, ej〉 = 〈ti, fl,(k)〉 = 0

〈θi, fl,(k)〉 = 〈γl,(k), ei〉 = 〈γl,(k), εi〉 = 0 , (14.4)

where i, j = 1, 2, . . . , n, and δl,(k)
p,(h) = δl

pδ(k−h), where δ(k−h) is the Dirac
“function.” The relations (14.4) written in terms of the above 1-forms read

N∗ti = λiti + θi

N∗θi = λiθi; i = l, 2, . . . , n
N∗γl,(k) = kγl,(k); l = 1, 2, and k ∈ R+ , (14.5)

whereN∗ denotes the formal adjoint ofN . As we shall see, no more ingredients
are needed to prove the separability into one degree of freedom dynamics, and
(except for the assumption that the λi’s are not stationary at any point) the
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integrability of the discrete part of it can also be proved. Our analysis starts
with the observation that the condition (14.1) can be cast into the following
form:

Lei
λj = 0, Lfl,(k)λ

i = 0, (λi − λj)Lεi
λj = 0

(N − λi)(N − λi)[ei, ej ] = 0, (N − λi)(N − λj)2[ei, εj ] = 0
(N − λi)2(N − λj)2[εi, εj ] = 0, (N − k)(N − h)[fl,(k), fp,(h)] = 0

(N − λi)(N − k)[ei, fl,(k)] = 0, (N − λi)(N − k)[εi, fl,(k)] = 0 . (14.6)

Then it is easily seen that the (14.6) are equivalent to

θi ∧ dθi = θi ∧ ti ∧ dti = γ1,(k) ∧ γ2,(k) ∧ δγl,(k) = 0 , (14.7)

this implying, by the Frobenius theorem, that without loss of generality, the
θ’s, t’s and γ’s can be considered to be closed forms, or as it is also said , the
basis

{ei, εi, f1,(k), f2,(k); i = 1, 2, . . . , n, k ∈ R+},
can be chosen to be a holonomic frame.

On the other hand, from the first line in (14.6), we get that dλi = (Lεi
λi)θi,

this implying
N∗dλi = λidλi . (14.8)

In particular, this means that the θ’s can be chosen to be equal to the dλi’s
if, as we assumed, we have dλi 	= 0. Furthermore, the fact that the frame is
holonomic implies that the set of functions λ1, λ2, . . . , λn can be completed
to form a local coordinate system

(λ1, λ2, . . . , λn, φ1, φ2, . . . , φn, ψ1,k, ψ2,k; k ∈ R+)

(some of the variables may be periodic) in such a way, that

ei =
∂

∂φi
, εi =

∂

∂λi
, fl,(k) =

δ

δψl,(k)
. (14.9)

Then the tensor N can be written into the following canonical form

N =
∑

i

λi

(

∂

∂λi
⊗ dλi +

∂

∂φi
⊗ dφi +

∂

∂φi
⊗ dλi

)

+

2
∑

l=1

∞
∫

0

dk k
δ

δψ�
k

⊗ δψ�(k) . (14.10)

Now, it can be checked that the condition LΓN = 0 we have on N and Γ is
equivalent to the following system of equations:

〈dλi, Γ 〉 = 0,
∂

∂φj
〈dφi, Γ 〉 = 0,

δ

δψl,(k)
〈dφi, Γ 〉 = 0
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(λi − λj)
∂

∂λj
〈dφi, Γ 〉 = 0,

∂

∂φi
〈δψl,(k), Γ 〉 = 0

δ

δλi
〈δψl,(k), Γ 〉 = 0, (k − h)

δ

δψl,(h)
〈δψp,(k), Γ 〉 = 0 . (14.11)

From the above equations separability and integrability follow. More specifi-
cally, the first equation in the first line of (14.11) means the vanishing of the
“λ-components” of Γ , the second and the third equation in the first line
mean the independence of the φ-components on the φs, and on the con-
tinuous coordinates. In the second line, the first equation means that each
φi-component depends only on the corresponding λi. The last set of equations
shows that the continuous components cannot depend on the discrete variables
and that each continuous component can only be a function of the continuous
variables with the same continuous index. The most general form of Γ is then

Γ =
n
∑

i=1

Γ i(λi)
∂

∂φi
+

2
∑

�=1

∞
∫

0

dkΓ �(k)
(

ψ1(k), ψ2(k)
)

δ

δψ�(k)
. (14.12)

The dynamic equations decouple in the following second-order systems for the
continuous degrees of freedom (background radiation dynamics):

ψ̇1,(k) = Γ 1,k(ψ1,(k), ψ2,(k))
ψ̇2,(k) = Γ 2,k(ψ1,(k), ψ2,(k)) , (14.13)

and the following (trivially integrable) equations:

φ̇i = Γ i(λi), λ̇i = 0 , (14.14)

for the discrete part (the soliton dynamics). Consequently, the discrete part
of the dynamics (the soliton dynamics) is Hamiltonian with respect to the
family of symplectic forms

ω0 =
∑

i

fi(λi)dλi ∧ dφi , (14.15)

where f is a function that does not vanish on the points of the discrete spec-
trum.

Remark 14.1. Γ is not supposed to be a Hamiltonian system. Its admissible
Hamiltonian structures are “generated” by the hypothesis that the eigenspaces
of N are bidimensional and the requirements dλi 	= 0.

14.2 Recursion Operators in Dissipative Dynamics

We have seen that a nonlinear evolution equation ut = Γ [u], defined by the
vector field Γ [u], is integrable if there exists a mixed tensor field N on M,
satisfying the conditions described at the beginning of the preceding section
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and that this even imply the existence of symplectic forms (at least on the
soliton sector) with respect to which the dynamics is Hamiltonian. In that
case, the integrability is of the Liouville-Arnold type. On the other hand, we
mentioned also that there are many interesting cases, in which the dynamics is
not an integrable Hamiltonian one and in which suitable generalization of the
above geometric scheme could still be useful. We are going to present one such
example, in which an invariant mixed tensor field is used in order to analyze
dissipative dynamics. It seems that one needs only to remove that part of the
assumptions on N , which lead to the existence of constants of motion. Thus
we shall assume that N has zero Nijenhuis bracket and is invariant under Γ
but is not real-diagonalizable, that is, the eigenvalues are complex. A good
example illustrating this situation is provided by the Burgers equation

ut = 2uux + uxx . (14.16)

As is well known, this equation is the simplest one in which nonlinearity and
diffusion effects compensate in such a way that we have no undesirable effects
on the evolution.

14.2.1 The Burgers Equation Hierarchy

It is a classical result, (see [11, 12] or [13]), that the Burgers equation linearizes
through the so-called Cole-Hopf transformation (map)

u = h[v] =
vx

v
, (14.17)

that is, if u is as in the above, and if v satisfies the Heat Equation

vt = vxx , (14.18)

then, u satisfies the Burgers equation.
It can be shown, (see [14]), that the Burgers Equation is a member of a

hierarchy of nonlinear evolution equations which linearize, through the same
transformation (14.17) and which are reduced to the equations of the following
type

vt = Dnv; n = 1, 2, . . . . (14.19)

where D stands for the x-derivative operator. The elements of this hierarchy
have different properties. The even elements of (14.19) are equations with
dissipative dynamics. The odd elements are equations with integrable Hamil-
tonian systems with respect to the following symplectic form:

Ω[δ1v, δ2v] =
∫ +∞

−∞
δ1v(x)(D−1δ2v)(x)dx , (14.20)

where



14.2 Recursion Operators in Dissipative Dynamics 479

(D−1f)(x) =
∫ x

−∞
f(y)dy , (14.21)

and the corresponding Hamiltonian functions (functionals) are given by

Hp[v] =
1
2

∫ +∞

−∞
(Dpv)2dx . (14.22)

In order that (14.20), (14.22) make sense, some assumptions on the functional
space M must be made, for example, to assume that M consists of Schwartz-
type functions on the line. Then one easily checks that

N̂ [v] = D (14.23)

is a Nijenhuis Γ -invariant tensor for the heat equation hierarchy. In the ge-
ometric approach, (14.17) plays the role of a map from one manifold into
another, and thus a Nijenhuis Γ -invariant tensor operator for the Burgers hi-
erarchy is readily obtained from N̂ [v] (see [14, 15]). In other words, requiring
N and N̂ to be v[u]-related

N [u] = (
δv

δu
)−1N̂ [v](

δv

δu
) , (14.24)

easily yields
N [u] = D +DuD−1 . (14.25)

The Burgers hierarchy is obtained by repeated applications of the operator
(14.25) to the field Γ0 = ux, that is

Γk = NkΓ0 . (14.26)

The first fields of the hierarchy are

Γ0 = ux

Γ1 = 2uux + uxx

Γ2 = (3u3 + 3uux + uxx)x

....................................... (14.27)

From a geometric point of view this hierarchy is v[u]-related to the linear one,
and roughly speaking (the manifolds for the Burgers hierarchy and the linear
hierarchy are not diffeomorphic), one can “translate” what can be said for
(14.19) to the Burgers hierarchy. In this way, one obtains that (14.26) splits
into the following two subhierarchies, which we call the Dissipative and the
Hamiltonian hierarchy:

• Dissipative hierarchy

NΓ0, N
3Γ0, . . . , N

2n+1Γ0, . . . (14.28)
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• Hamiltonian hierarchy

Γ0, N
2Γ0, . . . , N

2nΓ0, . . . . (14.29)

The equations from these hierarchies are sequences of dissipative and Hamilto-
nian vector fields, respectively. The above situation can be better understood
examining the spectral properties of N . Its “block diagonal form” is

N =

∞
∫

0

k
(

e(k) ⊗ θ′,(k) − e′(k) ⊗ θk
)

dk , (14.30)

where

e(k)[u] =
∫ ∞

−∞
dx(−u cos kx− k sin kx)× exp

[

−
∫ x

−∞
udy

] δ

δu(x)
(14.31)

e′(k)[u] =
∫ ∞

−∞
dx(−u sin kx+ k cos kx)× exp

[

−
∫ x

−∞
udy

] δ

δu(x)
(14.32)

form a basis in the generic invariant subspace of N , and {θ(k)θ′(k)} is the
corresponding dual basis:

Ne(k) = −ke′(k), Ne′(k) = ke(k)

〈θ′(k), e′(h)〉 = 〈θ(k), e(h)〉 = δ(h− k)

〈θ′(k), e(h)〉 = 〈θ(k), e′(h)〉 = 0 . (14.33)

The conditions :

[e(k), e(h)] = [e′(k), e
′
(h)] = [e′(k), e(h)] = 0 , (14.34)

imply that the frame is holonomic, that is, ensure (at least locally) the exis-
tence of coordinates (q(k), p(k)), such that:

e(k) =
δ

δq(k)
, e′(k) =

δ

δp(k)
. (14.35)

The operator N can be restricted to the two-dimensional integral manifold
spanned by {e(k), e

′
(k)}, then it reads:

δ

δJ (k)
⊗ δϕ(k) − δ

δϕ(k)
⊗ δJ (k) (14.36)

where

J (k) =
1
2

(

q(k)2 + p(k)2
)

, ϕ(k) = tan−1(
q(k)

p(k)
) (14.37)

are action-angle type variables. Then, one can see that operator N moves a
dissipative integrable field of the type
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X
(k)
D = J (k) δ

δJ (k)
, (14.38)

into a Hamiltonian one
X

(k)
H = J (k) δ

δϕ(k)
(14.39)

and vice versa.
The above “alternating” character of N is responsible for the splitting of
(14.26) into two subhierarchies. Furthermore, we observe that

• The operator N has two-dimensional invariant spaces, but is not real di-
agonalizable.

• The operator N2, generating the Hamiltonian subhierarchy, is diagonaliz-
able, with doubly degenerate constant eigenvalues.

For none of these subhierarchies the integrability criterion we have pro-
pounded holds. However, we note that the projections of dissipative fields
define finite degree of freedom dynamics on the two-dimensional invariant
spaces, while for the Hamiltonian fields, the existence of a functional J (k)[u]
(integrals of motion) ensures the integrability of the corresponding projec-
tion. It is worthy of remark also that the functionals J (k)[u] play the role of
a Liapunov functional for the projection of the dissipative dynamics on the
two-dimensional invariant sub-manifolds, ensuring the asymptotic stability of
the solutions for which J (k)[u] = 0.

Let us consider more closely the Hamiltonian subhierarchy (14.29). First of
all, some care is needed for the appropriate choice of the functional space M
on which the dynamics is defined. It is natural to take M to be the functional
space, whose elements u tend to constant as x → ±∞, as it is the space on
which lies the typical solitary wave of Burgers hierarchy. However, with such
a choice, it would not be possible to introduce a Hamiltonian structure onM.
Indeed, if we go back to the linear hierarchy of the Heat Equation, we shall
see that the functions v (see the transformation (14.17)) behave like exp(kx)
as x → ±∞. But then the Hamiltonian which we had written in (14.22) is
not defined. Thus, it is natural to restrict M in such a way that both the
symplectic structures and Hamiltonian function (14.22) make sense. This can
be accomplished by considering the phase space to be the space of functions
v(x) that tend to some constants fast enough as x→ +∞ and x→ −∞ (and
then the functions u(x) vanish as x → ±∞). Also, we can circumvent the
difficulties related to the ambiguities inverting the differentiation operator
passing to the corresponding space of equivalence classes, requiring that in
each class the integral on the whole axis of v(x) has some fixed value.

The above construction ensures the existence of a symplectic form such
that the subhierarchy, which we called Hamiltonian, is indeed a hierarchy
of Hamiltonian vector fields. Note also the interesting fact that despite the
fact that the eigenvalues of the operator N2 are constant, N2 generates a
sequence of integrals of motion. The example we have given and its analysis
shows the importance of the hypothesis on the spectrum of the invariant mixed
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tensor field N for the properties of the corresponding dynamical systems. We
have seen that if we drop the hypothesis that N is diagonalizable, we can
consider also dissipative dynamics within the geometric scheme. However, the
spectral properties depend strongly on the particular choice of N , and their
investigation is not an easy matter. For example, the first part of this book is
almost entirely dedicated to this topic for the ZS. So, we shall limit ourselves
to the study of the geometric constructions permitting to obtain Nijenhuis
tensors N . From the next chapter onwards the book is dedicated to this.

14.3 Noncommutative Integrability Criteria

Let us consider again the finite dimensional case, that is, we assume that we
have a symplectic manifold (M, ω) of dimension 2n and a Hamiltonian vector
field Γ on it. We shall discuss now how the usual scheme of integrability
can be generalized. Such generalization is necessary, because if the number of
independent first integrals of Γ is greater than n, they cannot be anymore in
involution. Indeed, for such a set of functions their Hamiltonian vector fields
must be independent and are orthogonal with respect to ω, that is, at each
point they span an isotropic space. We know, however, that the dimension of
such space cannot exceed n. From the other side, the Poisson bracket of two
first integrals ia a first integral too, so it is natural to assume that Γ possesses
a set of first integrals {fa}1≤a≤m ⊂ D(M) which close a (non-commutative)
Lie algebra A over R with respect the Poisson bracket. We shall say that two
elements f, g ∈ A Poisson-commute if their Poisson bracket is zero.

Let us recall now some notions we shall use. If g is a finite dimensional
Lie algebra and μ ∈ g∗ is a covector, then the annihilator Ann (μ) of μ is the
space

{X ∈ g : ad ∗
Xμ = 0} . (14.40)

As readily seen, Ann (μ) is a subalgebra. Next, we define the index ind (g) of
a finite dimensional Lie algebra g.

ind (g) = min
μ∈g∗

dim Ann(μ) . (14.41)

It can be shown that when the algebra is semisimple, the index coincides with
the rank of the algebra, that is, with the dimension of the Cartan subalgebra.

Let us denote by r the index ind (A) of our algebra of first integrals. Now we
are ready to state the noncommutative generalization of the Liouville-Arnold
theorem; see [16, 17, 18]:

Theorem 14.2. Suppose that Hamiltonian vector field Γ on a symplectic
manifold

(

M2n, ω
)

possesses f1, f2, . . . , fk functionally independent first in-
tegrals, which span a finite dimensional real Lie algebra A of dimension k. In
addition, let

dim (A) + ind (A) = k + r = dimM = 2n . (14.42)
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Then the submanifolds defined by the conditions fi = const , i = 1, 2, . . . , k
are invariant manifolds for Γ . In in some neighborhood of any such manifold
one can define canonical coordinates (λ, χ, p, q) such that

1. The χ’s are coordinates on the invariant manifolds.
2. The Hamiltonian equations corresponding to Γ take the form

λ̇i = 0, χ̇i = νi(λ), ṗα = 0, q̇α = 0
i = 1, 2, . . . , r; α = r + 1, r + 2, . . . , n . (14.43)

As in the commutative case, if the invariant manifolds are compact and con-
nected, one can prove that they are tori, and the χ’s can be chosen to be angle
variables. The canonical coordinates are called, in this case, “generalized ac-
tion – angle variables.”

The Liouville-Arnold theorem can be recovered from the above formulation.
Indeed, when A is Abelian, its index coincides with its dimension and then
the condition (14.42) shows that dim (A) = n. However, it is interesting that
if the assumption (14.42) holds, and if the algebra satisfies the so-called FI
condition, (for more details see [16, 18]), on the symplectic manifold M there
exist n = 1

2dimM independent first integrals of Γ , which are in involution,
that is, actually we have the situation as in the Liouville-Arnold theorem.

The proofs of the above results can be found in [18, 19, 20, 21]; here we
shall limit ourselves with a brief sketch of the ideas of the proof of the Theorem
14.2.

Let us discuss first what happens in the Liouville-Arnold case, when A is
commutative of dimension n. Then the level surfaces of the first integrals fi

define an invariant Lagrangian foliation F1 of M, that is a disjoint union of
integral leaves, each of which is a Lagrangian manifold; see Definitions (12.17),
(12.18). The Hamiltonian vector fields Xi associated with the functions fi are
commuting vector fields, tangent to the leaves, and at each point of a given leaf
form a basis of its tangent space. They can be used to define local coordinates
χi on the leaves. The fields Xi commute with the Hamiltonian vector field
Γ , which is also tangent to the leaves. Consequently, in a neighborhood of a
point p ∈M, the field Γ can be written into the form Γ =

∑

i ν
i (f)Xi where

the set (χ, f) are canonical coordinates, which means that the Hamiltonian
equations for Γ take the following form:

χ̇i = νi, ḟi = 0 . (14.44)

In the noncommutative case, we have 2n− r first integrals fa. The equations
fa = const still define a foliation F1, invariant with respect to the flow of Γ ,
but the leaves now have dimension r ≤ n, and the Hamiltonian vector fields
Xa, associated with the first integrals fa are not necessarily tangent to the
leaves of this foliation. (The fields Xa of course close an algebra, isomorphic
to A).
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However, the condition dim (A) + ind (A) = dimM ensures that for each
leaf L, there exists a subalgebra of AL ⊂ A, whose associated vector fields
commute with all Xa on L. The Hamiltonian vector fields X̄i corresponding
to some basis of AL, yield a basis of tangent vector fields for L. We have that
ω
(

X̄i,Xa

)∣

∣

L = 0 and therefore ω
(

X̄i, X̄j

)∣

∣

L = 0 if X̄i, X̄j ∈ AL so that each
leaf will be an isotropic manifold. The foliation F1 is then called isotropic. To
obtain a set of canonical coordinates in a neighborhood of p ∈ L and eventually
of the whole of L, one needs to exploit further the properties of F1. At each p ∈
L consider the subspace Tp(L) ⊆ Tp(M) and the distribution of symplectically
orthogonal subspaces p �→ (Tp(L))⊥. Since ω

(

X̄i,Xa

)∣

∣

L = 0, this distribution
is generated, for all leaves, by the vector fields Xa. Furthermore, since Xa

satisfies the hypotheses of the Frobenius theorem, we obtain a distribution
which defines a second foliation – a coisotropic foliation F2,1 whose leaves are
themselves foliated by those of the first foliation F1. One can now prove (at
least locally) the existence of canonical coordinates

(

λi, χ
i, pα, q

α
)

, such that
the symplectic structure and the dynamical vector field take the form

ω =
∑

i

dλi ∧ dχi +
∑

α

dpα ∧ dqα, Γ =
∑

i

νi (λ)Xi , (14.45)

so that the equations of motion become

λ̇i = 0, χ̇i = νi, ṗα = 0, q̇α = 0 . (14.46)

The functions λi describe locally F2, and their associated Hamiltonian vec-
tor fields Xi define coordinates χi on F1. The fields Xi are independent and
commute between themselves and with Γ . To understand better this canoni-
cal coordinates, let us note that the momentum map2 J : M → A∗, defined
by J : x → ξx ∈ A∗, where ξx(f) = f(x), f ∈ A, defines foliation of some
neighborhood U of any leaf of F2, where the leaves are Lx = J−1 (ξx), that
is, they are the leaves of F1. Then the neighborhood U can be chosen to be
of the type Lx × P × O, where O is the coadjoint orbit through ξx defined
by the connected Lie group A, corresponding to A, and P is some manifold
transversal to O. The symplectic structure ω, restricted to O, coincides with
the restriction of the Poisson-Lie structure (the Kirillov structure); the co-
ordinates we had in the above (pα, q

α) are canonical coordinates on O and
λi are coordinates on P. It can be proved [20] that all needed for the exis-
tence of such local coordinates is actually the existence of the double foliation,
namely, that M possesses an isotropic foliation, such that the distribution of
the subspaces, symplectically orthogonal to the tangent spaces to its leaves,
is integrable.

1 This means that its leaves are coisotropic submanifolds.
2 The reader who is not familiar with this subject can look into subsection 15.2.1

for some relevant definitions.
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14.3.1 The Invariant Tensor Fields in the Noncommutative Case

We shall try to characterize now the noncommutative integrability in another
way.

Theorem 14.3. Let Γ be a dynamical system on a 2n-dimensional manifold
M which admits a (1, 1) mixed tensor field N , having the properties:

• N is Γ -invariant, that is
LΓN = 0 . (14.47)

• At each point p ∈ M, Np is diagonalizable with only simple or doubly
degenerate eigenvalues, whose differentials are linearly independent.

• If by S(p), p ∈ M, is denoted the sum of all the eigenspaces, associated
with the doubly degenerate eigenvalues of N (p), then for arbitrary vector
field, such that X (p) ∈ S (p), and for arbitrary vector field Y ∈ T (M)
and 1-form γ, we have

NN (γ,X, Y ) = 〈γ,RN (X,Y )〉 = 0 , (14.48)

(or equivalently, RN (X,Y ) = 0), where RN is the Nijenhuis torsion of N ,
see (13.37). Then the vector field Γ is Hamiltonian and defines integrable
“separable” dynamics.

Proof. Let us denote by λ1, λ2, .., λr the doubly degenerate eigenvalues and
by μ2r+1, ..., μ2n let us denote the simple eigenvalues. According to the as-
sumptions, the tensor field N can be written into the form

N =
r
∑

i=1

λi

(

ei ⊗ ϑi + ei+r ⊗ ϑi+r
)

+
2n
∑

α=2r+1

μαeα ⊗ ϑα , (14.49)

where the e’s form a basis of eigenvectors of N and the ϑ′s are the elements
of the dual basis. Thus,

Nei = λiei, Nei+r = λiei+r, Neα = μαeα, i ≤ r, α ≥ 2r + 1
N∗ϑi = λiϑ

i, N∗ϑi+r = λiϑ
i+r, N∗ϑα = μαϑ

α, i ≤ r, α ≥ 2r + 1.
(14.50)

We know, see (13.37), that

RN (X,Y ) = [NX,NY ] +N2 [X,Y ]−N [NX,Y ]−N [X,NY ] . (14.51)

Calculating the above expression on the basis vector fields {e1, . . . , e2n} yields,

RN (ei, ej) =
(N − λi) (N − λj) [ei, ej ] + (λi − λj)

[

(Lei
λj) ej +

(

Lej
λi

)

ei

]
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RN (ei, eα) =
(N − λi) (N − μα) [ei, eα] + (λi − μα) [(Lei

μα) eα + (Leα
λi) ei] ,

(14.52)

where i, j ≤ 2r and α ≥ 2r + 1, and the conditions about the spectrum of N
entail3 the following relations:

(N − λi) (N − λj) [ei, ej ] = 0, (λi − λj) ei (λj) = 0
(N − λi) (N − μα) [ei, eα] = 0, ei (μα) = eα (λi) = 0 . (14.53)

It follows that for any three vector fields ei, ej , eα we have

[ei, ej ] = aei + bej + cei+r + dej+r, [ei, eα] = fei + gei+r + heα . (14.54)

Thus, any two vector fields ei and ei+r, belonging to the same eigenvalue λi,
satisfy the relation:

[ei, ei+r] = ciei + ci+rei+r. (14.55)

In this way, if i ∈ {1, . . . , r} the vector fields ei, ei+r form a local basis of
a 2-dimensional integrable distribution and through each point of M passes
2-dimensional integral manifold of this distribution. On each such integral
manifold one can find coordinates (ξi, ηi), such that

ei =
∂

∂ξi
, ei+r =

∂

∂ηi
. (14.56)

Then the relations (14.53) ensure that the basis on which the tensor field
N diagonalize is “partially” holonomic. On the other hand, using equations
(14.53) we get

dλi =
∑

j

ϑjej (λi) +
∑

α

ϑαeα (λi) =
∑

j

ϑjej (λi) = ϑiei (λi) , (14.57)

and, therefore,

N∗dλi = N∗ϑiei (λi) = ϑiλiei (λi) = λidλi . (14.58)

Next,

dμρ = dμρ =
2r
∑

k=1

ϑiei (μρ) +
2n
∑

α=1

ϑαeα (μρ) =
2n
∑

α=1

ϑαeα (μρ) , (14.59)

Using the above relations, it is now possible to choose a holonomic basis in
such a way, that N has the following expression

N =
r
∑

j=1

λj

(

ej ⊗ ϑj + er+j ⊗ dλj
)

+
n
∑

ρ,σ=2r+1

Cσ
ρ eσ ⊗ dμρ , (14.60)

3 See the proof of the Haantjes theorem.
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with

Cσ
ρ =

2n
∑

α=2r+1

μαeα (μσ) [eα (μρ)]−1 and dϑi = 0 . (14.61)

In addition, in a neighborhood of each 2-dimensional submanifold, we can
choose coordinates (λ, χ, μ), such that the tensor N can also be written into
the form:4

N =
r
∑

j=1

λj(
∂

∂λi
⊗ dλi +

∂

∂χi
⊗ dχi) +

n
∑

ρ,σ=2r+1

Cσ
ρ

∂

∂μρ
⊗ dμσ . (14.62)

On the basis we have constructed, the vector field Γ can be written as

Γ =
r
∑

i=1

(Λi
∂

∂λi
+ Φi ∂

∂χi
) +

n
∑

α=2r+1

Eαeα , (14.63)

so that the condition LΓN = 0 implies Λi = 0, Eα = 0. It follows that

Γ =
r
∑

i=1

Φi
(

λi, χ
i
) ∂

∂χi
. (14.64)

Finally, we note that one can find symplectic structures with respect to which
the vector field Γ is Hamiltonian. Indeed, the closed 2-form

ω =
r
∑

k=1

Gk

(

λk, χ
k
)

dλk ∧ dχk +
2n
∑

α,β=2r+1

fαβ (μα, μβ) dμα ∧ dμβ , (14.65)

will be invariant if
∂

∂χi

(

GiΦ
i
)

= 0 . (14.66)

The nondegeneracy condition for ω can be cast into the form

det (fαβ)
r
∏

k=1

Gk 	= 0 . (14.67)

This is equivalent to the requirement that if Φi
(

λi, χ
i
)

vanishes at some point,
then it also vanishes on the integral curve of ∂

∂χi through that point.

If the vector field Γ has no singular points, one can immediately point out
a class of symplectic structures with respect to which it is Hamiltonian:

4 The notation has been chosen to correspond to the geometric structure we
previously described.



488 14 Integrability and Nijenhuis Tensors

ω =
r
∑

k=1

gk (λk)
Φk (λk, χk)

dλk ∧ dχk +
2n
∑

α,β=2r+1

fαβ (μα, μβ) dμα ∧ dμβ , (14.68)

where gk and fαβ are arbitrary functions such that

det (fαβ)
r
∏

k=1

gk

Φk
	= 0 . (14.69)

Remark 14.4. If Φk is identically zero for some index k, we can define

ω =
∑

i

gi (λi) dλi ∧ dχi +
∑

j

gj (λj)
Φj (λj , χj)

dλj ∧ dχj

+
2n
∑

α,β=2r+1

fαβ (μα, μβ) dμα ∧ dμβ , (14.70)

where the index i in the sum runs over those eigenspaces, for which Φj = 0.
When Γ has zeroes but does not vanish identically, we have to exclude from
the original manifold the subset of the zeroes of Γ . The resulting manifold is
invariant with respect to the flow of Γ , and we can proceed as before.

If the submanifold μ = const is compact and connected, we can introduce
as usual action-angle coordinates (J, ϕ) so that the vector field Γ and the
symplectic structure ω, in the coordinates (J, ϕ, μ) take the following form:

Γ =
r
∑

i=1

Γ i (Ji)
∂

∂ϕi
(14.71)

ω =
r
∑

k=1

fk (Jk) dJk ∧ dϕk +
2n
∑

α,β=2r+1

fαβ (μα, μβ) dμα ∧ dμβ . (14.72)

In this case, the family of symplectic structures with respect to which Γ is
Hamiltonian is described in [20, 22, 23]. The tensor field N can be used to
generate compatible invariant symplectic structures according to

ωN (X,Y ) = ω1 (NX,Y ) + ω1 (X,NY ) + ω2 (X,Y ) (14.73)

with

ω1 =
r
∑

k=1

fk (Jk) dJk ∧ dϕk, ω2 =
1
2

2n
∑

α,β=2r+1

fαβ (μα, μβ) dμα ∧ dμβ .

(14.74)
Let us outline now the construction of mixed tensor fields in the case

of noncommutative integrable systems. Suppose we have a noncommutative
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integrable system with properties as in Theorem 14.2. By the analysis we had
in the above, we can assume that they have the symplectic structure

ω =
∑

i

dλi ∧ dχi +
∑

α

dpα ∧ dqα

and the dynamics is defined by the equations of motion

λ̇i = 0, χ̇i = νi, ṗα = 0, q̇α = 0
i = 1, 2, . . . , r; α = r + 1, r + 2, . . . , n . (14.75)

Denoting by μ the collection of the p’s and q’s, we have

λ̇i = 0, χ̇i = νi, μ̇α = 0 . (14.76)

Consider now the following tensor field

N =
r
∑

j=1

λj(
∂

∂λi
⊗ dλi +

∂

∂χi
⊗ dχi) +

2n
∑

ρ,σ

Cσ
ρ (μ)

∂

∂μρ
⊗ dμσ , (14.77)

where Cσ
ρ (μ) = δσ

ρμσ is diagonal matrix. It can be verified thatN has a vanish-
ing torsion and is invariant, provided the Hamiltonian function is “separable”,
that is, if H can be written into the form:

H = K1(λ) +K2(μ) , (14.78)

with

K1(λ) =
r
∑

i=1

Hi(λi) . (14.79)

If K1 is not separable but

det
(

∂2K1

∂λj∂λi

)

	= 0 , (14.80)

the construction of the invariant tensor field can be done as in [4]. This shows
that in the noncommutative case, an invariant torsion free tensor field can
also be found. Of course, such a tensor field always generates (by repeated
application) Abelian algebras of symmetries. Thus, regardless of the vanish-
ing of the torsion on the whole space the noncommutative features are re-
lated to the nondegenerate eigenvalues and are still described by the term
∑

ρ,σ C
σ
ρ (μ) ∂

∂μρ
⊗ dμσ.
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14.3.2 The Kepler Dynamics

The Kepler problem is one of the celebrated problems of Classical Mechanics,
and all theoretical constructions in Mechanics and Symplectic Geometry are
tested on it; see for example the recent monograph [24]. It is interesting to
obtain for it a recursion operator. We believe that its construction deserves a
special subsection, since it is not elementary and has been done quite recently.

As is known, the phase space for the Kepler problem is the symplectic
manifold (M0, ω), where M0 = T ∗(R3 \ {0}) = (R3 \ {0}) × R

3 and ω =
∑3

i=1 dpi ∧ dxi. The dynamical system (the Kepler dynamics) is defined by
the Hamiltonian function

H =
1

2m
p2 − k

r
. (14.81)

Here p = (p1, p2, p3) is the linear momentum; x = (x1, x2, x3) is the position
vector which length is denoted by r; k is a positive constant and m is the
mass of the particle. Through this section || || will denote the usual R

3 norm
defined by the standard inner product 〈x,y〉 =

∑3
i=1 xiyi, so r=||x||. It is well

known that the angular momentum L = x×p is a vector constant of motion:

{H,L} = 0 , (14.82)

which is a short way to write the relations {H,Li} = 0; i = 1, 2, 3. The above
implies that the trajectory lies in the plane orthogonal to L = const , passing
through the origin. The Kepler problem, however, possesses another vector
first integral, the so-called Laplace-Runge-Lenz vector, given by:

B =
1
m

p× L− k
x
r
. (14.83)

In other words, {H,B} = 0. Of course, since we cannot have 3 additional in-
dependent integrals of motion, there must be a relation between the integrals.
Indeed, one can observe that

〈B,L〉 = 0 , (14.84)

which implies that the Laplace-Runge-Lenz vector lies in the plane of the
motion. We also have

{Li, Bj} =
3
∑

s=1

εijsBs , (14.85)

where εijs is the Levi-Civita symbol. One verifies also that

{Bi, Bj} = −2H
m

3
∑

s=1

εijsLs . (14.86)

It is well known that for a negative energies the motion is bounded and the
orbits are ellipses. We shall be interested in these kind of motions, so we



14.3 Noncommutative Integrability Criteria 491

restrict our symplectic manifold to the set M, where H < 0. Since M is an
open subset of M0 it inherits all its structures. On M, we have H < 0, and,
therefore, we can introduce the vector

A =
(

−2H
m

)− 1
2

B , (14.87)

and the Poisson brackets we had before become:

{Li, Aj} =
3
∑

s=1

εijsAs, {Ai, Aj} =
3
∑

s=1

εijsLs . (14.88)

As a consequence, for the components of the vector-functions

I =
1
2
(L + A), J =

1
2
(L−A) (14.89)

we have the following Poisson brackets

{Ih, Is} = εhslIl

{Jh, Js} = εhslJl

{Ih, Js} = 0 . (14.90)

The above shows that the Lie algebra of the symmetries for the Kepler dy-
namics is the algebra o (3)⊕o (3) ∼ o (4) or, which is the same, su (2)⊕ su (2).
In particular, the Hamiltonian H can be written into the form

H = − mk2

2 (L2 +A2)
= − mk2

4 (I2 + J2)
. (14.91)

In terms of the generators of o (4): Lhk = −Lkh, (1 ≤ k, h ≤ 4), k 	= h defined
by:

Lhs = εhsiLi; h, s = 1, 2, 3
Lh4 = −L4h = Ah; h = 1, 2, 3 (14.92)

the Hamiltonian H becomes

H = −mk
2

C1
, (14.93)

where C1 =
∑4

i,j=1 LijLij is the so-called first Casimir element of o (4).
Our next step is to construct the action-angle variables (Js, ϕ

s); s = 1, 2, 3.
The idea to find them is the following. Let us assume that the Liouville form
λ =

∑3
i=1 pidxi in the action-angle coordinates equals

λ =
3
∑

s=1

Jsdϕ
s (14.94)

where 0 ≤ ϕs ≤ 2π.
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Remark 14.5. Since d(
∑3

s=1 Jsdϕ
s) = ω = dλ, the form written in the right-

hand side of (14.94) and the form λ differ by a closed form γ. Assuming that γ
is exact, we have that

∑3
s=1 Jsdϕ

s = λ+dF , where F is some function. Then
dF will give no contribution in the integration by which we find the action
variables (see (14.95) below), and we can simply assume that (14.94) holds.
If βs is the curve obtained when we vary ϕs from 0 to 2π, while the other
variables remain constant, then

Js =
1
2π

∫

βs

λ . (14.95)

We now note that we shall obtain some linear combinations of the Ji’s if
instead of the curves βi we use the curves αi = n1

iβ1 + n2
iβ2 + n3

iβ3 with
some integers nj

i so it remains to guess some closed curve on the torus where
the motion occurs. This is relatively simple, since the motion defined by our
Hamiltonian is always periodic. After the variables Ji are obtained, we must
check that the Hamiltonian H depends only on Ji’s as should be. The next
step will be to find ϕi. This would be easy if we are using the Hamilton-Jacobi
equation formalism. How this idea works will be seen below; see also [25].

Let us we consider the Hamilton-Jacobi equation in spherical coordinates
(r, ϑ, ϕ) whose origin coincides with (0, 0, 0). The spherical coordinates are
chosen of course because the Hamilton-Jacobi equation for the Kepler prob-
lem in spherical coordinates allows separation of variables, and we can find the
solution explicitly. In spherical coordinates, the symplectic form, the Hamil-
tonian, and the Hamiltonian vector field corresponding to H take the form:

ω = dpr ∧ dr + dpϑ ∧ dϑ+ dpϕ ∧ dϕ (14.96)

H =
1

2m
(p2

r +
p2

ϑ

r2
+

p2
ϕ

r2 sin2 ϑ
)− k

r
(14.97)

Γ =
1
m

[

pr
∂

∂r
+
pϑ

r2
∂

∂ϑ
+

pϕ

r2 sin2 ϑ

∂

∂ϕ

− 1
r2

(

p2
ϑ +

p2
ϕ

sin2 ϑ

)

∂

∂pr
−
p2

ϕ cosϑ

r2 sin3 ϑ

∂

∂pϑ
− k

r2
∂

∂pϕ

]

. (14.98)

Since the Hamiltonian does not depend explicitly on time, the Hamilton-
Jacobi equation

∂S

∂t
+

1
2m

(

(

∂S

∂r

)2

+
1
r2

(

∂S

∂ϑ

)2

+
1

r2 sin2 ϑ

(

∂S

∂ϕ

)2
)

− k

r
= 0 (14.99)

can be reduced, setting S = W − Et, to the form

1
2m

(

(

∂W

∂r

)2

+
1
r2

(

∂W

∂ϑ

)2

+
1

r2 sin2 ϑ

(

∂W

∂ϕ

)2
)

− k

r
= E . (14.100)
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We look now for a solution W (r, ϑ, ϕ) of the type

W (r, ϑ, ϕ) = Wr (r) +Wϑ (ϑ) +Wϕ (ϕ) , (14.101)

where Wr,Wϑ and Wϕ, depend only on the corresponding variable r, ϑ and
ϕ. In this way, the Hamilton-Jacobi equation for W becomes

1
2m

(

(

dWr

dr

)2

+
1
r2

(

dWϑ

dϑ

)2

+
1

r2 sin2 ϑ

(

dWϕ

dϕ

)2
)

− k

r
= E . (14.102)

Standard reasoning leads to the conclusion that the above equation is equiv-
alent to the system:

dWϕ

dϕ
= πϕ

(

dWϑ

dϑ

)2

= π2
ϑ −

π2
ϕ

sin2 ϑ
(14.103)

(

dWr

dr

)2

= 2m
[

E +
k

r

]

− π2
ϑ

r2
.

where πϕ, πϑ are constants of integration. The constant πϕ has clear physical
meaning – it is simply the projection of the angular momentum on the z-axis.
The constant πϑ is equal to the length of the angular momentum, because

||L||2 = ||x× v||2 = p2
ϑ +

p2
ϕ

sin2 ϑ
. (14.104)

If α denotes the angle between the plane of the orbit and the (x, y) plane, we
have

pϕ = ||L|| cosα
πϕ = πϑ cosα . (14.105)

Therefore, the solution of the Hamilton-Jacobi equation is S = −Et+W :

W = πϕϕ+
∫

dϑ

√

π2
ϑ −

π2
ϕ

sin2 ϑ
+
∫

dr

√

2mE +
2mk
r
− π2

ϑ

r2
. (14.106)

As a consequence,

pϕ = πϕ

pϑ =

√

π2
ϑ −

π2
ϕ

sin2 ϑ
(14.107)

pr =

√

2mE +
2mk
r
− π2

ϑ

r2
.
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Now we implement the scheme for finding the action-angle variables we out-
lined in the above. First we find the “action variables”

Js =
1
2π

∫

γs

λ; i = 1, 2, 3 (14.108)

where
λ = pϕdϕ+ pϑdϑ+ prdr (14.109)

and the closed curves γ1, γ2, γ3 define 3 independent cycles in the phase space –
the space of the variables (r, ϑ, ϕ, πϕ, πϑ, πr), for which the Hamiltonian has
negative values. These expressions will become most simple if γ1 is given
parametrically by pϕ = pϕ(ϕ), while the other variables except pϕ, ϕ remain
constant; γ2 is given parametrically by pϑ = pϑ(ϑ), while the other variables
except pϑ, ϑ remain constant and the same for γ3. In this case, we have the
action variables

Jϕ =
1
2π

∮

γ1

πϕdϕ

Jϑ =
1
2π

∮

γ2

√

π2
ϑ −

π2
ϕ

sin2 ϑ
dϑ (14.110)

Jr =
1
2π

∮

γ3

√

2mE +
2mk
r
− π2

ϑ

r2
dr.

To guess γ1 is easy; we can choose it to be parameterized by ϕ, since when
ϕ varies from 0 to 2π, while the other variables remain constant, we have a
closed curve. Thus we obtain

Jϕ = πϕ . (14.111)

As to the curves γ2, γ3, since the movement is periodic, they can be chosen
to join the turning points, that is, they are fixed by the requirement that the
corresponding velocities vanish or, better, the corresponding momenta pϑ and
pr (expressed, of course, in terms of variables πϑ and πϕ) vanish. We have:

p2
ϑ = π2

ϑ −
π2

ϕ

sin2 ϑ
= 0

p2
r = 2mE +

2mk
r
− π2

ϑ

r2
= 0 (14.112)

and the first equation defines two angles θ1, θ2, the second two values of r -
r1, r2. Then the closed curve γ2 parameterized by ϑ is defined by ϑ �→ pϑ(ϑ)
when ϑ goes from ϑ1 to ϑ2 and ϑ �→ −pϑ(ϑ) when ϑ goes back from ϑ2 to ϑ1,
while the rest of the variables remain constant. In the same way we define the
curve γ3. In order to find Jϑ, we must integrate from ϑ1 to ϑ2 and multiply
the result by 2. The same is true for the integral over r, but we integrate here
from r1 and r2. Using (14.105) we reduce the equation for ϑ1, ϑ2 to



14.3 Noncommutative Integrability Criteria 495

sin2 ϑ =
π2

ϕ

π2
ϑ

= cos2 α . (14.113)

Since ϑ always lies between 0 and π, we have sinϑ > 0 and sinϑ1 = sinϑ2 =
cosα. We find that ϑ1 = π/2−α, ϑ2 = π/2+α. But the integral from π/2−α
to π/2 equals the integral from π/2 to π/2− α, and we obtain

Jϑ =
4πϑ

2π

∫ π/2

π/2−α

1
sinϑ

√

sin2 α− cos2 ϑ dϑ (14.114)

=
2πϑ

π
sin2 α

∫ π/2

0

cos2 τ
1− sin2 α sin2 τ

dτ , (14.115)

where the new variable τ is introduced, related to the old one by

cosϑ = sinα sin τ . (14.116)

Putting x = tan τ , we transform the last integral into the form

Jϑ =
2πϑ

π

∫ +∞

0

[

1
1 + x2

− cos2 α
1 + x2 cos2 α

]

dx (14.117)

=
2πϑ

π

(π

2
− π

2
cosα

)

= πϑ (1− cosα) . (14.118)

and finally, using again (14.105), we get

Jϑ = πϑ − πϕ . (14.119)

The integral giving Jr can be calculated using the Residue Theorem. We first
remark that the roots r1 and r2 of the equation

2mE +
2mk
r
− π2

ϑ

r2
= 0 , (14.120)

which gives the integration limits, are positive if E < 0 (as we have seen
they correspond to the radii of the turning points of the motion). Next, the
function

f (z) =

√

2mE +
2mk
z

− π2
ϑ

z2
, (14.121)

allows analytic continuation from the real axis to the complex plane. It has
two branch points at

z± = − k

2E

[

1±
√

1 +
2π2

ϑE

mk2

]

(14.122)

and a simple pole at z = 0. We cut the complex plane on the line segment
[r1, r2], and we choose the branch of f+(z) of f(z), which on the upper side
of the cut (z = x+ i0+) equals
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−f(x) = −
√

2mE +
2mk
x

− π2
ϑ

x2
, (14.123)

and on the lower side (z = x− i0+) equals

f(x) =

√

2mE +
2mk
x

− π2
ϑ

x2
. (14.124)

The function f+(z) is analytic in C \ ([r1, r2] ∪ {0}) and has a simple pole at
z = 0. The integral over r, first integrating from r1 to r2 and then integrating
again from r2 to r1, changing the sign of the integrand, can be considered
as complex integral of the function (1/2π)f+(z), first going on the lower side
of the cut from r1 to r2 and then back on the upper side from r2 to r1.
The Cauchy theorem ensures that the same value will be obtained, if we
take the complex integral (1/2π)

∫

γ
f+(z)dz over a closed contour γ, oriented

anticlockwise, which encompasses the segment [r1, r2] and does not encompass
the pole z = 0. Such integral can be calculated using the Residue theorem,
and this gives:

Jr = i (Res(f; 0) + Res(f;∞)) . (14.125)

Now, since Res(f+; 0) =
√

−π2
ϑ and Res(f+;∞) = mk/

√
2mE, we obtain

Jr = −πϑ +
mk√
−2mE

. (14.126)

Then from Jϕ + Jϑ = πϑ, we get

Jϕ + Jϑ + Jr =
mk√
−2mE

. (14.127)

The above relation shows that the Hamiltonian function can be written in
terms of the action-angle variables in the following way:

H = − mk2

2 (Jϕ + Jϑ + Jr)
2 . (14.128)

Finally, replacing in (14.106) the variables E, πϑ, πϕ with their expressions in
terms of action coordinates

E = − mk2

2 (Jϕ + Jϑ + Jr)
2

πϑ = Jϑ − Jϕ

πϕ = Jϕ , (14.129)

we get the function W as a function of the J ′s. This allows us to define the
corresponding angle variables:

ϕh =
∂W

∂Jh
; h = 1, 2, 3 , (14.130)
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where in the above and below we write J1 = Jr, J2 = Jϑ, J3 = Jϕ in order to
cast the expressions in compact form. After performing the integrations, we
obtain a symplectic map from the original coordinates (pr, pϑ, pϕ, r, ϑ, ϕ) to
the action-angle coordinates

(

Jh, ϕ
h
)

; h = 1, 2, 3. This map is implicitly given
by:

J1 = −

√

p2
ϑ +

p2
ϕ

sin2 ϑ
+mk

(

2mk
r
− p2

ϑ

r2
−

p2
ϕ

r2 sin2 ϑ
− p2

r

)−1

(14.131)

J2 =

√

p2
ϑ +

p2
ϕ

sin2 ϑ
− pϕ (14.132)

J3 = pϕ (14.133)

ϕ1 = ϕ− J−2
[

−m2k2r2 + 2mkJ2r − J2(Jϑ + Jϕ)2
]

1
2 (14.134)

+ arcsin
mkr − J2

J
√

J2 − (Jϑ + Jϕ)2
(14.135)

ϕ2 = ϕ1 − arcsin
[mkr − (Jϑ + Jϕ)2]J
√

J2 − (Jϑ + Jϕ)2
(14.136)

− arcsin
(Jϑ + Jϕ) cosϑ

√

(Jϑ + Jϕ)2 − Jϕ

(14.137)

ϕ3 = ϕ2 + arcsin
Jϑcotϑ

√

(Jϑ + Jϕ)2 − Jϕ

+ ϕ1 , (14.138)

where
J = J1 + J2 + J3 = Jr + Jϑ + Jϕ . (14.139)

In order to define the map in an explicit way, in the last three relations
Jr, Jϑ, Jϕ must be expressed in terms of (pr, pϑ, pϕ, r, ϑ, ϕ), using the first
three of the above equations.

The Hamiltonian H, the symplectic form ω, and the Hamiltonian vector
field Γ can be written through the action-angle variables as follows:

H = −mk2J−2

ω =
3
∑

h=1

dJh ∧ dϕh

Γ = 2mk2J−3

(

∂

∂ϕ1
+

∂

∂ϕ2
+

∂

∂ϕ3

)

. (14.140)

As already seen, the analysis of a given Hamiltonian system and the search for
alternative symplectic forms and Nijenhuis tensors is much easier in action-
angle variables which was the reason we calculated them here for the Kepler
problem. As one can check, (see [25]), the vector field Γ is Hamiltonian also
with respect to the symplectic form ω1:
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ω1 =
∑

h,k

Rh
k dJh ∧ dϕk , (14.141)

where the matrix R = (Rh
k)1≤k,h≤3 is defined by:

R =
1
2

⎛

⎝

Jr Jϑ Jϕ

Jϑ − Jϕ Jr + Jϕ Jϕ

Jϕ − Jϑ Jϑ Jr + Jϑ

⎞

⎠ . (14.142)

(We prefer to write Jr, Jϕ, Jϑ instead of J1, J2, J3 in the final expressions).
The form ω1 generates new Poisson brackets

{f, g}1 =
∑

k,h

(R−1)k
h

(

∂f

∂Jh

∂g

∂ϕk
− ∂f

∂ϕk

∂g

∂Jh

)

, (14.143)

and Γ corresponds to the new Hamiltonian function H1:

H1 = −2mk2J−1 . (14.144)

In the original coordinates (p, q) the symplectic form ω1 is simply written as:

ω1 =
∑

i

dKi ∧ dϕi (14.145)

where the functions Ki(p, q) and αi(p, q) are given by:

K1 =
1
4
[Jr + (Jϑ − Jϕ)2]

K1 =
1
4
[Jr + (Jϑ − Jϕ)2]

K3 =
1
2
Jϕ[Jr + Jϑ] . (14.146)

(Recall that Ji = Ji(p, q), ϕi = ϕi(p, q)). Since ω is nondegenerate, one
can construct a mixed invariant tensor field N0, such that ω(N0(X), Y ) =
ω1(X,Y ). The tensor N0 has the form

N0 =
∑

h,k

[

Rh
k dJh ⊗

∂

∂Jk
+Rk

h dϕh ⊗ ∂

∂ϕk

]

, (14.147)

As easily verified, N0 has double degenerate eigenvalues and vanishing
Nijenhuis torsion, the last property being equivalent to the compatibility of
the symplectic structures ω and ω1. However, one can check, see [25], that the
action of N∗

0 does not give new integrals of motion as one would expect, for
example

N∗
0 dH = d

(

k

√

−m
H

)

. (14.148)
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This is not what we would like to obtain, and so we must look for another
Nijenhuis tensor. It can be found changing the action-angle variables to some
others, closely related to them. As already seen, the Kepler dynamics possesses
five independent first integrals, for example, those chosen among Hamiltonian
and the components of the angular momentum and the components of the
Laplace-Runge-Lenz vector. In action-angle coordinates (J, ϕ) we can choose
the following independent five first integrals

Jr, Jϑ, Jϕ, ϕ
1 − ϕ2, ϕ2 − ϕ3 . (14.149)

Now, using the so-called Delauney action-angle variables, (Ii, αi); i = 1, 2, 3,
(see [24]), which are given by

I1 = Jr + Jϑ + Jϕ = λ1

I2 = Jϑ + Jϕ = μ3

I3 = Jϕ = μ4

α1 = ϕ1 = χ1

α2 = ϕ2 − ϕ1 = μ5

α3 = ϕ3 − ϕ2 = μ6 , (14.150)

and introducing the new variables λ1, χ1, μα; α = 3, 4, 5, 6, we can construct
the following invariant tensor field

N = λ1

(

∂

∂λ1
⊗ dλ1 +

∂

∂χ1
⊗ dχ1

)

+
6
∑

α=3

μα
∂

∂μα
⊗ dμα. (14.151)

As easily checked, the Nijenhuis torsion of this tensor field is zero. This tensor
field can be used as Nijenhuis tensor for the Kepler Dynamics – Its eigenvalues
give all the first integrals of the field Γ .

The above example illustrates the general concept that the integrability is
closely related to the existence of a mixed invariant tensor field with vanishing
Nijenhuis torsion, though sometimes it is hidden, and it is not an easy task
to find it.

14.4 Compatible Poisson Structures
and Poisson-Nijenhuis Structures

Following [26] we shall say that on the manifold M is defined P-N struc-
ture (Poisson-Nijenhuis structure) if onM are defined simultaneously Poisson
tensor P and Nijenhuis tensor N , satisfying the following coupling conditions:

(a) NP = PN∗

(b) PLN(X)(α)− PLX(N∗α) + LP (α)(N)(X) = 0 , (14.152)
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for arbitrary choice of the vector field X and the 1-form α. We also introduce
the following (2, 1) type tensor field [P,N ] through the property

[P,N ](X,α) = PLN(X)(α)− PLX(N∗α) + LP (α)(N)(X) . (14.153)

A manifold endowed with a P-N structure will be called Poisson-Nijenhuis
manifold or for shortness P-N manifold.

We present here the condition (b) exactly as it has been initially introduced
by Magri in the first work that mentioned P-N structures [26] (for more re-
cent developments see [27, 28]). In order to understand its meaning, let us
assume that P is invertible, then B = (P )−1 : Λ1(M) �→ T (M) defines a
symplectic form through ωB(X,Y ) = 〈B(X), Y 〉. The coupling condition (b)
then is a consequence from dωB = 0, the first coupling condition, and the re-
lation dN (ωB) = 0. For symplectic form that satisfies ω(NX,Y ) = ω(X,NY )
the second coupling condition is equivalent to the requirement dN (ωB) = 0.
Recall that the operation dN has been introduced earlier in (13.19), and ac-
cording to its definition for a symplectic form, the condition dNωB = 0 is
equivalent to diN (ωB) = 0 which means that the form iNω is closed. Since
iNω(X,Y ) = ω(NX,Y ) + ω(X,NY ), all this simply shows that the second
coupling condition ensures that ωN (X,Y ) = ω(NX,Y ) is a closed 2-form.

The second coupling condition has also natural interpretation in terms
of the so-called Lie bi-algebroid structures [29], which we are not going to
introduce here.

The structure we have introduced seems very specific. However, it turns
out that for the so-called soliton equations it arises in a natural way. The
point is that almost in each approach to the theory of completely integrable
systems one can notice the crucial role played by the so-called compatible
Poisson tensors (see [26, 30, 31, 32, 33]), or as also called Hamiltonian pairs
(see [34, 35]).

Definition 14.6. Two Poisson tensors P and Q are compatible if the tensor
P +Q is Poisson tensor too.

It is evident that for this it is necessary and sufficient that

[P,Q]S = 0 . (14.154)

If P,Q are compatible it easily follows that for arbitrary constants a, b the
field aP + bQ is also a Poisson tensor.

After these preliminaries we prove now theorem [26], showing how P-N
structures arise when we have a compatible Poisson pair.

Theorem 14.7. Let P and Q be Poisson tensors on M. Let Q−1 exist, that
is, we assume that there exists a smooth field of linear maps m→ Q−1

m . Then
the tensor fields N = P ◦Q−1 and Q endow the manifold with P-N structure.

Proof. First of all, let us note that if N = P ◦ Q−1, then the first coupling
condition is already satisfied, and it remains to prove the second coupling
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condition and the fact that N is Nijenhuis tensor. Let us begin with the
second coupling condition.

Let P = NQ and Q be compatible Poisson tensors. This means that
simultaneously [Q,Q]S = 0, [NQ,NQ]S = 0 and [Q,NQ]S = 0. In more
detail

〈QLQγ1γ2, γ3〉+ 〈QLQγ2γ3, γ1〉+ 〈QLQγ3γ1, γ2〉 = 0 (14.155)

for any three 1-forms γ1, γ2, γ3;

〈NQLNQγ1γ2, γ3〉+ 〈NQLNQγ2γ3, γ1〉+ 〈NQLNQγ3γ1, γ2〉 = 0 (14.156)

for any three 1-forms γ1, γ2, γ3;

〈QLNQγ1γ2, γ3〉+ 〈QLNQγ2γ3, γ1〉+ 〈QLNQγ3γ1, γ2〉+
〈NQLQγ1γ2, γ3〉+ 〈NQLQγ2γ3, γ1〉+ 〈NQLQγ3γ1, γ2〉 = 0 (14.157)

for any three 1-forms γ1, γ2, γ3. Making use of (14.155) we have:

〈NQLQγ1γ2, γ3〉 = 〈QLQγ1γ2, N
∗γ3〉 =

−〈QLQγ2(N
∗γ3), γ1〉 − 〈QLQN∗γ3γ1, γ2〉 =

−〈QLQγ2(N
∗γ3), γ1〉 − 〈QLNQγ3γ1, γ2〉 .

Analogously,

〈NQLQγ2γ3, γ1〉 = −〈QLQγ3(N
∗γ1), γ2〉 − 〈QLNQγ1γ2, γ3〉

〈NQLQγ3γ1, γ2〉 = −〈QLQγ1(N
∗γ2), γ3〉 − 〈QLNQγ2γ3, γ1〉.

Inserting the above expressions into (14.157) we get the following equation

〈QLQγ1(N
∗γ2), γ3〉+〈QLQγ2(N

∗γ3), γ1〉+〈QLQγ3(N
∗γ1), γ2〉 = 0 . (14.158)

Thus we see that provided NQ = QN∗ and Q∗ = −Q are true the relations
[Q,Q]S = 0 [Q,NQ]S = 0 lead to the equation (14.158) and conversely, this
equation, together with [Q,Q]S = 0 leads to [Q,NQ]S = 0.

Remark 14.8. It is easy to see that we can introduce the (3, 0) tensor field
[Q,N ]S by requirement:

[Q,N ]S(γ1, γ2, γ3) = (14.159)
〈QLQγ1(N

∗γ2), γ3〉+ 〈QLQγ2(N
∗γ3), γ1〉+ 〈QLQγ3(N

∗γ1), Qγ2〉 ,

then the calculation we have done show that for arbitrary 1-forms γ1, γ2, γ3

we have:

[NQ,Q]S(γ1, γ2, γ3) + [Q,N ]S(γ1, γ2, γ3) = (14.160)
+ ([Q,Q]S(N∗γ1, γ2, γ3) + cycl (1, 2, 3)) .
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We shall show now that if Q is invertible, the relation (14.158) is equivalent
to the coupling condition (14.152 b). Now, in order to obtain (14.152 b) we
transform the three terms in the left-hand side of (14.158). For the second
one, using some simple identities, we get

〈QLQγ2(N
∗γ3), γ1〉 = −〈LQγ2(N

∗γ3), Qγ1〉 =
−LQγ2〈N∗γ3, Qγ1〉+ 〈N∗γ3, LQγ2(Qγ1)〉 =
−LQγ2〈γ3, NQγ1〉+ 〈γ3, N [Qγ1, Qγ2]〉 =
−〈LQγ2γ3, NQγ1〉 − 〈LQγ2(N)(Qγ1), γ3〉 =
〈QLQγ2γ3, N

∗γ1〉 − 〈LQγ2(N)(Qγ1), γ3〉 . (14.161)

If we put in (14.155) γ3 instead of γ1, N∗γ1 instead of γ2 and γ2 instead of
γ3, the third term can be cast into the form

〈QLQγ3(N
∗γ1), γ2〉 = −〈QLQγ2γ3, N

∗γ1〉 − 〈QLQN∗γ1γ2, γ3〉 .(14.162)

Finally, inserting (14.161), (14.162) into (14.158) we arrive at:

〈QLQγ1(N
∗γ2)− LQγ2(N)(Qγ1)−QLNQγ1γ2, γ3〉 = 0 . (14.163)

It remains to take into account that γ1, γ2, γ3 are arbitrary and that Q is
invertible to obtain that for each 1-form α and each vector field X we have

QLX(N∗α)− LQα(N)(X)−QLNX(α) = 0 , (14.164)

which is none but the coupling condition.

Remark 14.9. With the help of the tensor field [N,Q]S we have introduced in
the remark (14.8), the calculations that we have preformed can be written as

[Q,N ]S(γ1, γ2, γ3) = [Q,Q]S(N∗γ1, γ2, γ3) + 〈[Q,N ](Qγ1, γ2), γ3〉 . (14.165)

Now we must show that N is Nijenhuis tensor. For this, we shall consider
(14.156) but first we shall make some preparations. First

〈NQLNQγ1(γ2), γ3〉 = −〈LQN∗γ1(γ2), QN∗γ3〉 =
−LQN∗γ1〈γ2, QN

∗γ3〉 − 〈γ2, [NQγ3, NQγ1]〉 =
−LQN∗γ1〈N∗γ2, Qγ3〉 − 〈γ2, [NQγ3, NQγ1]〉 =
〈QLQN∗γ1(N

∗γ2), γ3〉 − 〈γ2, N [NQγ1, Qγ3]〉 − 〈γ2, [NQγ3, NQγ1]〉.

Next, using (14.155), (14.158) we obtain:

〈NQLNQγ2(γ3), γ1〉 = 〈QLQN∗γ2(γ3), N∗γ1〉 =
−〈QLQγ3(N

∗γ1), N∗γ2〉 − 〈QLQN∗γ1(N
∗γ2), γ3〉 =

〈QLQγ1((N
∗)2γ2), γ3〉+ 〈QLQN∗γ2(N

∗γ3), γ1〉
−〈QLQN∗γ1(N

∗γ2), γ3〉 = −〈LQγ1((N
∗)2γ2), Qγ3〉
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+〈QLNQγ2(N
∗γ3), γ1〉 − 〈QLQN∗γ1(N

∗γ2), γ3〉 =
−LQγ1〈(N∗)2γ2, Qγ3〉+ 〈(N∗)2γ2, LQγ1Qγ3〉
−〈LNQγ2(N

∗γ3), Qγ1〉 − 〈QLQN∗γ1(N
∗γ2), γ3〉 =

−LQγ1〈γ2, N
2Qγ3〉 − 〈γ2, N

2[Qγ3, Qγ1]〉
−〈LNQγ2(N

∗γ3), Qγ1〉 − 〈QLQN∗γ1(N
∗γ2), γ3〉.

We transform also the last term in (14.156) with the help of (14.155) as follows:

〈NQLNQγ3(γ1), γ2〉 = 〈QLQN∗γ3(γ1), N∗γ2〉 =
−〈QLQγ1(N

∗γ2), N∗γ3〉 − 〈QLQN∗γ2(N
∗γ3), γ1〉 =

〈LQγ1(N
∗γ2), QN∗γ3〉+ 〈LQN∗γ2(N

∗γ3), Qγ1〉 =
LQγ1〈(N∗γ2), QN∗γ3〉 − 〈N∗γ2, LQγ1(QN

∗γ3)〉
+〈LQN∗γ2(N

∗γ3), Qγ1〉 = LQγ1〈γ2, N
2Qγ3〉

+〈γ2, N [NQγ3, Qγ1]〉+ 〈LQN∗γ2(N
∗γ3), Qγ1〉.

Finally, we insert these expressions in (14.156) and get:

〈γ2, [NX3, NX1] +N2[X3,X1]−N [NX3,X1]−N [X3, NX1]〉 = 0,

where we have put X1 = Qγ1,X3 = Qγ3. As Q is invertible and γ1, γ2, γ3 are
arbitrary, we obtain exactly the zero Nijenhuis bracket condition

[NX3, NX1] +N2[X3,X1]−N [NX3,X1]−N [X3, NX1] = 0.

The theorem is proved.

A construction similar to the one we have used in the above theorem
can be applied also in the following situation. Suppose on the manifold M we
have simultaneously a Poisson tensor P and a closed 2-form Ω (not necessarily
nondegenerate), for example a presymplectic form. Let Ω̄ be the corresponding
field of linear maps

m→ Ω̄m : Tm(M) → T ∗
m(M) . (14.166)

Then the following theorem (see [26]) holds:

Theorem 14.10. If the form that corresponds to Ω̄ ◦P ◦ Ω̄ is closed, then the
tensor fields P and N = P ◦ Ω̄ define P-N structure on the manifold M.

The theorem can be proved using simple calculations, similar to what we have
used in the above.

An interesting situation arises on symplectic manifold M with symplectic
form ω, if in addition there is a nondegenerate Nijenhuis tensor N for which
we have:

ω̄ ◦N = N∗ ◦ ω̄ . (14.167)
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This condition is an analog of the coupling condition (a) for the P-N structure.
Of course, as usual, here ω̄ is the field of maps m �→ ω̄m : Tm(M) �→ T ∗

m(M)
that corresponds to ω.

In this case, if the eigenvalues of N are smooth functions on M they
generate a system of integrable vector fields, without the additional require-
ments usually imposed on ω and N , see for example [26]. In order to prove
this other version of the Liouville theorem is used, called the Liouville-Cartan
theorem,5 [36].

Theorem 14.11. Let (M, ω) be a symplectic manifold of dimension 2n, let α
be a closed 1-form on M and let X be the Hamiltonian field that corresponds
to it (iXω = α). Suppose that β1, β2, . . . , βn−1 are closed 1-forms that are first
integrals of X (βs(X) = 0, 1 ≤ s ≤ n − 1). Let us assume that the forms βs

have the properties:

1. The forms βs are in involution (that is, {βi, βj} = 0).
2. The forms α, β1, β2, . . . , βn−1 are linearly independent for each point m of

an open set U ⊂M.

Then

1. On the set U there exist n linear forms (1-forms) γ, γ1, γ2, . . . , γn−1, such
that

ωU = α ∧ γ +
n−1
∑

s=1

βs ∧ γs . (14.168)

2. The 2-forms dγ, dγ1, dγ2, . . . , dγn−1 belong to the ideal generated by the
forms α, β1, β2, . . . , βn−1 in the exterior algebra Λ(M).

The 1-forms α, β1, β2, . . . , βn−1 generate on U ⊂ M integrable Pfaffian sys-
tem. Let N be integral manifold for it and let j : N �→ M be the inclusion
map. Then

1. The field X is tangent to N and induces on it a vector field Z (X and Z
are j-related).

2. The forms j∗γ, j∗γ1, j
∗γ2, . . . , j

∗γn−1 (restrictions of γ, γ1, γ2, . . . , γn−1

on N ) are linearly independent at each point of N .
3. The forms j∗γ1, j

∗γ2, . . . , j
∗γn−1 are first integrals of Z (j∗γs(Z) = 0 and

dj∗γs = 0).
4. dj∗γ = 0 and j∗γ(Z) = 1.

The theorem states that one can find a submanifold N of M such that the
field X is tangent to it and on N we have n − 1 independent integrals (the
γ’s) for X. Thus X is integrable in quadratures (completely integrable).

Let us return now to the situation when we have a Nijenhuis tensor N
on a symplectic manifold (M, ω) coupled with the symplectic structure by

5 Actually in the formulation below, we united two theorems, the so-called theorem
of Gallissot and the Liouville-Cartan theorem.
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(14.167). In order to simplify the notations, and to avoid repeating all the time
that we have some property pointwise, we shall use the following conventions.
Let N be a (1, 1) tensor on the manifold M, that is, N is a field of linear
operators Nm : Tm(M) �→ Tm(M). We shall call it semisimple if Nm is
semisimple for each m. Next, let us suppose that the eigenvalues λi(m) of
Nm are smooth functions and the eigenspaces Si(m) corresponding to λi(m)
have constant dimensions. Then we shall refer to the distributions m �→ Si(m)
as the eigenspaces and shall denote them by Si. We shall call the dimension
of Si(m) the dimension of Si and we shall call the functions λi eigenvalues
corresponding to Si. Following the same logic, we shall denote the distribution
m �→ Si(m)⊕Sj(m) by Si⊕Sj . If ω is symplectic form onM we shall say that
Si and Sj are orthogonal with respect to ω if Si(m) and Sj(m) are orthogonal
with respect to ωm. If X is a field we shall say that X ∈ Si if for each m
X(m) ∈ Si(m) and so on, each property that holds pointwise for some fields
of objects will be stated as property of the corresponding fields.

Now we have the following proposition (see [37] and [26]).

Proposition 14.12. Let (M, ω) be 2n-dimensional symplectic manifold on
which there exists Nijenhuis tensor N , such that N∗ ◦ ω̄ = ω̄ ◦ N . Let N
be semisimple and let its eigenvalues λi be smooth functions on M. Let the
dimension of the eigenspaces Si corresponding to λi be constant on M. Then:

1. The eigenspaces Si, corresponding to the eigenvalues λi are orthogonal
with respect to ω and have even dimension.

2. If none of the functions λi is locally equal to a constant, that is, there
is no open subset V ⊂ M such that λi|V = const, then the forms dλi

are independent and are in involution. The Hamiltonian vector fields Xi

corresponding to λi (iXi
ω = −dλi) belong to the subspaces Si.

3. If for each i dim (Si) = 2, that is, if each eigenvalue is exactly double
degenerate, and if these eigenvalues are not locally equal to constants then:
(a) {λi}n

i=1 is complete set of functions in involution and each vector field
Xi is completely integrable Hamiltonian system.

(b) The 2-form ω can be locally expressed in the following way:

ω =
n
∑

i=1

ωi, ωi = ω|Si
, ωi = dλi ∧ γi,

where γi are 1-forms on M. If Yi are the vector fields corresponding
to γi (−γi = iYi

ω) then Xi, Yi span the subspaces Si.
If the vector fields Xi, Yi can be chosen in such a way that, [Xi, Yi] = 0,
then LXi

N = 0.
(c) If the eigenvalues λi have no zeroes on M, then the 2-forms ω(k)

corresponding to the tensor field

ω(k) = ω̄ ◦Nk; k = 0, 1, 2, . . . ,

are again symplectic forms on M.
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Proof. At the beginning we recall that a Nijenhuis tensorN , whose eigenspaces
have constant dimension holds the Nijenhuis theorem. Now we start with the
proof.

1. First of all, for m ∈M let us consider, Zi ∈ Si(m), Zj ∈ Sj(m), i 	= j.
We have

ωm(NmZi, Zj) = λi(m)ωm(Zi, Zj) = ωm(Zi, NmZj) = λj(m)ωm(Zi, Zj).

From here it follows that ωm(Zi, Zj) = 0, and therefore Si and Sj are orthog-
onal w.r.t. the symplectic form ω. Naturally, we have also Si ∩ Sj = {0}.

2. Let iXi
ω = −dλi. Then if i 	= j from the Nijenhuis theorem, it follows

that ω(Xi, Sj) = 0. This entails that Xi ∈ Si and therefore {dλi} are in
involution. As dλi 	= 0 then Xi; i = 1, 2, . . . , n belong to different subspaces
Si and are linearly independent. It follows that dλi; i = 1, 2, . . . , n are linearly
independent too.

3. Let now

dimSi = 2, ω =
n
∑

i=1

ωi, ωi = ω|Si
.

Then {dλi}n
i=1 is a complete involutive set of closed 1-forms. Moreover, for

each distribution
S = Si1 ⊕ Si2 ⊕ . . .⊕ Sik

the 2-form ωS = ω|S is symplectic form on the corresponding integral sub-
manifolds of S and the forms

dλi1 , dλi2 , . . . , dλik

form a complete set in involution on that submanifold. According to the
Liouville-Cartan theorem, (14.11), each field Xi is then completely integrable
Hamiltonian system and

ωS = dλi1 ∧ γi1 + dλi2 ∧ γi2 . . .+ dλik
∧ γik

.

Here γil
are 1-forms, such that dγil

belong to the ideal generated by dλil
in

the algebra of differential forms on the corresponding submanifold. It is not
difficult to check that (at least locally) one can extend these forms to forms on
M and choose them in such a way that dγi = dλi∧δi, where δi is some 1-form
and dλi ∧ γi = ωi. Let Yi be the vector field corresponding to the 1-form γi

(−γi = iYi
ω). Then

ω(Xi, Yi) = 1, ω(Xi, Yj) = 0; i 	= j.

For this reason Yi belongs to Si and Xi, Yi span Si.
Let us prove now that LXi

N = 0. Since we have

(LXi
N)(Y ) = [Xi, NY ]−N [Xi, Y ],
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then taking into account that Xi, Yi span Si it is enough to prove that the
right-hand side of the above equation is zero for Y = Xj , Yj . By assumption
[Xi, Yi] = 0 and then

(LXi
N)(Xj) = [dλj(Xi)]Xj = 0; i 	= j

(LXi
N)(Xi) = [dλi(Xi)]Xi = −ω(Xi,Xi)Xi = 0

(LXi
N)(Yj) = [dλj(Xi)]Yi = 0 . (14.169)

Finally, it is clear that

ω(k) =
n
∑

i=1

λk
i dλi ∧ γi

and therefore dω(k) = 0. The proposition is proved.

The proposition shows that spectral properties are sometimes so restrictive,
that they ensure some of the requirements that we usually impose a priori.

14.5 Principal Properties of Poisson-Nijenhuis Manifolds

Let us return again to the P-N structures. The application of these structures
are motivated by the interesting features of their fundamental fields.

Definition 14.13. The field X is called fundamental for the P-N structure if

LXN = 0, LXP = 0 . (14.170)

In other words, X is fundamental field for the P-N structure if it is funda-
mental for both the tensors P and N .

In the following theorem are collected the most essential properties of the
fundamental fields, see for example [26]:

Theorem 14.14. Let M be P-N manifold. Let χ∗
N be the set of 1- forms α

satisfying the conditions:

dα = 0, dN∗α = 0 . (14.171)

χ∗
N (M) will be called the set of fundamental forms. Then the set of vector

fields χPN (M)

Xα = {P (α) : α ∈ Λ1(M), dα = 0, dN∗α = 0} (14.172)

are fundamental for the P-N structure. The vector spaces χPN (M) and
χ∗

N (M) are Lie algebras (with respect to the Lie bracket and Poisson bracket
respectively) and P is homomorphism between these algebras:

[Xα,Xβ ] = P{α, β}P . (14.173)
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Moreover, the above algebras are invariant under the action of N and N∗,
respectively, and N (N∗) commute with the Lie algebra operation:

N∗{α, β}P = {N∗α, β}P = {α,N∗β}P ; α, β ∈ χ∗
N (M)

N [Xα,Xβ ] = [NXα,Xβ ] = [Xα, NXβ ];Xα,Xβ ∈ χPN (M) . (14.174)

Proof. Let α be 1-form such that dα = dN∗α = 0. As already seen, the
condition dα = 0 is equivalent to the condition

LXα = d[α(X)] = d〈α,X〉 , (14.175)

for arbitrary vector field X. Then

LN(X)α− LX(N∗α) = d〈α,NX〉 − d〈N∗α,X〉 = 0.

But from the coupling condition

P (LN(X)α− LX(N∗α)) + LP (α)(N)(X) = 0

it follows that LP (α)N = 0. Thus, the vector field P (α) is fundamental for
the tensor N . It is also fundamental for the tensor P (see Proposition 12.24),
and therefore P (α) is fundamental field for the P-N structure. Next, if α, β ∈
χ∗

N (M) we have the following chain of relations:

N∗{α, β} − {N∗α, β} = N∗d〈α, Pβ〉 − d〈N∗α, Pβ〉 =
N∗LPβ(α)− LPβ(N∗α) = −[LPβ(N∗)]α = 0 . (14.176)

Taking into account that {α, β} = −{β, α}, we easily get the first line of
(14.174). Thus we have also proved that N∗{α, β} is closed. What remains to
prove is that χ∗

N (M) is invariant under the action of N∗. For this it is enough
to prove that if α ∈ χ∗

N (M), that is, if dα = dN∗α = 0, then d(N∗)2α = 0
too. But this is one of the properties of a Nijenhuis tensor, see proposition
(13.24). Consider now the fundamental fields Pα. For the Poisson bracket of
two closed forms α, β, we have

[Xα,Xβ ] = −P{α, β} . (14.177)

Therefore, if α ∈ χ∗
N (M)

N [Xα,Xβ ] = −NP{α, β} = −PN∗{α, β} = −P{N∗α, β} . (14.178)

From the other hand

[NXα,Xβ ] = [NPα,Xβ ] = [PN∗α, Pβ] = −P{N∗α, β} (14.179)

and finally we get

N [Xα,Xβ ] = [NXα,Xβ ] = [Xα, NXβ ] . (14.180)

The theorem is proved.
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14.6 Hierarchies of Poisson Structures

It is remarkable that P-N structure generates also a hierarchy of Poisson
structures. More specifically, we have the following.

Theorem 14.15. Let the tensors P and N endow the manifold M with P-N
structure. Then on M there exist infinite number of Poisson structures Pk =
NkP = P (N∗)k, k = 1, 2, . . . and there are infinitely many P-N structures,
defined by the pairs (Pk, N

s), k, s = 1, 2, . . ..

The proof of the above theorem readily follows from some remarkable iden-
tities, introduced in [26], which we shall present below. Let P and N be two
fields of the type Pm : T ∗

m(M) → Tm(M); Nm : Tm(M) → Tm(M) such that
NP = PN∗. Recall that we defined the following tensors (tensor fields):
The (3, 0) type tensor field [P, P ]S (Schouten bracket):

[P, P ]S : Λ1(M)× Λ1(M)× Λ1(M) �→ D(M)
[P, P ]S(α1, α2, α3) = 〈α1, PLPα2α3〉+ cycl (1, 2, 3) , (14.181)

for α1, α2, α3 ∈ Λ1(M).
The (2, 1) type tensor field [P,N ]:

[P,N ] : T (M)× Λ1(M) �→ T (M)
〈[P,N ](X,α), β〉 =
〈P [LNX(α)− LX(N∗α)] + LP (α)(N)X,β〉 , (14.182)

for α, β ∈ Λ1(M);X ∈ T (M).
The (1, 2) tensor field [N,N ] (Nijenhuis bracket):

[N,N ] : T (M)× T (M) �→ T (M)
[N,N ](X1,X2) = LNX1(N)X2 −NLX1(N)X2 (14.183)

for X1,X2 ∈ T (M), or

〈[N,N ](X1,X2), α〉 =
〈N2([X1,X2]) + [N(X1), N(X2)], α〉
−〈N [X1, N(X2)] +N [N(X1),X2], α〉 (14.184)

for α ∈ Λ1(M);X1,X2 ∈ T (M).
Then we have

Proposition 14.16. For the tensor fields P (of type (2, 0)) and N (of type
(1, 1)) such that NP = PN∗ and for α1, α2, α3, α, β ∈ Λ1(M) and X ∈
T (M), hold the following identities:



510 14 Integrability and Nijenhuis Tensors

[NP,NP ]S(α1, α2, α3) =
[P, P ]S(N∗α1, N

∗α2, α3) + 〈α2, [N,N ](Pα1, Pα3)〉
+ 〈[P,N ](Pα3, α1), N∗α2〉, (14.185)
〈[NP,N ](X,α), β〉 = 〈[P,N ](X,α), N∗β〉+ 〈[N,N ](Pα,X), β〉.

(14.186)

Proof. Let us consider [NP,NP ]S :

[NP,NP ]S(α1, α2, α3) =
〈N∗α1, PLPN∗α2α3〉+ 〈N∗α2, PLPN∗α3α1〉+ 〈N∗α3, PLPN∗α1α2〉 =
[P, P ]S(N∗α1, N

∗α2, α3)− 〈α3, PLPN∗α1(N
∗α2)〉

+〈N∗α2, PLPα3(N
∗α1)〉 − 〈N∗α2, PLPN∗α3(α1)〉

+〈N∗α3, PLPN∗α1(α2)〉 =
[P, P ]S(N∗α1, N

∗α2, α3) + 〈α3, NPLPN∗α1(α2)− PLPN∗α1(N
∗α2)〉

+〈α2, NP [LNPα3(α1)− LPα3(N
∗α1)〉 =

[P, P ]S(N∗α1, N
∗α2, α3) + 〈[P,N ](Pα3, α1), N∗α2〉

−〈α2, NLPα1(N)(Pα3)〉 − 〈α3, PLPN∗α1(N
∗)α2〉 =

[P, P ]S(N∗α1, N
∗α2, α3) + 〈[P,N ](Pα3, α1), N∗α2〉

+〈[N,N ](Pα1, Pα3), α2〉 − 〈α2, LNPα1(N)Pα3〉
−〈α3, PLNPα1(N

∗)α2〉 . (14.187)

But,

−〈α3, PLNPα1(N
∗)Pα2〉 = 〈Pα3, LNPα1(N

∗)Pα2〉 =
〈[LNPα1(N

∗)]∗Pα3, α2〉 = 〈α2, LNPα1(N)Pα3〉 , (14.188)

and the last two terms in (14.187) cancel. This proves (14.185).
In order to prove (14.186) we consider the following chain of equalities:

〈[NP,N ](X,α), β〉 =
〈NP [LNX(α)− LX(N∗α)] + LNPα(N)X,β〉 =
〈NP [LNX(α)− LX(N∗α)] + [N,N ](Pα,X) +NLPα(N)X,β〉 =
〈N{P [LNX − LX(N∗α)] + LPα(N)X}, β〉+ 〈[N,N ](Pα,X), β〉 =
[P,N ](X,α), N∗β〉+ 〈[N,N ](Pα,X), β〉 . (14.189)

This completes the proof of the proposition. Finally, taking into account The-
orem 13.25 the proof of the Theorem 14.15 is easily obtained by induction.

From the above considerations, we get two important corollaries, which
show how the P-N structure generates hierarchies of commuting Hamiltonian
vector fields and hierarchies of Poisson structures for them:
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Corollary 14.17. If α, β ∈ χ∗
N (M) are in involution (Xα and Xβ commute),

then for arbitrary natural numbers k and n the forms (N∗)kα, (N∗)nβ are also
in involution (the fields (N)kXα and (N)nXβ commute).

Corollary 14.18. The fields of the type (N)kα, where α ∈ χ∗
N (M), are

Hamiltonian with respect to a hierarchy of Poisson structures P,NP, . . . NkP .
If N−1 exists the hierarchy is infinite and consists of the Poisson tensors of
the type NrP where r is an integer.

Remark 14.19. Naturally, when the manifold M is finite dimensional as a re-
sult of the Caley-Hamilton theorem, we can obtain principally new structures
only up to some number p. After this number (for k > p) the Poisson tensors
NkP are linear combinations of the Poisson tensors NsP ; s = 0, 1, 2, . . . p.

As we shall see, the corollaries (14.17), (14.18) have special application
in the theory of soliton equations. They explain the fact that the soliton
equations occur in hierarchies, have commuting flows, and are Hamiltonian
with respect to a hierarchy of Poisson structures.

We finish the review of the properties of the P-N manifolds with the remark
that the identities (14.160), (14.165) we established in the proof of theorem
(14.7) show that we can invert it in the following way.

Theorem 14.20. If M is a P-N manifold, endowed with Poisson tensor P
and a Nijenhuis tensor N , then P and NP are compatible Poisson tensors.
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20. F. Fassò and T. Ratiu. Compatibility of symplectic structures adapted to
noncommutatively integrable systems. J. Geom. Phys., 27:199–220, 1998.

21. O. I. Bogoyavlenskij. Extended integrability and Bi-Hamiltonian systems.
Commun. Math. Phys., 196(1):19–51, 1998.

22. O. I. Bogoyavlenskij. Theory of tensor invariants of integrable Hamiltonian
systems. I. Incompatible Poisson structures. Commun. Math. Phys., 180(3):
529–586, 1996.

23. O. I. Bogoyavlenskij. Theory of tensor invariants of integrable Hamiltonian
systems. II. Theorem on symmetries and its applications. Commun. Math.
Phys., 184(2):301–365, 1997.

24. B. Cordani. The Kepler Problem:Group Theoretical Aspects, Regularization
and Quantization, with Applications to the Study of Perturbations. Birkhauser
Verlag, Boston, MA, 2003.

25. G. Marmo and G. Vilasi. When do recursion operators generate new conser-
vation laws? Phys. Lett. B, 277(1–2):137–140, 1992.

26. F. Magri and C. Morosi. A geometrical characterization of integrable Hamil-
tonian systems through the theory of Poisson–Nijenhuis manifolds. Quaderni
del Dipartimento di Matematica, Università di Milano, 1984.
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15

Poisson–Nijenhuis Structures Related
to the Generalized Zakharov–Shabat System

In this chapter, we show that the geometric constructions outlined in the previ-
ous section permit to identify the generating operators Λ± for the generalized
Zakharov–Shabat system (GZS system) in the pole gauge with the operator
N∗, which is the adjoint of a Nijenhuis operator N of some P–N structure on
the manifold of potentials. In [1], this was done for the case when the algebra
is sl (n). We first prove the same result in the case of arbitrary semisimple
Lie algebra. This is achieved considering special compatible Poisson tensors,
and later in this chapter, we show what is the algebraic mechanism that leads
to the existence of the aforementioned compatible Poisson tensors. Next, the
general theory about the momentum maps, which we briefly present here, per-
mits to understand deeper the gauge transformation leading from canonical
to the pole gauge and to give the same interpretation we gave to the operators
Λ± to the generating operators Λ̃±, that appear in the theory of the soliton
equations associated with GZS system in pole gage – they are also adjoint to
some Nijenhuis tensors. As a result, we are able to present a clear geometric
picture showing the relation between three manifolds naturally endowed with
P–N structures – (i) the manifold of potentials in canonical gauge, (ii) the
manifold of potentials in pole gauge, and (iii) the manifold of the Jost solu-
tions for λ = 0. We also point out an important subalgebra of the algebra of
fundamental fields which generates on each of these manifolds hierarchies of
integrable systems (soliton equations).

15.1 Poisson–Nijenhuis Structures for GZS System
in Canonical Gauge

Let us denote by g[x] the set of Schwartz-type functions:

f : R → g ,

where g is a fixed semisimple Lie algebra. Clearly, g[x] is Lie algebra too if we
define the Lie bracket of two functions f, g ∈ g[x] pointwise, that is, we put
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[f, g](x) = [f(x), g(x)]; x ∈ R .

Admitting some lack of rigor, we shall identify g[x] with g[x]∗ using the bilinear
form

〈〈X,Y 〉〉 =

+∞
∫

−∞

〈X(x), Y (x)〉dx; X,Y ∈ g[x] , (15.1)

where 〈ξ, η〉 = tr (ad ξ ◦ ad η); ξ, η ∈ g is the Killing form of the algebra g.
In addition to the above identification, below we shall denote by the same

symbol the 2-forms ω and the corresponding fields ω̄ of linear maps. Thus the
two-forms and the Poisson tensor fields will appear as fields of operators.

Now, taking into account the above conventions and identifications, we
remark that, as is well known for the equations that can be solved with the help
of auxiliary linear problem (10.3), we have the following compatible Poisson
tensors,1 for example [2]:

Q0
q(ξ) = −ad ξJ ; q(x), ξ(x) ∈ g[x]

P 0
q (ξ) = −ad ξq + i∂xξ; q(x), ξ(x) ∈ g[x] , (15.2)

where i is the imaginary unit.
To see that these tensors, which are defined on the manifold M = g[x]∗,

are tensors of the type we want, we note that since M is linear space the
tangent space at each point coincides with g[x]∗ and the cotangent space with
g[x]∗∗. Due to the convention we have made to identify vectors and covectors
through (15.1), we can assume that both these spaces coincide with g[x].
Then in (15.2), q ∈ g[x]∗, ξ ∈ Tq(M) ∼ g[x]. It is easy to notice that the
tensor Q0 is not kernel free, and therefore we cannot find (Q0)−1 and carry
out the construction of P–N manifold as in theorem (14.7). Fortunately, as
it was already mentioned, it is possible to restrict the tensors (15.2) onto
some integral leaf of the distribution Im(Q0). To perform it, we shall use
the corollary (12.26) applying the construction of the Restriction Theorem
(12.25) to the tensor Q0. According to proposition (12.26), we must consider
the distribution J :

q → Im(Q0)q = Im(ad J) . (15.3)

On the integral leaves of J the Poisson tensor Q0 allows restriction Q which
is nondegenerate. The elements of Im(ad J) are the functions belonging to
g[x] taking values in the orthogonal complement g of the Cartan subalgebra
h ⊂ g with respect to the Killing form (recall that J is regular). We shall
denote the subspace of these elements by g[x]. Then the integral leaves of the
distribution (15.3) are the following submanifolds:

1 Later, we shall obtain this fact as a consequence from some general algebraic
construction.
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Mc = {q : q = c+ ξ; c− fixed, c ∈ g[x], ξ ∈ g[x]} . (15.4)

Let us choose the following leaf

Mc|c=0 =M0 = g[x] . (15.5)

and let j : M0 �→ g[x] be the inclusion map. Clearly Tq(M0) = g[x] and
having in mind the pairing (15.1), we can also assume that T ∗

q (M0) = g[x]. If
α ∈ T ∗

q (M) then π0α = α, where π0 is the orthogonal projector (with respect
to the Killing form) onto the space g. Due to the identifications we have made
dj = π0 and [dj]∗ = π0. All this means that we can write [dj]∗α = α, and then
the construction of proposition (12.26) means that

Q(α) = Q0([dj]∗α) = Q0(α) . (15.6)

Thus Q = ad J . Note that now the tensor Q is nondegenerate, since on the
space g there exists the inverse of ad J – the operator ad−1

J .
To restrict P 0, we again invoke the Restriction Theorem (12.25). We have

seen that in order to perform the restriction on the submanifold M0 the
following conditions must hold:

χ∗
P 0(M0)q + T⊥(M0)q = T ∗

q (M); q ∈M0 (15.7)

χ∗
P 0(M0)q ∩ T⊥(M0)q ⊂ ker (Pq), q ∈M0 . (15.8)

A simple calculation shows that

T⊥(M0)q = {α : α ∈ T ∗
q (M), 〈〈α, ξ〉〉 = 0, ξ ∈ g[x]} . (15.9)

In other words, T⊥(M0)q consists of functions taking values in h, and it is
natural to denote the space of these functions by h[x].

From the other hand

χ∗
P 0(M0)q = {α : α ∈ T ∗

q (M), i∂xα+ [q, α] ∈ g[x]} . (15.10)

Therefore, α ∈ χ∗
P 0(M0)q exactly when

(1− π0)(i∂xα+ [q, α]) = 0 . (15.11)

If α ∈ χ∗
P 0(M0)q ∩ T⊥(M0)q, then [h, g] ⊂ g entails that ∂xα = 0. Since

lim
x→±∞

α(x) = 0 we get α = 0. Thus, we have proved that

T⊥(M0)q ∩ χ∗
P 0(M0)q = {0} (15.12)

and the requirement (15.8) of the Restriction Theorem is fulfilled.
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In order to prove that (15.7) is also true, let us remark that the condition
(15.11) can be cast into the form:

(1− π0)α = i(1− π0)

x
∫

−∞

[q(y), α(y)]dy +A(α, q) , (15.13)

where A(α, q) is some constant in x which in general can depend on α and
the potential q. Since limx→±∞ α(x) = 0, we must have

A(q, α) = i(1− π0)

+∞
∫

−∞

[q(y), α(y)]dy = 0 . (15.14)

or equivalently:
〈〈[H, q], α〉〉 = 0; H ∈ h . (15.15)

The above relation imposes implicit restrictions on the cotangent vectors on
M0. Actually, if we choose a basis {Hi}r

1 in h, then (15.15) is equivalent to
r equations 〈〈[Hi, q], α〉〉 = 0; i = 1, 2 . . . , r. If we want to continue with the
geometric constructions, we are forced to assume that the (15.15) is fulfilled.2

In order to stress that for our potentials we need to have the relations
(15.15) in what follows we shall denote the manifold of potentials by M0.

One can prove that M0 is dense in M0, but we shall not go into this
matter. We simply want to prove that (15.7), (15.8) are true for the manifold
M0 instead of M0.

Let us consider now the requirement (15.7). For arbitrary α ∈ T ∗
q (M0)

we put

γ(α) = −i(1− π0)

x
∫

−∞

[q(y), π0(α)(y)]dy . (15.16)

It is not difficult to notice that

π0(α)− γ(α) ∈ χ∗
P 0(M0)q.

For that reason the identity

α = (π0(α)− γ(α)) + ((1− π0)α+ γ(α)) (15.17)

shows that
χ∗

P 0(M0)q ⊕ T⊥(M0)q = T ∗
q (M) . (15.18)

2 Restrictions of this kind arise frequently in the theory of soliton equations and
are important in order to define correctly the symplectic (or Poisson) structures
for these equations; see for example [3, 4].
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Thus, the conditions of the Restriction Theorem hold and P 0 allows restriction
on M0. Let us denote this restriction by P . Now we are going to calculate
it. Let α ∈ T ∗

q (M0). As before [dj]∗α = α, and according to the restriction
procedure we must put

P (α) = P 0(α− γ(α))

It is easy to calculate that

P (α) = i
∂

∂x
α+ π0([q, α]) + [q, i(1− π0)

x
∫

−∞

[q, α](y)dy ]

π0(α) = α ∈ T ∗
q (M0) . (15.19)

Now it is possible to obtain the Nijenhuis tensor N = P ◦Q−1 = PQ−1:

N =

⎡

⎣i∂x + π0ad q + iad q(1− π0)

x
∫

−∞

ad q . dy

⎤

⎦ (ad J)−1 . (15.20)

We would like to note that as a consequence from the condition (15.15) in the
lower bound of the above integral we could write +∞ instead of −∞ without
changing the value of the expressions for P and N .

Now the tensor fields P and N endow M0 with a P–N structure. The
adjoint of N is easily found:

N∗ = (PQ−1)∗ = (Q∗)−1P ∗ = Q−1P = Q−1(PQ−1)Q = Q−1NQ.

Now, after all this geometric theory, the comparison shows that N∗ is exactly
equal to the generating operators Λ± we had in the Introduction (compare
with (10.20)) for the GZS system. (According to the additional assumptions
on the covectors these operators act identically.) We can also write

N∗ =
1
2
(Λ+ + Λ−) = Λ . (15.21)

The geometric theory, however, is incomplete without the possibility to
calculate the fundamental fields of the P–N structure. Later, see proposition
(15.25) we shall show that the vector fields:

XH : q → XH(q) = [H, q]; H ∈ h (15.22)

are fundamental fields. The corresponding fundamental forms are

αH : q → αH(q) = ad−1
J [H, q] . (15.23)
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(Recall that from the results of part I it follows that the forms ad−1
J [H, q] and

Λ±ad−1
J [H, q] are closed.) In addition, from the relation

[XH1 ,XH2 ] (q) = X[H1,H2](q) , (15.24)

it follows that if H1,H2 ∈ h, then the Lie bracket of the fields XH1 and XH1

is zero, or equivalently, that the forms αH1 and αH2 are in involution. Then
from corollaries 14.17, 14.18, we obtain the following:

Proposition 15.1. Let all the quantities be as defined in the above. Then

• The vector fields NnXH ; n = 0, 1, . . .; H ∈ h commute.
• The equations

iad−1
J qt + Λnad−1

J [H, q] = 0

are Hamiltonian with respect to the hierarchy of symplectic structures:
Ωn = Λn(Q0)−1 = Λnad−1

J .

This proposition gives geometric interpretation of the results obtained us-
ing expansions over adjoint solutions and shows how the spectral, and geo-
metric methods can be used to help and to clarify each other.

15.2 Poisson–Nijenhuis Structures on Lie Groups
and Algebras

In the definitions of both Q0 and P 0, a crucial role was played by some
Lie algebra structure (the potentials are functions with values in some Lie
algebra g). This circumstance is not accidental, and we shall see there exists
a canonical construction allowing to endow the dual of a given Lie algebra
with a P–N structure. It turns out to be related to a P–N structure on the
corresponding Lie group. The interrelation is established with the help of the
so-called momentum map, a classical object from the theory of the Lie groups
acting by symplectomorphisms (or as also said canonically) on a symplectic
manifold. Based on our knowledge, these ideas are suggested for the first time
in [1], though as we shall see, most of them appear with some modifications in
algebraical approaches to the soliton equations. At the outset, we need some
additional facts and definitions.

15.2.1 The Momentum Map

Let M be manifold and let G be connected Lie group, acting from the left on
M. This means that there exists smooth map G×M→M,

(g,m) → lg(m) = lgm (15.25)

with the following properties:
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lgh = lg ◦ lh = lglh ; g, h ∈ G
le = idM , (15.26)

where e is the unit element of G.

Remark 15.2. Right action (g,m) → rg(m) = rgm of a group on a manifold
can be defined in a similar way, but instead of the relations (15.26), we require

rgh = rh ◦ rg = rhrg; g, h ∈ G
re = idM . (15.27)

Usually only left or right action is considered, because if (g,m) �→ rgm is
a right action then one can define a left action putting lg(m) = rg−1m =
(rg)−1m.

A tensor fields on M is called invariant with respect to the action of G, or
simply G-invariant, if it is invariant under all the diffeomorphisms lg; g ∈ G.
For example, a differential form β is G-invariant, if l∗gβ = β, g ∈ G.

We say that G acts transitively if for any m1,m2 ∈M there exists g ∈ G,
such that m2 = lg(m1). We say that G acts simply transitively on M, if the
element g in the above relation is unique, provided m1 and m2 are given. If
m0 is a fixed point of M, the group

G0 = {g : lg(m0) = m0} ⊂ G (15.28)

is a closed subgroup of G (called the stability subgroup of m0), and there is
a bijection between M and G/G0. As is known from the theory of the Lie
groups (see for example [5]), G0 is then a Lie group and G/G0 is a smooth
manifold. Then though there are cases when as manifolds M and G/G0 are
not diffeomorphic (even not homeomorphic) in general one can identify M
with G/G0.

Example 15.3. If G is a Lie group, then the left translations Lg define a left
action of G on itself and the right translations Rg a right action of G on itself.
Both actions are clearly simply transitive.

When G acts on two manifolds M1 and M2 we call a map h : M1 �→ M2

equivariant with respect to these actions if

Lg ◦ h = h ◦ lg; g ∈ G . (15.29)

(Here the action of G on M1 is denoted by lg and on M2 by Lg). As usual,
when one has an action of a group G on a manifold M we call orbits of G the
sets:

Om0 = {m : m = lg(m0); g ∈ G} ⊂ M . (15.30)

where m0 is a fixed point inM and Om0 is called the orbit through m0. When
G is a Lie group, M is smooth and the action is also smooth, the orbits are
manifolds.
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The fundamental fields of the left action of the group G on M are then
defined as follows:

Xξ|m =
d

dt
lexp (−tξ)m|t=0 . (15.31)

Here ξ ∈ g = Te(G)-the Lie algebra of G and as usual for fixed ξ by exp (tξ)
is denoted the unique solution of the equation

d

dt
g(t) = dLg(t)(ξ); g(0) = e , (15.32)

where Lg is the left multiplication map (left translation): Lg(h) = gh. The
fundamental fields are clearly tangent to the orbit of G through m.

Remark 15.4. The maps t �→ exp (tξ); ξ ∈ g are also called one-parametric
subgroups of G.

It is easy to see that

Xξ+η = Xξ +Xη; ξ, η ∈ g

Xcξ = cXξ; ξ ∈ g, c ∈ R . (15.33)

The fundamental fields have the following important properties:

• The vectors Xξ|m span the subspace Im(dlg|m).
• The set of fundamental fields is invariant with respect to the diffeomor-

phisms lg. More precisely,

dlg(Xξ)|l−1
g m = XAd (g)ξ|m , (15.34)

where by Ad (g)ξ is denoted the adjoint action of the group G on its
algebra:

Ad (g)ξ =
d

dt
(g exp (tξ)g−1)|t=0; ξ ∈ g . (15.35)

Now, let (M, ω) be symplectic manifold with symplectic form ω, and let
the Lie group G act from the left in such a way that all lg are symplectic
maps, that is

l∗gω|m = ω|lgm(dlg., dlg.) = ω|m; g ∈ G . (15.36)

and since they are diffeomorphisms they are symplectomorphisms.

Remark 15.5. It can be readily seen that the construction of the momentum
map (see below) can be extended also to the case when ω is not a symplectic
form but simply a closed 2-form.

From the definition of the fundamental fields, one can see that we must
have

LXξ
ω = 0; ξ ∈ g . (15.37)
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Then from (15.33) it follows that the equation

〈θ(.), ξ〉 = −iXξ
ω = ω(Xξ, .) ; ξ ∈ g (15.38)

has unique solution for θ. In (15.38), θ is a g∗-valued 1-form3 on M, or in
other words, a field of linear maps

m→ θm : Tm(M) → g∗

and 〈 , 〉 is the canonical pairing between g∗ and g. It can be shown, see [6, 7],
that the form θ has the following properties:

l∗gθ|m = θ|lgm(dlg.) = Ad ∗(g−1)θ(.)|m ; m ∈M, g ∈ G
dθ = 0 , (15.39)

where g → Ad ∗(g−1) is the coadjoint action of the groupG on the vector space
g∗. By virtue of the Poincaré lemma, at least locally, there exists function a
Φω : M→ g, such that

dΦω = θ . (15.40)

In the special case when G acts transitively on M, that is, when for any two
points m1,m2 ∈ M there exists g ∈ G such that m2 = lgm1, the locally
defined functions Φω can be extended to a function on M [6, 7]. Then Φω

is called the momentum map of G (or more accurately, the momentum map,
corresponding to the action of G). It can be proved that Φω has the property

l∗gΦω(m) = Φω(lgm) = Ad ∗(g−1)Φω + C(g); g ∈ G , (15.41)

where the function C : G → g does not depend on m ∈ M. It is not hard
to establish that for the functions C(g) holds the following relation (called
cocycle relation)

C(gh) = Ad ∗(g−1)C(h) + C(g); g, h ∈ G . (15.42)

Functions of that kind are called Ad ∗(g−1)-1-cocycles of G, see [6]. The above
property of C(g) allows to define another left action of G on g∗:

Lgμ = Ad ∗(g−1)μ+ C(g); μ ∈ g . (15.43)

This action makes the momentum map equivariant, or in other words, for
each g ∈ G the following diagram

lg
M → M

Φω ↓ ↓ Φω

g∗ → g∗

Lg

(15.44)

is commutative.
3 Instead of g

∗-valued 1-form fixing a basis in g
∗, one can speak about n = dim (g∗)

“usual” 1-forms.
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The momentum map plays an important role in the Classical Mechanics,
it has permitted a new viewpoint of several classical topics [8] and is also a
part of various theoretical constructions [9, 10, 11].

The main property of the momentum map is that it establishes one-to-one
correspondence between manifolds on which given Lie group G acts transi-
tively via symplectomorphisms from one side and the orbits of the coadjoint
action of G from the other side. The corresponding theory is sometimes re-
ferred to as Kirillov–Kostant–Souriau theory. We remind that the coadjoint
orbits (orbits in the coadjoint representation of G) are the manifolds:

Oμ = {η = Ad (g)∗μ; g ∈ G} . (15.45)

On the coadjoint orbits there is canonical symplectic structure – the structure
defined by the restriction of the Kirillov tensor and the momentum map is a
symplectic map; for more details see [6, 10, 11].

Provided the manifold M is connected, the momentum map Φω is defined
up to an additive constant μ0. If we add the constant μ0 to Φω, then in the
expression for C(g) appears an additional term, equal to

Ad ∗(g−1)μ0 − μ0 = Bμ0(g) . (15.46)

For arbitrary choice of μ0, the function Bμ0(g) satisfies the cocycle relations
(15.42), and thus we obtain 1-cocycles, called trivial 1-cocycles or cobound-
aries of the coadjoint action.

15.2.2 Momentum Maps on Lie Groups

Let us consider the case when M coincides with G and G acts on itself by left
translations:

Lgh = gh; g, h ∈ G . (15.47)

Remark 15.6. The objects (functions, forms) that are invariant under all the
left translations are called left-invariant. Usually only the left translations are
considered. The reason is that left translations action is transformed into right
translations action (and vice versa) using the inversion map IG : g → g−1.
Indeed, one has

IG ◦ Lg = Rg ◦ IG; g ∈ G,
where Rg(h) = hg is the right translation. In addition, if for example the
function f : G → R is left-invariant (L∗

gf = f, g ∈ G) then I∗Gf is right-
invariant. The same is true for tensors of arbitrary type.

In the special case M = G and left translations action, the 2-form ω is
invariant if it is left-invariant:

L∗
gω|h = ω|gh(dLg., dLg.) = ω|h(., .) . (15.48)

It follows that
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ωh = ω|h(., .) = ω|e(dLh−1 ., dLh−1 .) . (15.49)

Thus, like the left-invariant vector field, see below how a left-invariant form
can be reconstructed using only its value at the point e-the unit element of
the group. If we adopt a different viewpoint and consider ω as a field of linear
maps

g → ωg : Tg(G) → T ∗
g (G)

then the above formula can be written into equivalent form

ωh = (dL−1
h )∗ ◦ ωe ◦ dL−1

h . (15.50)

The fundamental fields of the left-translations action are the right-invariant
vector fields:

d

dt
(exp(−tξ)h)|t=0 = −dRhξ = −ξr|h , (15.51)

where ξ ∈ g and, as above, Rh means right multiplication by h. The vector
field ξr is called right-invariant vector field corresponding to ξ ∈ g. Quite in
the same way one can define left-invariant vector fields:

d

dt
(h exp(−tξ))|t=0 = −dLhξ = −ξl|h; ξ ∈ g . (15.52)

It is well known that for the left (right) invariant vector fields on Lie group
associated with ξ, η ∈ g hold the relations:

[ξl, ηl] = ([ξ, η])l; ξ, η ∈ g (15.53)
[ξr, ηr] = −([ξ, η])r; ξ, η ∈ g . (15.54)

Both left- and right-invariant vector fields at the point g ∈ G span the tangent
space Tg(G) at g. For α ∈ g∗, one also defines right-invariant and left-invariant
1-forms on G:

αr
g = αr|g = dR∗

g−1α, αl
g = αl|g = dL∗

g−1α . (15.55)

Between invariant fields and forms exist the following classical relations

Lξl(αl) = −(ad ∗
ξα)l = −iξl(dαl)

Lξr (αr) = (ad ∗
ξα)r = −iξr (dαr) . (15.56)

They are often called the Maurer-Cartan identities. It is also clear that for
α ∈ g∗, ξ ∈ g, we have

Lξr (αl) = Lξl(αr) = 0 . (15.57)

As in the case with the left-invariant (right-invariant) vector fields the left-
invariant (right-invariant) 1-forms at the point g span the cotangent space
T ∗

g (G). In general, if ω is left (right) invariant form and ξ is right (left) invari-
ant vector field we have Lξω = 0.
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Let us return again to the momentum map, defined on a group G. In this
case the map Φω, introduced in (15.40) is itself a cocycle of the coadjoint
action if we normalize it by the condition Φω(e) = 0. This means that

Φω(gh) = Ad ∗(g−1)Φω(h) + Φω(g) . (15.58)

As could be expected, the group cocycles possesses algebraic analogs – alge-
braic cocycles. Let us remind some definitions; see for example [12]. Let g be
Lie algebra and (V, f) be some finite dimensional representation of g, that is,
V is finite dimensional vector space and f is a linear map:

f : g→ Hom (V, V ) , (15.59)

such that for arbitrary X,Y ∈ g

[f(X), f(Y )] = f([X,Y ]) . (15.60)

We sometimes say that f is a (linear) action of the algebra g on V , since one
can “integrate” the representation of the algebra in order to obtain represen-
tation of the corresponding group G, and then we shall have left action of G
acting on V through linear maps.

Example 15.7. Adjoint representation (adjoint action): If g is Lie algebra, then
for X ∈ g we define the linear map ad X ∈ Hom (g, g):

ad X(Y ) = [X,Y ] . (15.61)

One can check that (g, ad ) is a representation of g called the adjoint repre-
sentation of g.

Example 15.8. Coadjoint representation(coadjoint action): If g is a Lie alge-
bra, g∗ its dual space, then for X ∈ g we define the linear map

X → −ad ∗
X ∈ Hom (g∗, g∗)

Example 15.9. Trivial representation: f = 0, V – some vector space.

Let Ap(g) be the set of all skew-symmetric p-linear maps:

α : g× g× . . .× g
︸ ︷︷ ︸

p times

→ V.

By definition we put A0(g) = V . The sets Ap(g); p = 0, 1, . . . dim (g) are
clearly vector spaces, their elements are called cochains. One can define now
a linear map

d : Ap(g) → Ap+1(g) (15.62)

through the formula
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dα(X1,X2, . . . , Xp+1) =
n
∑

i=1

(−1)i−1f(Xi)(α(X1,X2, . . . , X̂i,Xi+1 . . . , Xp+1)) +

∑

i<j

(−1)i+jα([Xi,Xj ],X1,X2, . . . , X̂i, . . . , X̂j , . . . , Xp+1) , (15.63)

where X1,X2, . . . , Xp+1 ∈ g and α ∈ Ap(g). The hat over a symbol means that
in the sequence X1,X2 . . . Xp+1 this symbol is omitted. For α ∈ A0(g) = V
we put dα(X) = f(X)(α) = f(X)α.

Then one can prove that d2 = 0, and this allows to give the usual defi-
nitions of cocycles, coboundaries, and cohomologies of an algebra associated
with the representation (V, f); see [12]:

• α ∈ Ap(g) is called p-cocycle if dα = 0. The set of all p-cocycles associated
with the representation (f, V ) is denoted by Zp(g)f .

• α ∈ Ap(g) is called coboundary if α = dβ, where β ∈ Ap−1(g). The set of
all p-coboundaries associated with the representation (f, V ) is denoted by
Bp(g)f .

• The quotient spaceHp(g)f = Zp(g)f/B
p(g)f is called the p-th cohomology

space associated with the representation (f, V ) of g.

It can be proved that all the cohomology spaces of the semisimple Lie algebras
are trivial if the corresponding representation (V, f) is not trivial: f 	= 0; see
[12]. Also, for arbitrary representation of a semisimple Lie algebra g, the first
two cohomology spaces H1(g)f = 0, H2(g)f = 0 (these results are known as
the Whitehead lemmas).

In order to demonstrate the relations between objects associated with the
Lie groups and those for the corresponding Lie algebras, let us remark that
for left-invariant 2-form ωl the condition

dωl(ξl
1, ξ

l
3, ξ

l
3) = 0; ξ1, ξ2, ξ3 ∈ g,

is equivalent to
ωe([ξ1, ξ2], ξ3) + cycl (1, 2, 3) = 0 . (15.64)

But then (ξ, η) → ωe(ξ, η) is 2-cocycle of the trivial action of the algebra g on
R. Further, one can see that to the exact 2-forms correspond coboundaries,
that is left-invariant 2-forms ωα which at e have the form:

ωα
e (ξ, η) = 〈α, [ξ, η]〉; α ∈ g∗ . (15.65)

It is not difficult to prove that

ωα = dαl , (15.66)

where αl is the left-invariant 1-form corresponding to the covector α ∈ g∗.
Finally, from the definitions of the maps Φω and Lg one can obtain that
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d

dt
L(exp tξ)q|t=0 = −(ad ∗

ξq + ωe(ξ)); ξ ∈ g; q ∈ g∗ . (15.67)

According to the general constructions in the theory of momentum maps
the right-hand side of this equation defines a Poisson tensor over g∗. (Since
g∗∗ = g, the elements ξ ∈ g are treated as covectors over g∗.) Thus on the
coalgebra g∗, we obtain natural Poisson structure generated by the symplectic
structure on G. The above fact can be verified immediately, but we shall give
another and more elegant proof in the next section.

The momentum map plays an important role in the theory of P–N man-
ifolds on groups. The point is that there is a natural way to introduce P–N
structure on Lie group and the momentum map establishes the relation of
this structure with a similar structure defined on the dual space of the corre-
sponding algebra; see [13]. We present below some of these results.

Theorem 15.10. Let G be Lie group, let ω be left-invariant symplectic form
and let Ω be a closed, right-invariant 2-form on G. Then

1. The group G can be endowed by a structure of P–N manifold given by the
tensor fields

P = ω−1, N = P ◦Ω . (15.68)

2. Let us consider on the dual g∗ of the Lie algebra g of G the following
tensor fields

q → Pq = −(ad ∗
ξq + ωe(ξ))

q → Qq = −Ωe . (15.69)

Then P,Q are compatible Poisson tensors on g∗, and the following rela-
tions hold:

[dΦω] ◦P ◦ [dΦω]∗ = P

[dΦω] ◦N ◦P ◦ [dΦω]∗ = Q (15.70)

(In other words, P and N ◦P are Φω-related to P and Q).4

We shall not directly use this result, but the reader will see that the construc-
tion we shall use in the section dedicated to the manifold of the Jost solutions
for the generalized Zakharov–Shabat system is inspired by the above theorem.

4 Recall that we use the same letter for a 2-form β and the field of linear maps β̄
that corresponds to it.
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15.2.3 Algebraic Approaches. Gel’fand–Fuchs Cocycle

We show now how the Poisson structure, introduced earlier (see (15.67)), is
obtained in some other the approaches to the soliton equations. For the sake
of brevity and since crucial role in them play algebraic constructions we call
them algebraic approaches; see [2, 14, 15, 16, 17] (the list of the references
can be easily extended.) In the algebraic approaches, the Poisson brackets that
are introduced are the Lie–Poisson brackets on the dual of some Lie algebra,
for example some loop algebra5 (algebra of formal power series on λ with
coefficients in some finite dimensional Lie algebra). For the convenience of the
reader, we remind that the Lie–Poisson bracket is defined on the dual g∗ of
some Lie algebra g according to the formula:

{f, g}(q) = −〈q, [df |q, dg|q]〉; q ∈ g∗ , (15.71)

where f, g are smooth functions on g∗. Their differentials at the point q –
df |q, dg|q are linear functions on g∗ and are considered elements of g. Geomet-
rically, this means that the Lie-algebra structure allows to obtain the Poisson
tensor on g∗ (the Kirillov tensor):

q → Kq : Kq(ξ) = −ad ∗
ξ

q ∈ g∗; ξ ∈ T ∗
q (g∗) = (g∗)∗ ∼ g . (15.72)

In the algebraic approaches, usually the main construction is some variant of
the so-called Adler scheme [4, 14] (see also [18] Chap. 4), where there is a large
bibliography. We shall not present this scheme here, but we must note that one
of the most essential steps in the construction is the so-called extension with
Abelian kernel; see [12]. This extension actually introduces the dependance on
the additional (spacial) variable x, and without it the scheme can be applied
only to the ordinary differential equations. Let us briefly describe what is
meant by extension with Abelian kernel.

Let (V, f) be representation of the algebra g, that is, V is vector space and
f is homomorphism f : g → End (V ). Extension of g with Abelian kernel V
is a pair (E , F ), where E is Lie algebra and F is subjective homomorphism

F : E → g,

such that F−1({0}) = V and the representation (V, f) is reconstructed using
the sections of F . (Sections of F are called linear maps r : g → E , such that
F ◦ r = idg). In other words, for every section ξ → r(ξ)

[r(ξ), v] = f(ξ)v; ξ ∈ g; v ∈ V . (15.73)

5 Loop algebras are called also affine algebras.
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Basic result in the theory of extensions with Abelian kernel is the following
theorem [12]:

Theorem 15.11. All the extensions with Abelian kernels can be obtained in
the following way: Let us take the direct sum E = g ⊕ V (as vector spaces)
and let us define on it the structure of Lie algebra according to the formula:

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], f(ξ1)v2 − f(ξ2)v1 + ω(ξ1, ξ2)),

(15.74)

where ξ1, ξ1 ∈ g; v1, v2 ∈ V and ω is f-cocycle of g, that is ω is linear skew-
symmetric map g× g→ V satisfying the condition

f(ξ1)ω(ξ2, ξ3) + cycl (1, 2, 3) = ω([ξ1, ξ2], ξ3) + cycl (1, 2, 3) (15.75)

for any ξ1, ξ2, ξ3 ∈ g. Two extensions are equivalent, if the difference of the
corresponding cocycles ω1, ω2 is coboundary, that is, if there exist linear map
α : g→ V , such that

(ω1 − ω2)(ξ1, ξ2) = dα(ξ1, ξ2) =

f(ξ1)α(ξ2)− f(ξ2)α(ξ2)− α([ξ1, ξ2]) . (15.76)

(For more details see [12]). To our knowledge, in the algebraic approaches
until now, only extensions with f = 0, V = R,C have been considered. Then
the extension is in fact a central extension as every element from C (if the
field of scalars is C) commutes with all the other elements; see (15.74). In
this case, it is easy to see that the (15.75) coincides with (15.64). Equation
(15.76) shows that the difference ω1 − ω2 is an exact 2-form. We shall denote
the central extension defined through ω by gω. We have

gω = g⊕ C (15.77)

(as vector spaces). As for the bracket, it is given by

[(ξ, a), (η, b)] = ([ξ, η], ω(ξ, η)) . (15.78)

If we introduce the pairing

〈(q, a), (η, b)〉gω = 〈q, η〉g + ab (15.79)

then we can assume that (gω)∗ = g∗ ⊕ C. The coadjoint action is calculated
without difficulties:

− ad ∗
(ξ,a)(q, b) = −ad ∗

ξ(q)− bω(ξ) . (15.80)

(Here ω must be understood as linear map ω : g→ g∗ and ξ ∈ g, q ∈ g∗).
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The Kirillov tensor on gω is degenerate, because ad ∗
(0,a)(q, b) = 0 and for

that reason it is usually restricted on the submanifolds of the type

Mc = g∗ + c = (g∗, c) ⊂ g∗ ⊕ C . (15.81)

For example on M1 = Mc=1, we have the Poisson tensor (or if one prefers
the coadjoint action of the central extension of g):

− ad ∗
(ξ,a)(q, 1) = −ad ∗

ξ(q)− ω(ξ) . (15.82)

The comparison with (15.67) leads to the following result

Proposition 15.12. The coadjoint action of algebra gω on the hyperplane
M1 ⊂ (gω)∗ coincides with the infinitesimal action of Lg.

We have formulated this proposition separately, in order to stress again
that the geometric and the algebraic approaches often operate with the same
objects and constructions but use different names for them. However, different
points of view may lead to interesting results, even if in one of the approaches
something seems trivial. For example, as a result of the above discussion we
get the following corollaries.

Corollary 15.13. If ω is a cocycle as discussed in the above and α = const ,
α ∈ g∗ then together with the tensor

K1
q (ξ) = −(ad ∗

ξq + ω(ξ)) (15.83)

ξ ∈ g, q ∈ g∗ , (15.84)

we have also two other Poisson tensors

K2
q (ξ) = −(ad ∗

ξq + ω(ξ) + ad ∗
ξα)

K3
q (ξ) = −ad ∗

ξα . (15.85)

Indeed, these tensors are obtained using the trivial cocycle corresponding to α.

Remark 15.14. The last tensor can be obtained also from the momentum map
Φω in the case ω = 0, normalized by the condition Φω=0(e) = α

Corollary 15.15. The Poisson tensors K1,K2,K3 are compatible.

It happens that the compatible pair of Poisson tensors on the manifold
of potentials for the generalized Zakharov–Shabat system (see (15.2)) arises
in the way we just described. As a matter of fact, in (15.2), the role of g is
played by g[x], where g[x] is the Lie algebra of Schwartz-type functions with
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values in a finite dimensional semisimple Lie algebra g, and α = J . As to the
cocycle ω, it is the famous Gel’fand–Fuchs cocycle, defined as

ω(ξ, η) = 〈〈i∂xξ, η〉〉; ξ, η ∈ g[x] , (15.86)

where by ∂x is denoted the differentiation with respect to x. Thus, the com-
patibility of K1,K2,K3 follows from algebraic considerations, and we can
skip over the cumbersome calculations of the Schouten brackets [Ki,Kj ]S ;
i, j = 1, 2, 3. In the case of Zakharov–Shabat system we identify the algebra
and the coalgebra and we can write the above tensors into the form (up to
some changes in the constants):

K1
q (ξ) = −ad ξq + i∂xξ

K2
q (ξ) = −ad ξq + i∂xξ + ad ξJ

K3
q (ξ) = ad ξJ , (15.87)

where ξ ∈ g, J ∈ g; J = const . As far as we know, this elegant proof of the
compatibility of the tensors K1,K2,K3 was mentioned for the first time in
[16], as a by-product of the algebraic scheme. One can recognize in K1 and K3

the tensors P 0 and Q0 from (15.2), which we used to construct the Nijenhuis
tensor for the GZS system in canonical gauge.

15.3 Poisson–Nijenhuis Structures on Coadjoint Orbits

15.3.1 The Manifold of Jost Solutions

Now we shall apply the general scheme of Sect. 15.2 and shall give geometric
interpretation of the gauge transformation associated with ψ−1

0 ; see Introduc-
tion. We shall see that the gauge transformation can be interpreted as a map
from one P–N manifold into another and moreover that there is third P–N
manifold – the manifold of the Jost solutions, which is intrinsically related
to these two manifolds. Part of these results has been obtained in a sequence
of works of the authors (see [19, 20, 21, 22]) and has been exposed briefly in
[23] but have never been presented in full. All the notation we use here are
same as in Sect. 15.1: G will be fixed connected semisimple Lie group with
Lie algebra g, J – fixed regular element from the Cartan subalgebra h of g,
g[x], h[x] – the algebras of Schwartz-type functions on the line taking values
in g and h, respectively.

Let G be the connected group corresponding to the algebra g, and let us
define the following groups:

• G[x] – the group of smooth functions g : R → G, such that

lim
x→±∞

g(x) = e (15.88)
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• Gc[x] – the group of smooth functions g : R → G, such that

lim
x→+∞

g(x) = e, lim
x→−∞

g(x) = expHg; Hg ∈ h . (15.89)

(Of course, the operations in those groups are understood pointwise.) Some
clumsiness in the definition of Gc[x] results from our desire to have properly
defined momentum map on the set of Jost solutions; see below. We assume
that in both cases g(x) converges to its limit values fast enough, and therefore
we can assume that the Lie algebra corresponding to G[x] is g[x] and the Lie
algebra corresponding to Gc[x] is the algebra gc[x] of the smooth functions
with values in g, whose elements ξ(x) satisfy the relations

lim
x→+∞

ξ(x) = 0, lim
x→−∞

ξ(x) = Hξ; Hξ ∈ h , (15.90)

where ξ(x) converges fast enough to its limit values. We shall assume also
that (g[x])∗ is identified with g[x] and (gc[x])∗ is identified with gc[x], which,
for example in the last case means that we consider only linear functionals f
having the form

f(ξ) = 〈〈ηf , ξ〉〉 =

+∞
∫

−∞

〈ηf (x), ξ(x)〉dx; ηf ∈ g[x] . (15.91)

Let us define now on Te(G[x]) = g[x] the following 2-form:

ω(ξ, η)e = i〈〈∂xξ, η〉〉; ξ, η ∈ g[x] . (15.92)

and let us extend it by left-invariance on the group G[x]. As we have seen in
Sect. 15.2 the resulting form will be a symplectic form. In the same manner,
let us take the closed 2-form

Ωe(ξ, η) = 〈〈[J, ξ], η〉〉; ξ, η ∈ g[x] , (15.93)

and let us extend it by right invariance to the whole group G[x]. It is not
difficult to see that Ω can be extended not simply to G[x] but even to Gc[x].
Unfortunately, the form ω cannot be extended to Gc[x] because ω do not
satisfy the cocycle condition on gc[x]. Thus, it is not possible to apply directly
the results of Sect. 15.2 and to obtain P–N structure from a right-invariant
2-form and left-invariant symplectic form. However, we shall try to apply the
ideas outlined there, but with some modifications, inverting not the tensor
ω, but Ω, of course after restricting it on some submanifold, where it is not
degenerate.

The momentum map for ω, as far as we know, was pointed out for the
first time in [1]. As it is not hard to prove, it is given by the formula:

Φω(g) = −i(∂xg)g−1 . (15.94)
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The most easy way to check it is to fix some faithful matrix representations
of the group G and work in it. Since the group G is semisimple, the adjoint
and the coadjoint action can be identified and from the definition of Φω, we
derive that θ = dΦω must satisfy

θ(ξl
g) = −iAd ∗(g−1)ξx = −iAd (g)ξx . (15.95)

where ξl is an arbitrary left-invariant vector field. This means that for any
vector η at g we have

dΦω|g(η) = dΦω|g(g(g−1η)) = θ(g(g−1η)) =

−ig(g−1η)xg
−1 = −id(gxg

−1)|g(η) . (15.96)

Finally, taking into account that Φω(e) = 0, we get that the momentum map
is indeed (15.94). Now, though ω cannot be extended to Gc[x], the map Φω can
be extended, and this observation will be our starting point. Let us consider
Φω more closely. If q = Φ(g), then Φ−1(q) = g is found as solution of the
differential equation

igx + q(x)g(x) = 0

lim
x→+∞

g(x) = 1, lim
x→−∞

g(x) = expHg; Hg ∈ h. (15.97)

This means that g(x) is exactly the Jost solution ψ0 for the GZS system;
see Introduction. It follows that on the manifold of potentials M0 for the
generalized Zakharov–Shabat linear system there exists the smooth function
Φ−1

ω : M0 → Gc[x], and we can unambiguously define the submanifold of Jost
solutions

MG
0 = Φ−1

ω (M0) ⊂ Gc[x] , (15.98)

diffeomorphic to M0. Let us find the vectors that are tangent to the manifold
MG

0 , that is, let us find Tg(MG
0 ). From the definition of MG

0 we get that

dΦω(ξr
g) = −Ad ∗(g−1)ωeAd (g−1)ξ . (15.99)

If we perform the calculation and take into account that Ad ∗(g−1) = Ad (g)
we obtain

dΦω(ξr
g) = −(ξx + [q(x), ξ(x)]); q = Φω(g) . (15.100)

Since for q ∈ M0 we have (1 − π0)q = 0, we have that dΦω(ξr
g) ∈ Tq(M0)

exactly when
(1− π0)(ξx + [q(x), ξ(x)]) = 0 . (15.101)

Thus, Tg(MG
0 ) is spanned by those ξr

g , for which the above relation is fulfilled.
Note, that due to our assumption (15.15) we can write (15.101) into the form
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(1−π0)ξ(x) =

x
∫

−∞

(1−π0)[q(y), ξ(y)]dy =

x
∫

+∞

(1−π0)[q(y), ξ(y)]dy . (15.102)

From the above relation, taking into account that kerΩg is spanned by the
right-invariant vector fields ξr such that π0ξ = 0, we see that

kerΩg ∩ Tg(MG
0 ) = {0} . (15.103)

Actually, one has

Tg(Gc) = kerΩg ⊕ Tg(MG
0 ) , (15.104)

this relation being none, but already discussed (15.18). However, here we
have a “global” variant of the above splitting, that is, the above relation is a
consequence of the fact that the manifold MG

0 is transversal to the foliation
defined by g → kerΩ|g. In order to see it, let us first remark that kerΩe in
our case is equal to the algebra hc[x]:

hc[x] = {ξ ∈ gc[x], π0ξ = 0}. (15.105)

It is reasonable to assume that the Lie group Hc[x], corresponding to this Lie
algebra, consists of the functions expβ; β ∈ hc[x]. Let us consider the left coset
spaces of Hc[x], that is, the spaces Hc[x]g. It is not difficult to understand
that they are integral leaves of the distribution kerΩ: g → kerΩg. Now we see
that indeed MG

0 is transversal to the coset spaces, but we have a little more,
and we are able to show that MG

0 intersects with every coset space only once.
In order to prove it, let us take kg; k = expβ, β ∈ hc[x]. Then we have

(1− π0)Φω(kg) = −i(1− π0)
[

kxk
−1 + Ad (k)(gxg

−1)
]

=

−iβx + (1− π0)Ad (k)q = −iβx = 0 , (15.106)

because Ad (k(x)), k ∈ Hc[x] preserves the splitting g = h ⊕ g. Taking into
account that β(+∞) = 0, we get β = 0, and this completes the proof.

We summarize all that was said until now for the manifold MG
0 , into the

following

Proposition 15.16. The submanifold MG
0 is transversal to the integral leafs

of the distribution kerΩ: g → kerΩg and intersects with every leaf only once.
The projector Pg onto the subspace Tg(MG

0 ) corresponding to the splitting
(15.104) is equal to :

Pg = dRg ◦

⎡

⎣1.+ i

x
∫

−∞

(1− π0)[Φω(g), .]dy

⎤

⎦ ◦ π0 ◦ dR−1
g . (15.107)
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The form of this projector suggests to define the following tensor fields on
MG

0 :

g → QG
g = Pg ◦ dRg ◦ ad−1

J ◦ (dRg)−1

g → NG
g = Qg ◦ ωg . (15.108)

Then we are able to prove the following proposition:

Proposition 15.17. The tensor fields QG, NG defined on the manifold MG
0

are Φω – related to the tensor fields N2Q,Q on the manifold M0, that is :

dΦω ◦NG ◦ dΦ−1
ω = N

dΦω ◦QG ◦ dΦ∗
ω = N2 ◦Q = N2Q . (15.109)

Proof. Making use of (15.99) we obtain the following relations

dΦω = −Ad ∗(g−1) ◦ ωe ◦ dL−1
g

dΦ∗
ω = (dL−1

g )∗ ◦ ωe ◦Ad (g−1) . (15.110)

For the sake of brevity let us introduce the notation:

α = π0dR
∗
gω(ξr) = π0Ad ∗(g−1)ωeAd (g−1)ξ = π0Ad (g)ωeAd (g−1)ξ,

where ξ ∈ g[x]. Then taking into account that Ad ∗(g−1) = Ad (g), for
dΦωN

G(ξr
g) we get

−Ad (g)ωeAd (g−1)

⎡

⎣ad−1
J αx +

x
∫

−∞

(1− π0)[Φω(g), ad−1
J α]dy

⎤

⎦ =

−iad−1
J αx − π0[Φω(g), ad−1

J α]− i[Φω(g),

x
∫

−∞

(1− π0)[Φω(g), ad−1
J α]dy]

= −
(

N |Φω(g)

)

(α).

If ξ ∈ TΦω
(M0), from (15.101) follows that

α = π0Ad ∗(g−1)ωeAd (g−1)ξ = Ad ∗(g−1)ωeAd (g−1)ξ = −(dΦω|g)(ξr).

If we use now the explicit form of the Nijenhuis tensor N on M0, see (15.20),
we can write the above expression into the equivalent form

dΦω ◦NG = N ◦ dΦω , (15.111)

which coincides with the first relation in (15.109). The second one is verified
in a similar way. The proposition is proved.

The above proposition shows that the geometric properties of the tensor fields
NG, QG on the manifold of Jost solutions MG

0 for the system (10.3) are
the same as the properties of the tensor fields N,N2Q on the manifold of
potentials M0 for the same system. Therefore NG, QG endow MG

0 with P–N
structure.
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15.3.2 The Manifold of Potentials in Pole Gauge

We shall use now propositions (15.16,15.17) and shall map the manifold MG
0

onto an orbit of the group Gc[x]. Thus the results referred to in the Intro-
duction concerning the gauge equivalent hierarchies of evolution equations
related to L̃ (recall that L̃ is L in the pole gauge) will appear naturally in the
geometric picture. First, let us introduce the manifold OJ – the orbit of the
element J with respect to the adjoint representation of the group G:

OJ = Ad (G)J = {v : v = Ad ∗(g−1)J = Ad (g)J ; g ∈ G} . (15.112)

Our considerations have led us to the manifold OJ [x], consisting of all smooth
functions f(x) on the line, such that

f : R → OJ , lim
x→±∞

f(x) = J . (15.113)

Let us define the map ΦΩ : Gc[x] → OJ [x] by the formula below.6

g → Ad ∗(g)J = Ad (g−1)J . (15.114)

One can see that the foliation g → gHc[x] is projectable through ΦΩ , that
is, every leaf gHc[x] is mapped into a single point of the manifold OJ [x].
The map ΦΩ becomes injective when restricted to MG

0 . Then we can endow
the manifold OJ [x] with a P–N structure transferring the P–N structure from
MG

0 . In other words, we define onOJ [x] the tensor fields Q̃, Ñ by the formulae:

Ñ |S = dΦΩ |g ◦NG|g ◦ (dΦΩ |g)−1

Q̃|S = dΦΩ |g ◦QG|g ◦ dΦ∗
Ω |g

S = Ad ∗(g)J = Ad (g−1)J , (15.115)

where g ∈MG
0 . Then we have

Proposition 15.18. The following relations hold:

Ñ |S = Ad (g)∗ ◦N |q ◦Ad ∗(g−1)

Q̃|S = ad S

S = Ad ∗(g)J = Ad (g−1)J , (15.116)

where q = Φω(g), g ∈MG
0 .

Proof. Indeed, let ξr be right-invariant vector field. Then

dΦΩ(ξr) = Ad ∗(g)ad Jξ . (15.117)
6 The notation for this map is no accident. It is not difficult to see that ΦΩ is the

momentum map for the 2-form Ω, normalized by: ΦΩ(e) = J .
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Therefore

dΦΩ |g = Ad ∗(g) ◦ ad J ◦ dRg−1

dΦ∗
Ω |g = −dR∗

g−1 ◦ ad J ◦Ad (g) . (15.118)

It is not difficult to define also dΦ−1
Ω |g on the tangent space TS(OJ [x]), where

S = Ad ∗(g)J :

dΦ−1
Ω |g = dRg ◦

⎡

⎣1.+ i

x
∫

−∞

(1− π0)[φω(g), .]dy

⎤

⎦◦ad−1
J ◦Ad ∗(g−1) . (15.119)

We have

Ñ |S = V ◦W
V = Ad ∗(g) ◦ π0 ◦

{

Ad ∗(g−1) ◦ ωe ◦Ad (g−1)
}

W =

⎧

⎨

⎩

1.+ i

x
∫

−∞

(1− π0)[φω(g), .]dy

⎫

⎬

⎭

◦ ad−1
J ◦Ad ∗(g−1) . (15.120)

Then after some calculation we get the first equation in (15.116). The second
equation in (15.116) can be proved in the same manner, taking into account
that

Ad ∗(g) ◦ ad J ◦Ad (g) = ad S . (15.121)

The proposition is proved.

It is clear now that Q̃, Ñ endow OJ [x] with a P–N structure. Further, from
the relation N∗ = ad−1

J ◦N ◦ ad J it follows also that

Ñ∗ = Ad (g−1) ◦N∗ ◦Ad (g) = ad−1
S ◦ Ñ ◦ ad S . (15.122)

If we denote now Ñ∗ by Λ̃±, Ñ by Λ̃±
∗

and g by ψ0 the above relations can
be written into the form

Λ̃± = Ad (ψ−1
0 ) ◦ Λ± ◦Ad (ψ0) = ad−1

S ◦ Λ̃±
∗ ◦ ad S . (15.123)

It is evident (see Introduction) that the operators we have obtained are
the generating operators for the generalized Zakharov-Shabat system in pole
gauge.

Now, combining (15.17,15.18) we easily get

Corollary 15.19.

Ñ = d(ΦΩ ◦ Φ−1
ω ) ◦N ◦ d(Φω ◦ Φ−1

Ω )

Q̃ = ad S = d(ΦΩ ◦ Φ−1
ω ) ◦N2 ◦Q ◦ d(ΦΩ ◦ Φ−1

ω )∗ . (15.124)
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A simple comparison shows that the function Φ−1
ω ◦ ΦΩ we have in the above

is what in the Introduction (see (10.40)) we denoted by F . Using this notation
again, the second relation from (15.124) can be written as

Q̃ = ad S = Ñ2 ◦ [dF ]−1 ◦Q ◦ [dF−1]∗ . (15.125)

In other words, for the symplectic forms Ω(m) = ad−1
J ◦ Nn; n = 0, 1, 2 . . .

and Ω̃(m) = ad−1
S ◦ Ñn; n = 0, 1, 2 . . . we have

Corollary 15.20.

F ∗Ω(m) = Ω̃(m+2); m = 0, 1, 2, . . . . (15.126)

However, the last formula differs from the formula (10.42) in the Introduc-
tion, since in (10.42) there is additional term in the right-hand side. We shall
show that this term gives no contribution, if we consider fields that obey the
restriction (15.15). Indeed, let ξ be a tangent vector to M0 at the point q.
Let g = Φ−1

ω (q). In order to simplify the calculations let us put

ξ = δq, d(g)(ξ) = δg , (15.127)

where q → g(q) is the inverse of Φω, and let us work in some faithful matrix
representation. According to (15.102), if δg is tangent to the manifold MG

0

then

(1− π0)(δg)g−1(x) =

x
∫

−∞

(1− π0)[q, (δg)g−1]dx . (15.128)

As limx→∞ g = e, it follows that

+∞
∫

−∞

(1− π0)[q, (δg)g−1]dx = 0 . (15.129)

From the other hand, differentiating (δg)g−1 with respect to x we have

∂x((δg)g−1) = iδq + i[q, (δg)g−1] , (15.130)

and therefore,

− lim
x→∞

(1− π0)[(δg)g−1] = i

+∞
∫

−∞

(1− π0)[q, (δg)g−1]dx = 0.

Now recall that g = ψ0, where ψ0 is the Jost solution of (10.3). Then

lim
x→−∞

ψ0 = T (0) = D+(0) = D−(0)

T (0) = exp
r
∑

j=1

Δj(0)Hj , (15.131)
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and from the above it follows that on the manifold M0 we have

δΔj(0) = D(Δj(0))(ξ) = 0 . (15.132)

In other words, in order to perform our geometric constructions, we have made
assumptions which automatically lead to the fact that the additional term we
have spoken about is zero onM0. Finally, let us remark that all the quantities
Δj(0) are integrals of motion for the hierarchy related to the GZS system. It
follows that when we calculate the Hamiltonian vector fields, the additional
term can be omitted. Indeed, suppose that ω1 and ω2 are symplectic forms
on the manifold N and that

ω2 = ω1 +
N
∑

i=1

dfi ∧ dgi (15.133)

where fi, gi are smooth functions on N . Let Xf be the Hamiltonian vector
field corresponding to the Hamiltonian f with respect to the symplectic form
ω1 and let fi, gi be integrals of motion for Xf . Then

iXf
ω2 = iXf

ω1 +
N
∑

i=1

(Xf (fi)dgi −Xf (gi)dfi) = −df,

or in other words, Xf is Hamiltonian vector field for the Hamiltonian function
f also with respect to ω2. From this, it follows that the Poisson brackets
{f, g}1, {f, g}2 of f with some other function g, constructed with the help of
the forms ω1, ω2 are equal.

Finally, we write the relations between the Poisson–Nijenhuis manifolds
arising from the GZS system, namely,

• M0 – the manifold of potentials for the generalized Zakharov–Shabat sys-
tem in canonical gauge

• OJ [x] – the manifold of potentials for the generalized Zakharov–Shabat
system in pole gauge

• MG
0 – the manifold of the Jost solutions at λ = 0 for the generalized

Zakharov-Shabat system in canonical gauge

into the following diagram

idMG
0

MG
0

(QG, NG) −→ MG
0

(QG, NG)
Φω ↓ ↓ ΦΩ

M0

(N2Q,N) −→ OJ [x]
(Q̃, Ñ)

F = Φ−1
ω ◦ ΦΩ

(15.134)
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15.4 Fundamental Fields for GZS System

We have mentioned already that without the knowledge of the fundamen-
tal fields for a given P–N structure, the theory would be incomplete, as one
cannot construct explicitly the dynamical systems with commuting flows. In
this section we shall show that all the P–N structures, related to the general-
ized Zakharov–Shabat system, are invariant under the action of r-parametric
group of diffeomorphisms. This fact will lead us to the construction of r-
parametric families of fundamental fields. The fact that the P–N structures
on the manifolds M0, MG

0 and OJ [x] are interrelated allows one to operate
simultaneously with all of them.

To begin with, let us define on the Lie group Gc[x] the following diffeo-
morphism:

g → FG
H (g) = Lexp H ◦R−1

exp H(g) = (expH)g(expH)−1 , (15.135)

where H ∈ h. Note that although expH /∈ Gc[x], we have that FG
H (g) ∈ Gc[x].

Let us define similar diffeomorphism on the algebra gc[x]:

q → FA
H (q) = Ad (expH)q; H ∈ h . (15.136)

It is not difficult to see that as a matter of fact we have defined action of the
group

H = {expH, H ∈ h} (15.137)

on Gc[x] and on gc[x] and Gc[x] .

Proposition 15.21. The manifold M0 is invariant with respect to the action
of the group H.

Proof. Indeed, if q ∈ M0 then q̄ = FA
H (q) = Ad (expH)q is function of

Schwartz type. We have also (1−π0)q̄ = 0. If the Jost solution for the potential
function q is ψ0, the Jost solution for q̄ will be FG

H (ψ0). Then one can verify
that q̄ belongs to M0 (the condition (15.15) are also fulfilled). This completes
the proof.

Next we prove

Proposition 15.22. The maps Φω : Gc[x] → g[x] and ΦΩ : Gc[x] → OJ [x]
are equivariant with respect to the action of the group H.

Proof. Let us consider for example ΦΩ(FG
H (g)). We have:

ΦΩ(FG
H (g)) =

Ad ∗(expHg exp−H)J = Ad ∗(exp−H)Ad ∗(g)Ad ∗(expH)J =

Ad (expH)Ad (g−1)J = FA
H (ΦA

Ω(g)) , (15.138)

that is ΦΩ ◦FG
H = FG

H ◦ΦΩ , which means that ΦΩ is equivariant. In a similar
manner, one is able to show that Φω is equivariant. The proposition is proved.
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The theorem below is the central result in the present section:

Theorem 15.23. The manifolds M0, MG
0 , OJ [x] and their P–N structures

are invariant with respect to the action of H.

Proof. The fact that the manifolds are invariant has been already proved. In
order to prove the invariance of the P–N structures, let us note that

dFG
H |g(ξl|g) =

(

[Ad (expH)ξ]l|F G
H

(g)
)l

(15.139)

dFG
H |g(ξr|g) =

(

[Ad (expH)ξ]l|F G
H

(g)
)r

. (15.140)

For that reason

dFG
H |g = dLF G

H (g) ◦Ad (expH) ◦ dLg−1 =

dRF G
H (g) ◦Ad (expH) ◦ dRg−1 , (15.141)

(dFG
H )∗|g = dL∗

g−1 ◦Ad (expH) ◦ dL∗
F G

H (g) =

dR∗
g−1 ◦Ad (expH) ◦ dR∗

F G
H (g) . (15.142)

Now let us prove for example that the tensor QG is invariant.

dFG
H |g ◦QG|g ◦ (dFG

H |g)∗ =

dRF G
H (g) ◦Ad (expH) ◦ [ad−1

J .+ i

x
∫

−∞

(1− π0)[Φω(g), ad−1
J .]dy] ◦

◦π0 ◦Ad (exp−H) ◦ dR∗
F G

H (g) =

dRF G
H (g) ◦ [ad−1

J .+ i

x
∫

−∞

(1− π0)[Ad (expH)(Φω(g)), ad−1
J .]dy] ◦

◦ π0 ◦ dR∗
F G

H (g) . (15.143)

Since the map Φω is equivariant, Ad (expH)(Φω(g)) = Φω(FG
H (g)) and we

obtain

dFG
H |g ◦QG|g ◦ (dFG

H |g)∗ = QG
F G

H
. (15.144)

In the same way we arrive at the relation

dFG
H |g ◦NG|g ◦ (dFG

H |g)−1 = NG
F G

H
, (15.145)
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which shows that the tensor field g → NG is also invariant with respect to
the action of H. Now, as the maps Φω, ΦΩ are equivariant with respect to the
action of H it follows that the P–N structures on the manifoldsM0 and OJ [x]
are also invariant with respect to the action of H. The theorem is proved.

We have an immediate corollary

Corollary 15.24. The following sets of vector fields are fundamental:

• For the P–N structure on M0 the fields:

q → [H, q]; H ∈ h . (15.146)

• For the P–N structure on MG
0 the fields:

g → Hr(g)−H l(g); H ∈ h . (15.147)

• For the P–N structure on OJ [x] the fields:

S → [H,S]; H ∈ h . (15.148)

Proof. Let us fix H ∈ h and let us consider the 1-parametric group in H:

t �→ exp (tH).

Then the tensor fields (QG, NG), (Q,N), and (Q̃, Ñ) are invariant with respect
to the action of this group. Therefore the fundamental fields of the action of
the 1-parametric group are fundamental for the tensor fields listed above.
These fundamental fields are:

• On the algebra g[x]:

q �→ d

dt
Ad (exp (tH))(q)|t=0 = [H, q] . (15.149)

• On the group Gc[x]:

g �→ d

dt
exp (tH)g exp (−tH)|t=0 = Hr(g)−H l(g) . (15.150)

• On the orbit OJ [x]:

S �→ d

dt
Ad (exp (tH))(S)|t=0 = [H,S] . (15.151)

We would like to note that the fields g → Hr(g) and g → H l(g) do not satisfy
the boundary conditions, resulting from the definition of Gc[x], and, there-
fore, separately they do not represent vector field on Gc[x]. Their difference
however, satisfies these conditions and g → Hr(g)−H l(g) is a vector field on
Gc[x].
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Corollary 15.25. • For each H ∈ h and n = 0, 1, 2, . . . the vector fields:

q → Nn([H, q]) = ad J ◦ (N∗)n(ad−1
J [H, q]) (15.152)

on M0 commute and are Hamiltonian with respect to infinite hierarchy of
Poisson structures Q ◦ Nn = (N∗)n ◦ Q (or symplectic structures Ωn =
ad−1

J ◦Nn).
• For each H ∈ h and n = 0, 1, 2, . . . the vector fields:

g → (NG)n(Hr(g)−H l(g)) (15.153)

on MG
0 commute and are Hamiltonian with respect to infinite hierarchy of

Poisson structures QG ◦ (NG)n.
• For each H ∈ h and n = 0, 1, 2, . . . the vector fields:

S → Ñn([H,S]) = (Ñ∗)n(ad−1
S [H,S]) = −(Ñ∗)n(π̃0H) (15.154)

on O[x] commute and are Hamiltonian with respect to infinite hierarchy
of Poisson structures Q̃ ◦ Ñn = (Ñ∗)n ◦ Q̃ (or symplectic structures Ω̃n =
ad−1

S ◦ Ñn).

These results are in complete accordance with the properties of the hi-
erarchies of nonlinear evolution equations related to the GZS system (10.3)
and its gauge-equivalent system (10.24) and give to these results a beautiful
geometric interpretation.
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16

Linear Bundles of Lie Algebras
and Compatible Poisson Structures

The main goal of this chapter is to introduce two more examples of Nijenhuis
operators, arising as before from compatible Poisson tensors. These are the
Nijenhuis operators (tensors) that are related to the hierarchies of the so-called
O(3) chiral system (CF) and with the hierarchy of the so-called Landau–
Lifshitz equation (LL). However, in order to introduce the pairs of compatible
Poisson tensors that will give us the corresponding P-N manifolds we must
first consider the algebraic structures that are responsible for their existence.
For this reason, we first introduce the notion of linear bundles of Lie algebras
and how this algebraic structure leads to compatible Poisson tensors in the
finite in the infinite dimensional case. The aforementioned algebraic structure
is interesting by itself, so we dedicate some space to it also.

16.1 Preliminaries

Let Mat (n,K) = End (Kn) be the linear space of all n× n matrices over the
field K. In what follows K will be one of the classical fields – R or C. We shall
consider it as fixed and shall write it explicitly only if it is necessary. So we
write Mat (n) instead of Mat (n,K) and so on. The space Mat (n) possesses a
natural structure of associative algebra and as a consequence a structure of
a Lie algebra defined by the commutator [X,Y ] = XY − Y X. Considered as
Lie algebra the space Mat (n) is then usually denoted by gl (n). However, the
structure of the associative algebra over Mat (n) is not unique, for example if
we fix an element J ∈ Mat (n) then we can define the product (X ◦ Y )J =
XJY and with respect to the new product the vector space Mat (n) is again
associative algebra. The new associative algebra structure naturally induces
new Lie algebra structure, defined by the bracket

[X,Y ]J = XJY − Y JX . (16.1)

Thus we obtain a family of Lie brackets, labeled by the element J . It is readily
seen that we have actually a linear space of Lie bracket structures or simply
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linear space of Lie brackets, because evidently for any numbers a1, a2 and
J1, J2 ∈ Mat (n) we have

a1[X,Y ]J1 + a2[X,Y ]J2 = [X,Y ]a1J1+a2J2 . (16.2)

This construction can be applied even if X,Y, J are not square matrices.
Indeed, if X,Y ∈ Mat (n,m) – the linear space of n × m matrices and J ∈
Mat (m,n) – the linear space of n ×m matrices, then the expression (16.1)
defines again linear space of Lie brackets or as they also say (16.1) defines
linear bundle of Lie algebras.

It is difficult to trace where the above construction was used for the first
time as it is too simple not to be discovered at the time when the intensive
investigations of the Lie algebras had been started. Maybe the question was
considered not so important, because as is readily seen, if J is not degenerate
and there exists element D ∈ gl (n) such that D2 = J−1 then the map:
g : X �→ DXD is isomorphism between gl (n) (with respect to the bracket
[X,Y ]J ) and gl (n) with respect to the usual bracket:

g([X,Y ]) = [g(X), g(Y )]J . (16.3)

For the bundles (o (n), sym (n)), (sym (n), o (n)) (the exact definitions are
given below) similar considerations (see [1]) show that there are a finite num-
ber of nonisomorphic algebras in the bundle. But the possibility of having all
these algebras simultaneously is interesting, and so this algebraic structure is
by no means void of interest.

We believe also that apart from the applications related to compatible
Poisson tensors, which we shall consider below, one can use the above al-
gebra structures to study deformations of Lie algebras giving this a natural
background.

Most of the information about the bundles of Lie brackets and their ap-
plications can be found in the monograph [1] and in [2]. In [1], there are also
references to earlier works, all of which, however, are relatively recent. The lin-
ear bundles of Lie algebras in [1] are used mainly because of their applications
to the integrable systems – bundles of Lie algebras naturally define compat-
ible Poisson tensors and the cases (o (n), sym (n)) and (sym (n), o (n)) (see
below) are considered thoroughly, there have been found the nonisomorphic
algebras in these bundles and for them the index, center and the invariants of
the coadjoint action.

We are interested in the bundles of the Lie (brackets) algebras for the
same reason mentioned above – the bundles of Lie brackets generate compat-
ible Poisson tensors, and we know that compatible Poisson tensors lead to
Nijenhuis tensors. Even without finding some Nijenhuis fields the compatible
Poisson tensors have important applications to the finite dimensional inte-
grable systems since they can be used to establish Liouville-type integrability.
In [1] there is a large collection of such applications. For example, recently
the bracket [X,Y ]J was used efficiently in [3] to reveal the bi-Hamiltonian
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structure of the Euler equations on o (n), where it was called “modified”
Lie bracket, and the authors have been able to establish in a simple way
the relation between the Mischenko and Manakov series of integrals for the
n-dimensional rigid body problem. Together with the works that will be cited
below (see the next paragraph), an application to the infinite-dimensional
systems has been considered recently in [4].

The expression (16.1) naturally appeared in the description of the Hamil-
tonian structures for the chiral fields system hierarchy and Landau–Lifshitz
equation hierarchy of integrable equations, cf. [5, 6], obtained via polynomial
pencil of Lax pairs on the algebra o (4), though at the beginning the under-
lying algebraic structure has been overlooked. Recently [7, 8, 9], the “new”
brackets have been used to describe the bi-Hamiltonian structures of the hi-
erarchies we mentioned, and the corresponding Nijenhuis operator has been
calculated. In the present chapter, we shall introduce these results, since they
fit in the geometric picture we are discussing, but first we continue with some
general results about the new brackets.

16.2 General Properties

We start with some definitions and theorems–those that are the same as in
[1] and marked by TF. The rest of results presented here were obtained [2].

Definition 16.1 (TF). Let g and V be vector spaces and let for arbitrary
v ∈ V be defined the Lie bracket on g:

(X,Y ) → Lv(X,Y ) = [X,Y ]v = ad v
X(Y ) , (16.4)

such that for any v1, v2 ∈ V , a1, a2 ∈ K,

a1[X,Y ]v1 + a2[X,Y ]v2 = [X,Y ]a1v1+a2v2 . (16.5)

We shall say that (g, V ) is a linear bundle of Lie algebras and if V is finite
dimensional the dimension of V will be called the dimension of the linear
bundle (g, V ).

The space g endowed with the bracket Lv shall be denoted by gv. When gv

coincides with some classical matrix algebra with respect to the commutator
we shall denote it by the notation that is used for this algebra and the bracket
in it by bracket without subscript. In this case, we shall denote by the same
letter the algebra g and the underlying vector space. Also, we shall denote by
dv the coboundary operator associated with the adjoint representation of gv

or with the trivial representation (the representation is usually clear from the
context). Of course, dv acts on the graded module of skew-symmetric maps
from g into g (or K) which play the role of cochains. As usual (see [10]), we
denote by Lv

X the operator
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Lv
X = dv ◦ iX + iX ◦ dv; X ∈ g (16.6)

where iX , acting on the k-cochain M gives the k − 1 cochain:

iX(M)(X1,X2, . . . , Xk−1) = M(X,X1,X2, . . . , Xk−1) . (16.7)

It is easy to check that the fact that for u, v ∈ V the expression Lu + Lv is
Lie bracket entails that for X1,X2,X3 ∈ g one has the identity:

[X1, [X2,X3]u]v + [X1, [X2,X3]v]u + cycl (1, 2, 3) = 0 . (16.8)

The notation cycl (1, 2, 3) means that one must add to the first two terms the
expressions obtained from them by cyclic permutation of the indices 1,2,3.

The applications of the linear bundles of Lie algebras in the theory of
the integrable systems are based on the following simple proposition, which,
applied to the corresponding Poisson-Lie tensors, allows to construct sets of
functions in involution.

Proposition 16.2 (TF). Denote by Z(gu) the center of gu; u ∈ V . We have:

• Z(gu) is subalgebra in all the algebras gv; v ∈ V .
• If X1 ∈ Z(gu) and X2 ∈ Z(gv) then [X1,X2]u, [X1,X2]v ∈ Z(gw), where

w = λu+ μv and λ, μ are fixed numbers.

Taking into account (16.8), it is not difficult to see that if V is a vector space
and Lv; v ∈ V is a family of Lie brackets on g having the property that
Lμv = μLv, then (g, V ) will be linear bundle of Lie brackets if and only if

dvLw = dwLv = 0; v, w ∈ V . (16.9)

In other words, we have:

Proposition 16.3 (TF). For v, w ∈ V the bracket Lw is 2-cocycle for the
coboundary operator dv.

Let us denote now by ad v
X the adjoint action of the algebra defined by the

bracket [X,Y ]v. Clearly, the map ad v
X can be considered as 1-cocycle for the

adjoint representation of gw for w ∈ V . A brief calculation shows that (16.9)
implies that for v, w ∈ V and X ∈ g we have:

dvad w
X + dwad v

X = 0 . (16.10)

Since iXLw = ad w
X this also means that

Lv
XLw + Lw

XLv = 0 . (16.11)

Let A be a linear operation on g and B be a bilinear operation. The action of
the linear operation A on the bilinear operation B can be defined as follows:

A(B)(X,Y ) = A(B(X,Y ))−B(A(X), Y )−B(X,A(Y )); X,Y ∈ g .
(16.12)

We have
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Definition 16.4 (TF). Let (g, V ) be a linear bundle of Lie brackets. Let
Av(X) be the linear map Av(X)(Y ) = [X,Y ]v. We say that (g, V ) is closed,
if the family of bilinear operations Lw; w ∈ V is closed under the action of
the linear operations Av(X); v ∈ V, X ∈ g.

We cast this definition in a form more convenient for our purposes:

Definition 16.5. A linear bundle of Lie algebras is called closed if there exists
a map

f : g× V × g �→ V , (16.13)

such that
Lw

XLv = Lf(w,Z,v) , (16.14)

for v, w ∈ V ; X ∈ g.

In order to see that the two definitions are equivalent, it is enough to remark
that

Lw
X(Lv) = dwiX(Lv) + iXdw(Lv) = dw(ad v

X) . (16.15)

Let us turn our attention to the function f(v, Z,w). Clearly, f(v, Z,w) is linear
in each argument. For closed bundles the (16.11) implies that

L(f(w,Z,v)−f(v,Z,w)) = 0; v, w ∈ V, Z ∈ g . (16.16)

Definition 16.6. We call the bundle (V, g) of Lie algebras regular, if the only
Abelian algebra in it is gv=0.

For a closed regular bundle, the relation (16.16) immediately gives that the
function f(v, Z,w) is skew-symmetric with respect to v and w.

Definition 16.7 (TF). A linear bundle of Lie algebras is called irreducible
if the only common ideals for all the algebras gv; v ∈ V are the trivial ones,
that is {0} and g.

Usually, when one has some irreducible algebraic structures, one can look for
some classification. In the literature, one can find citations about the following
classification theorem for closed irreducible linear bundles of Lie algebras.1

Theorem 16.8. All irreducible closed linear bundles of Lie algebras over C

are comprised in the following list:

• g = o (n) the linear space of all skew-symmetric matrices in Mat (n), V =
sym (n) – the linear space of all symmetric matrices in Mat (n), with the
bracket

[X,Y ]v = XvY − Y vX . (16.17)

1 We cite this result according to [1], where it is given without a proof with reference
to [11], where, however, there is again only a short abstract. This situation is a
little embarrassing, as we actually have never seen the proof of this theorem.
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• g = sym (n) – the linear space of all symmetric matrices in Mat (n), V =
o (n) – the linear space of all skew-symmetric matrices in Mat (n), with
the bracket

[X,Y ]v = XvY − Y vX . (16.18)

• g – the linear space of all n×m matrices, V – the linear space of all m×n
matrices, with the bracket

[X,Y ]v = XvY − Y vX . (16.19)

• g = V ω – symplectic linear space with symplectic form ω, V = V ω, with
the bracket

[X,Y ]v = ω(v,X)Y − ω(v, Y )X − ω(X,Y )v . (16.20)

• One – dimensional bundle generated by a simple Lie algebra, that is g –
simple Lie algebra, V = C, with the bracket

[X,Y ]v = v[X,Y ] . (16.21)

However, in such classification-type theorems, we must know exactly the defi-
nition of equivalent objects, and we could not find what is meant by equivalent
bundles of Lie algebras in [1]. Thus, the above result seems to be unclear, be-
cause if for example we adopt the point of view that in the bundles (g1, V1)
and (g2, V2) are equivalent if in the families (g1)v, v ∈ V1 and (g2)w, w ∈ V2

are contained the same abstract Lie algebras, and if we adopt the viewpoint
that the equivalence between (g1, V1) and (g2, V2) means that there exists a
pair of linear maps:

F : g1 �→ g2

F : V1 �→ V2 (16.22)

such that F , F is isomorphism and

F([X,Y ]v) = [F(X),F(Y )]F (v) , (16.23)

it is not evident that we shall have the same classes of equivalence. The choice
of the appropriate definition for equivalent bundles is related to the notions of
homomorphism between two bundles of Lie algebras and subbundle of a bun-
dle of Lie algebras, and, here, we can also have different types of definitions.
We believe that it is natural to accept the following.

Definition 16.9. The pair (F , F ) of linear maps as in (16.22) is called ho-
momorphism of the linear bundles (g1, V1) and (g2, V2) if they satisfy (16.23).
If both F and F are isomorphisms, we shall call the bundles isomorphic. The
bundle (g1, V1) will be called a subbundle of (g2, V2) if g1 ⊂ g2, V1 ⊂ V2 and
if (16.23) holds for the inclusion maps F : V1 �→ V2 and F : g1 �→ g2.
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The the non-isomorphic algebras in the families o (n)J and sym (n)I , con-
tained in (o (n), sym (n)) and (sym (n), o (n)) over C are classified in [1] using
the following simple considerations. Suppose C is nondegenerate n×n matrix,
denote by the upper index “t” the transposition, and consider the map

A �→ hC(A) = CtAC . (16.24)

Then the linear spaces of symmetric and skew-symmetric n× n matrices are
invariant under hC . Moreover, one can see that hC is isomorphism between the
algebra o (n)J ′ ; J ′ = CJCt (J-symmetric) and the algebra o (n)J , and hC is
isomorphism between the algebra sym (n)J ′ , J ′ = CJCt (J-skew-symmetric)
and the algebra sym (n)J . As any symmetric or skew-symmetric bilinear form
over C can be put into canonical form we obtain:

• For every J ∈ sym (n) exists C such that CJCt = diag (1p,0) = Hp (the
blocks are p× p and q × q dimensional, p+ q = n).

• For every J ∈ o (n) there exists C such that CJCt = Ik,q = diag (S2k,0q),
2k + q = n, where the block S2k is 2k × 2k dimensional and has the form

S2k =
(

0 1k

−1k 0

)

. (16.25)

Thus one needs to study only the algebras o (n)Hp
and sym (n)Ik,q

. For
the algebras o (n)Hp

we have the following splitting of the vector space o (n):

o (n) = o (p)⊕ (V1 ⊕ V2) , (16.26)

where o (p) consists of the matrices of the type (in block form)
(

A 0
0 0

)

, A ∈ Mat (p), At = −A , (16.27)

V1 consists of the matrices of the type
(

0 B
−Bt 0

)

, B ∈ Mat (p, n− p) , (16.28)

and V2 consists of the matrices of the type
(

0 0
0 D

)

, D ∈ Mat (n− p), Dt = −D . (16.29)

If we consider (16.26) we can see that actually o (n)Hp
is semidirect sum of

o(p) and the radical of o (n)Hp
, which is equal to V1 ⊕ V2. On V1 the action

of o (p) is simply n − k times the canonical action of o (p) on C
p, on V2 the

action of o(p) is trivial, [V1, V2]Hp
⊂ V2 and V2 is the center of the algebra

o (n)Hp
. In particular, when p = n − 1, the center is zero and o (n)Hn−1 is

a direct sum of o (n − 1) and the radical V1, which is (n − 1)-dimensional
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Abelian subalgebra. The algebra o (n)Hn−1 is isomorphic to e (n− 1), that is,
to the algebra corresponding to the group of rigid body movements of the
(n− 1)-dimensional Euclidean space.

Considerations of the same type show that the algebra sym (n)Ik,q
is

semidirect sum of the symplectic algebra sp (2k) and the radical, which is of
the type V = V1⊕V2. On V1 the action of sp (2k) is n−2k times the canonical
action of sp (2k) on C

2k, on V2 the action of sp (2k) is trivial, [V1, V2]Ik,q
⊂ V2

and V2 is the center of the algebra sym (n)Ik,q
.

The case of the semisimple algebras being clear, in the list from theorem
(16.8) only the bundle (Mat (p, q),Mat (q, p)) and the symplectic space case
(g = V ω, V = V ω) remains. The symplectic case is not treated in [1], but it can
be treated along the same lines. Indeed, it is well known, for any symplectic
form there exists a symplectic basis, that is, basis of V ω:

{X1,X2, . . . , Xn, Y1, Y2, . . . , Yn}; 2n = dim (V ω),

such that
ω(Xi, Yj) = δij , ω(Xi,Xj) = ω(Yi, Yj) = 0 . (16.30)

Moreover, the vector X1 in this basis can be chosen to be any vector fixed
beforehand, provided it is not equal to zero. Since the case v = 0 is trivial let
us consider the algebra structure defined by v = X1 	= 0, and let us denote
the corresponding algebra by gv. Then the brackets (16.20) read:

[Xi,Xj ] = 0

[Xi, Yj ] = −δ1jXi − δ1iX1

[Yi, Yj ] = δ1iYj − δ1jYi , (16.31)

and we see that all the algebras gv (v 	= 0) are isomorphic.
Denote by span {Z1, Z2, . . . , Zp} the vector space spanned by the vectors

Zi. Then the spaces:

g1 = span {X1,X2, . . . , Xn}
g2 = span {Y1, Y2, . . . , Yn} (16.32)

are subalgebras, gv = g1 ⊕ g2 and g1 is Abelian ideal in gv. Next, as

g
(1)
2 = [g2, g2] ⊂ span {Y2, Y3, . . . , Yn}, g

(2)
2 = 0 , (16.33)

we see that g
(3)
v = 0 and gv is solvable.

In the sequel, we present a simple construction giving closed linear bundles
of Lie algebras, but before doing it let us consider once more the abstract case.
Suppose we have the closed linear bundle (g, V ), suppose also X,Y ∈ gv. It
is well known that [Lv

X ,Lv
Y ] = Lv

[X,Y ]v
. Applying this relation to the bracket

Lw we get:
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Proposition 16.10. If the closed bundle (g, V ) is regular, every algebra gv

possesses a natural representation

g � X �→ F v(X) ∈ End (V ) , (16.34)

given by the formula:
F v(X)w = f(v,X,w) . (16.35)

Consider now u, v ∈ V and fixed X ∈ g. The operations Lu
X and Lv

X are of
zero order for the graded module of the skew-symmetric maps, and, therefore,
the commutator [Lu

X ,Lv
X ] is also of zero order. We easily get:

Proposition 16.11. Let (g, V ) be closed, regular linear bundle of Lie brack-
ets. If for arbitrary u, v ∈ V and X ∈ g there exist the 3 – linear map:

Ψ : V × g× V �→ V , (16.36)

such that for arbitrary w ∈ V we have:

[Lu
X ,Lv

X ]Lw = LΨ(u,X,v)
X Lw , (16.37)

then for fixed X the map (u, v) �→ Ψ(u,X, v) defines a Lie algebra structure
on V and

u �→ ΦX(u) : ΦX(u)w = f(u,X,w) (16.38)

is a representation of this algebra.

It is not very surprising that for all the algebras in the list from the theorem
(16.8), and also for the algebras from the construction we shall present in
the next section, we find that the representations ΦX are actually adjoint
representations, in fact for all these cases (u, v) �→ f(u,X, v) is a Lie bracket
and Ψ(u,X, v) = f(u,X, v). More precisely:

• For the bundle (o (n), sym (n)), f(v,X,w) = [v, w]X – the bracket for the
bundle (sym (n), o (n)).

• For the bundle (sym (n), o (n)), f(v,X,w) = [v, w]X – the bracket for
(sym (n), o (n)).

• For the bundle (Mat (n,m),Mat (m,n)), f(v,X,w) = [v, w]X – the bracket
for the bundle (Mat (m,n),Mat (n,m)).

• For the bundle (V ω, V ω) the function f(v,X,w) = [v, w]X is the bracket
in the same bundle.

• For the trivial case with the bracket v[X,Y ] the function f(v,X,w) is
identically zero.

The representations F v for the bundles (o (n), sym (n)) and (sym (n), o (n))
can be cast in more convenient form. For example, let us consider the case
o (n)v where v is some symmetric matrix of rank n. Then the map (16.24)
with C such that v = C−1(Ct)−1 establishes isomorphism between o (n) and
o (n)v and the map
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X �→ ΨC(X) = F v ◦ hC(X) ∈ End (sym (n)) (16.39)

is a representation of o (n). The calculation shows that

ΨC = h(Ct)−1 ◦ Ψ ◦ h(Ct) , (16.40)

where Ψ is the classical representation of o (n) into the space of the symmetric
matrices:

X �→ Ψ(X) ∈ End (sym (n))

Ψ(X)w = Xw − wX (16.41)

and h was defined in (16.24).
More generally,

• The representations F v of o (n)v for v having rank p is equivalent to the
representation

X �→ ΨHp
(X) ∈ End (sym (n))

ΨHp
(X)w = HpXw − wXHp (16.42)

of o (n)Hp
.

• The representations F v of sym (n)v for v-skew-symmetric and having rank
2k is equivalent to the representation

X �→ ΨIk,q
(X) ∈ End (o (n))

ΨIk,q
(X)w = Ik,qXw − wXIk,q (16.43)

of the algebra sym (n)Ik,q
, (2k + q = n).

16.3 Construction of Closed Linear Bundles
of Lie Algebras

Consider the space Mat (n). On it there are two natural algebraic structures,
induced from the associative algebra structure: the Lie algebra structure, de-
fined by the commutator, and the structure of commutative algebra, defined
by the anti-commutator X1 ∗ X2 = X1X2 + X2X1. To distinguish the two
structures we denote Mat (n) by gl (n) in the first case and mat (n) in the
second. There exist the following natural maps:

• The representation of gl (n) into End (gl (n)):

X → F (X) : F (X)Y = −XtY − Y X . (16.44)
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• The map of Mat (n) into End (Mat (n)):

X → G(X) : G(X)Y = XtY − Y X . (16.45)

Since F is representation, for fixed S the subspace

gS = {X : F (X)S = 0} ⊂ gl (n) , (16.46)

is a Lie subalgebra in gl (n). The map G possesses the following interesting
property:

G(X1 ∗X2) = −F (X1)G(X2)− F (X2)G(X1) (16.47)

and because of it the space

VS = {J : G(J)S = 0} ⊂ mat (n) (16.48)

is subalgebra of the algebra mat (n) containing the unity 1n. Let us denote
(X1 ∗ X2)Y = X1Y X2 + X2Y X1 and [X1,X2]Y = X1Y X2 − X2Y X1. For
Y = 1n, these operations are the usual commutator and anti-commutator. By
straightforward calculations one establishes :

Proposition 16.12. The operations (X1∗X2)Y and [X1,X2]Y have the prop-
erties:

[gS , VS ]J ⊂ VS , (gS ∗ VS)J ⊂ gS

[gS , gS ]J ⊂ gS , (gS ∗ gS)J ⊂ VS

[VS , VS ]J ⊂ gS , (VS ∗ VS)J ⊂ VS (16.49)

for J ∈ VS and

[gS , VS ]X ⊂ gS , (gS ∗ VS)X ⊂ VS

[gS , gS ]X ⊂ VS , (gS ∗ gS)X ⊂ gS

[VS , VS ]X ⊂ VS , (VS ∗ VS)X ⊂ gS (16.50)

for X ∈ gS.

Corollary 16.13. If the matrix S is nondegenerate, then gS ∩ VS = {0} and
the linear space G = gS ⊕ VS is Lie algebra and commutative algebra with
respect to all the brackets [X,Y ]M and products (X ∗ Y )M for M ∈ G. In
particular, (G,G) is closed linear bundle of Lie algebras.

Corollary 16.14. (gS , VS) is closed linear bundle of Lie algebras with bracket
[X1,X2]J . The map f , introduced in the definition of closed linear bundle of
Lie algebras, has the form f(J1, Z, J2) = [J1, J2]Z and for every fixed Z, it
endows the space VS with a structure of Lie algebra, that is (VS , gS) is closed
bundle of Lie algebras with respect to the bracket [J1, J2]Z , Z ∈ gS. If J is
nondegenerate and if in VS there exists an element D such that D2 = J−1

then the map: h : X �→ DXD is isomorphism between gS as Lie algebra
with respect to the bracket [X,Y ]J and gS as Lie algebra with respect to the
standard bracket.
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Let us note, that even when we restrict ourself to the class of bundles of
the form (gS , VS) this class is large enough. For example, one readily sees that
if we choose S = 1n then gS = o (n) – the orthogonal algebras, if we choose

S = S2n =
(

0 1n

−1n 0

)

∈ gl (2n) , (16.51)

we get the symplectic algebras sp (2n).2 Thus, on all the simple algebras from
the classical series Bn = o (2n + 1); n ≥ 2, Cn = sp (2n); n ≥ 3 and Dn =
o (2n); n ≥ 4, we can define closed linear bundles of Lie algebras. Of course,
closed linear bundle of Lie algebras can be defined also on the algebras o (3),
o (4), o (6), sp (2), which are not included in the series Bn, Cn, and Dn or
because they are semisimple but not simple (the case of o (4)), or because
they are isomorphic to some algebras of the complete list of the classical
series of simple Lie algebras. The list of the classical Lie algebras includes in
addition to the algebras cited above the algebras An = sl (n + 1); n > 1 for
which it seems that the above construction cannot be applied. (The algebra
sl (4) is isomorphic too (6), and since on it there exists a closed linear bundle
structure, the algebra sl (4) is an exception).

For the algebra o(n); n > 2 the definition of the space VS , S = 1n entails
that J must be symmetric, that is V1 = sym (n) and for sp (2n) we have

VS2n
=

{

J : J =

(

A B

C At

)

; A, B, C ∈ gl (n), Bt = −B, Ct = −C

}

. (16.52)

The space VS2n
contains the unity, so the bundle (sp (2n), VS2n

) contains
the usual bracket. Therefore for n ≥ 3 this bundle is closed and irre-
ducible. It is not difficult to see, however, that this bundle is isomorphic to
(sym (2n), o (2n)), the isomorphism (H,h) being:

H : X ∈ sym (2n) �→ D2nXD2n ∈ sp (2n)

h : J ∈ o (2n) �→ D−1
2n JD

−1
2n ∈ VS2n

(16.53)

where D2n is the matrix:

D2n =
i
√

2
2

(

1n −1n

1n 1n

)

. (16.54)

It is easy to check that D−1
2n = −Dt

2n and D2
2n = S2n. This entails not only

that from X ∈ sym (2n) follows D2nXD2n ∈ sp (2n) and that from J ∈ o (2n)
follows D−1

2n JD
−1
2n ∈ VS2n

but also that

H([X,Y ]J ) = [H(X),H(Y )]h(J) . (16.55)

2 The symplectic algebra sp (2n) over R or C consist of the 2n × 2n matrices X
having the property ω0(Xv, w) + ω0(v, Xw) = 0 for v, w ∈ R2n (C2n), where ω0

is the canonical symplectic form on R2n (C2n).



16.3 Construction of Closed Linear Bundles of Lie Algebras 559

In particular, H([X,Y ]S2n
) = [H(X),H(Y )].

The case of the bundles (Mat(p, q),Mat(q, p)) from the theorem (16.8) can
be obtained via the above construction with a slight modification. Suppose
that v is such that v2 = 1n. Then

φ : X �→ vXv−1 (16.56)

is an involution of Mat (n). Therefore Mat (n) splits into the spaces Mat +(n)
and Mat−(n) corresponding to the eigenvalues +1 and−1 of φ. If now (gS , VS)
is one of the bundles constructed in the above, then the following proposition
holds:

Proposition 16.15. The pairs of spaces: (gS ∩Mat−(n), VS ∩Mat−(n)) and
(gS ∩Mat +(n), VS ∩Mat +(n)) are linear bundles of Lie algebras with respect
to the brackets, induced from (gS , VS).

Now if we choose n = p + q, S = 1n, v = diag (1p,−1q), we can see that
the space gS ∩Mat−(n) consists of the matrices having the block form:

(

0 b
−bt 0

)

(the blocks on the diagonal are of type p × p and q × q, respectively). The
space VS ∩Mat−(n)) is the space of matrices of the form:

(

0 st

s 0

)

.

The first space is naturally isomorphic to Mat (p, q) and the second to
Mat (q, p). It remains to see that the bracket structure on gS ∩ Mat−(n)
is actually equivalent to [b1, b2]s = b1sb2 − b2sb2 where b1, b2 ∈ Mat (p, q) and
s ∈ Mat (q, p). This completes the proof.

Let us prove some general properties of the bundles we have constructed.
We have seen (see theorem (16.3)) that if (g, V ) is arbitrary linear bundle
of Lie algebras, the Lie bracket Lv is 2-cocycle for the adjoint representation
defined by the bracket [X,Y ]w (that is with respect to dw). For the bundles
(gS , VS) we can say a little more.

Proposition 16.16. For the bundle (gS , VS) consider the following maps:

αJ : gS → gS

αJ(X) =
1
2
(JX +XJ) (16.57)

where J ∈ VS.(One can easily check that αJ (X) ∈ gS so the map αJ is
properly defined). Let J1, J2 ∈ VS. Then

[dJ2αJ1 ](X,Y ) = [dJ1αJ2 ](X,Y ) =
1
2
[X,Y ]J1∗J2 (16.58)

where the coboundary operator dJ1 corresponds to the bracket [X,Y ]J1 with
respect to the adjoint representation.
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Corollary 16.17. Consider the bundle (gS , VS). Then:

• The map (X,Y ) → [X,Y ]J is 2-coboundary for the adjoint representation
of gS with respect to the usual bracket.

• If H1,H2 are two commuting matrices belonging to VS and if H−1
1 exists

and belongs to VS, then the map (X,Y ) → [X,Y ]H2 is 2-coboundary for
the adjoint representation of g with respect to the bracket [X,Y ]H1 . In
particular, if H,H−1 belong to VS the usual bracket [X,Y ] is 2-coboundary
for the adjoint representation of g with respect to the bracket [X,Y ]H .

Proof. Indeed, it is enough to put in (16.58) J1 = 1 and J2 = J to obtain
the first statement and to put J1 = H1, J2 = H−1

1 H2, in order to obtain the
second.

The corollary shows that actually the new brackets arise as some cobound-
aries of the adjoint representation for the usual structure on g defined by the
commutator.

We believe that the beautiful properties of the above algebraic structures
can find a large area of applications, but here we limit ourselves only to the
applications of the bundles (gS , VS) in the construction of compatible Pois-
son tensors. Just to outline the general idea, we know that the equations
having a Lax representation can be considered in the formalism referred to
as Adler scheme. In it, there are considered loop algebras [12, 13, 14, 15]
(called sometimes also affine algebras), that is, algebras of formal Laurent
series in λ with finite singular part and coefficients in a fixed algebra g.
Such an algebra is denoted by g ⊗ [λ, λ−1] and its elements are series of
the type:

Pn =
∞
∑

i=−n

λiXi; Xi ∈ g . (16.59)

One can see that using the properties of the bundles (gS , VS), we can define
algebras, having similar properties as the loop algebras. For example, one of
the possibilities is to consider the algebras of the type g

pr

S =
(

gS ⊗ [λ, λ−1]
)

pr

where pr is a fixed element from the vector space VS ⊗ [λ, λ−1] - the vector
space of Laurent series with finite singular part and coefficients in VS . The
elements of these algebras are elements of the type P̄n = Pnpr, where Pn is
as in (16.59). A brief calculation shows that

[Pnpr, Qmpr] = ([Pn, Qm]pr
)pr . (16.60)

Therefore, we can consider the algebra g
pr

S (λ) as an algebra having the same
underlying space as gS ⊗ [λ, λ−1] but endowed with different bracket:

(Pn, Qm) �→ [Pn, Qm]pr
. (16.61)

These algebras have been used already, as we shall see the pencils of poly-
nomial Lax pairs for the O(3) chiral fields system and Landau–Lifshitz equa-
tion belongs to the algebra o (4)(λ+J), [2, 6]. The applications of the bundle
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(o (4), sym (4)) are due to the remarkable property that it possesses a bilin-
ear form invariant to all algebras in the bundle. This circumstance allows
to use the Gel’fand-Fuchs cocycle in the same way we used it before and to
obtain compatible Poisson on the linear space o (4)(λ+J)[x] – the space of all
Schwartz-type functions from R into the algebra o (4)(λ+J). Without involving
the Gel’fand-Fuchs cocycle one cannot introduce the spatial variable x. We
shall consider this interesting case below.

There exist even more general objects – the algebras of the type

AS =
(

gS ⊗ [λ, λ−1]
) (

VS ⊗ [λ, λ−1]
)

(16.62)

that is, algebras generated by the elements of the type Pnps; Pn ∈ gS⊗[λ, λ−1]
and ps ∈ VS ⊗ [λ, λ−1]. It is easy to see that

[Pnps, Qmqr] = ([Pn, Qm]ps
)qr +Qm([ps, qr]Pn

) (16.63)

and then AS becomes a Lie algebra in which the algebras g
pr

S (λ) are sub-
algebras. We do not know whether such more general algebras have been
considered.

Since the natural application of the bundles of Lie algebras are in the the-
ory of Poisson-Lie tensors, see below, it is important to calculate the coadjoint
action of the new algebra structures. In what follows, we shall often assume
that the restriction of the symmetric bilinear form tr (XY ) over the algebra
gS is nondegenerate. It is well known to be true for all the algebras o (n);
n > 2, sl (n); n > 1 and sp (2n), considered in their natural representation,
so our considerations are justified. Moreover, it is known that the restriction
of the form tr (XY ) onto one of these algebras is invariant under the adjoint
action of the usual Lie algebra structure:

tr (ad X(Y )Z) + tr (Y ad X(Z)) = 0; X,Y,Z ∈ gS . (16.64)

Remark 16.18. Actually, as is well known, if the algebra g is simple and it is
irreducibly represented, the trace form is proportional to the Killing form

B(X,Y ) = tr (ad Xad Y ) . (16.65)

We readily obtain

Proposition 16.19. Suppose that the trace form tr (XY ) is nondegenerate
on gS. Then if we identify the spaces gS and g∗S through the bilinear form
tr (XY ) the coadjoint action for the Lie algebra structure [X,Y ]J is given by

−(ad J
X)∗(Y ) = JXY − Y XJ (16.66)

X ∈ gS , Y ∈ g∗S ∼ gS .
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16.4 Poisson-Lie Tensors Over the Algebras gS

Recall that there is a canonical way to equip the dual space g∗ of a Lie algebra
g with Poisson structure (the Poisson-Lie structure, given by the Kirillov
tensor). If μ ∈ g∗ is a generic point, then if we identify

Tμ(g∗) = g∗, T ∗
μ(g∗) = g∗∗ = g , (16.67)

the Kirillov tensor over g∗ will be defined by the following field of linear maps:

μ→ Lμ ∈ Hom (g, g∗) (16.68)
Lμ(X) = −ad ∗

Xμ; X ∈ g.

This structure was introduced earlier in this book (see end of Sect. 12.3),
formulae (12.172) and (12.176). If f, g are two smooth functions on g∗, then

{f, g}(q) = −〈q, [dfq, dgq]〉 , (16.69)

where 〈, 〉 is the canonical pairing between g∗ and g.
Suppose that there exists symmetric nondegenerate bilinear form B(X,Y )

on g, invariant with respect to the adjoint action of g – for example in the case
of semisimple algebras, B(X,Y ) can be taken to be the Killing form. Then
one can identify in canonical way g∗ and g. In more detail, to every μ ∈ g∗

corresponds unique Xμ ∈ g such that

〈μ, Y 〉 = μ(Y ) = B(Xμ, Y ); Y ∈ g . (16.70)

In this case, the adjoint and coadjoint action coincide, and as we have seen
earlier the Poisson-Lie bracket (16.69) can be written into the form

{f, g}(q) = −B(q, [dfq, dgq]) . (16.71)

We remark, however, that generally speaking, one cannot expect that some
bilinear form, for example the trace form is invariant for all the algebras in
the bundle.

Now taking into account proposition (16.19) we get:

Proposition 16.20. Suppose (gS , VS) is the closed linear bundle of Lie alge-
bras, of the type defined in the above. Then

1. For arbitrary J ∈ VS, we can define the following Poisson-Lie tensor on
the dual space g∗S:

q → Aq : P J
q (X) = −

(

ad J
X

)∗
(q) (16.72)

(here X ∈ gS, q ∈ g∗S) and for different J all these tensors are compatible.
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2. Suppose the matrix Lie algebra gS is identified with its dual space g∗S by
the nondegenerate bilinear form tr (XY ). Then on gS exists the following
family of compatible Kirillov tensors:

q → P J
q : P J

q (X) = (JXq − qXJ) (16.73)
X ∈ gS , q ∈ g∗S ∼ gS .

For example, the pair P 1
q , P

J2

q , where J is diagonal matrix, J2 is its square and
1 is the matrix unity, was used in [3] to describe the bi-Hamiltonian structure
of the Euler equations on the algebras o (n).

Let us give another simple proof of the fact that for the algebras for which
tr (XY ) is nondegenerate, the tensor μ �→ KA

μ (X) = AXμ− μXA is Poisson
tensor under the, assumption that A ∈ VS is such that D = A− 1

2 exists and
belongs to VS . (on the example gS = o (n), VS – the symmetric n×n matrices
we see that the assumption is true for the elements in general position and
then by continuity of the Schouten bracket with respect to A the result follows
for arbitrary element of VS).

Proposition 16.21. Suppose that for the algebra gS, the 2-form tr (XY ) is
nondegenerate and A ∈ VS is such that D = A− 1

2 exists and also belongs to
VS. Then the map h : R �→ DRD is a linear isomorphism of the vector space
gS. Suppose we have identified gS and g∗S using the trace form tr (XY ). Let
us consider the Kirillov tensor

μ �→ Kμ ∈ Hom (gS , g
∗
S)

Kμ(X) = −ad ∗
Xμ ∼ [X,μ] (16.74)

for the usual bracket on gS and let us denote by Kh the image of K under the
transformation h (that is K and Kh are h-related). Then Kh is equal to the
Kirillov tensor

μ �→ KA
μ ∈ Hom (gS , g

∗
S)

KA
μ (X) = −[ad A

X ]∗μ = AXμ− μXA . (16.75)

for the bracket [X,Y ]A.

Proof. If gS and g∗S are identified as stated in the theorem, we easily calculate
that the maps d[h]−1

μ and
(

d[h]−1
μ

)∗ coincide and are equal to h−1. Inserting
into the relation

[Kh]μ = d[h]−1
μ ◦Kh(μ) ◦

(

d[h]−1
μ

)∗

we obtain that Kh = KA, and this completes the proof.

Though simple, the above result shows that one can find the integral leaves
of the foliation defined by the distribution
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μ �→ Tμ = {AXμ− μXA; X ∈ gS}

using the orbits of the usual adjoint action. The construction is the following:
one takes μ0 ∈ g∗S , then finds the orbit Oh(μ0) and the needed leaf is

OA
μ0

= h−1
(

Oh(μ0)

)

. (16.76)

There is another algebraic mechanism we used earlier in this part of the
book (see Sect. (15.2.3)), in order to obtain compatible Poisson tensors. The
construction involves a 2-cocycle γ of the trivial action of a given Lie algebra
g in order to make an extension with Abelian kernel and use the Poisson-Lie
bracket defined by this extension, appropriately restricted. One can use even
trivial cocycles. Applying this construction to the case we consider now we
get the field of Poisson tensors

μ→ Pμ : Pμ(X) = −ad ∗
Xμ− γ(X, .); X ∈ g, μ ∈ g∗ , (16.77)

and in the case of trivial cocycle defined by μ0 ∈ g∗ the above reduces to

μ→ Pμ : Pμ(X) = −ad ∗
Xμ− ad ∗

Xμ0; X ∈ g . (16.78)

However, there are some specific points here. First, one cannot perform the
construction simultaneously for all the algebras in the bundle. Indeed, if γ is
a 2-cocycle for one of the algebra structures, say gv in (gS , VS), it usually is
not a cocycle for the other structures. Even a trivial cocycle is not generally
a “simultaneous” cocycle. Indeed, let J1 ∈ VS . The skew-symmetric bilinear
form:

[μ0, J1](X,Y ) = 〈μ0, [X,Y ]J1〉 , (16.79)

is cocycle for the trivial representation of the algebra, if for if X1,X2,X3 ∈ gS

we have

dJ2b[μ0, J1](X1,X2,X3) = 〈μ0, [X1,X2][J1,J2]X3
〉+ cycl (1, 2, 3) . (16.80)

This expression generally speaking is not equal to zero. Also, as we have seen,
one cannot usually find a form that is invariant under all the Lie algebras
in the bundle, so apparently one cannot define the Gel’fand-Fuchs cocycle
which was so important in constructing the compatible Poisson structures
for the evolution equations with spatial variable we considered earlier. It is
remarkable that for some bundles it still can be done.

16.5 Finite Dimensional Applications

16.5.1 The Clebsh and the Neumann System

Let us consider some applications of the above constructions. The first of
them will be finite dimensional and related the so-called Clebsh and Neumann
systems. The Clebsh system is the system of the following equations:
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ẋ = x× p

ṗ = x× Âx , (16.81)

where x,p ∈ C
3; Â = diag (a1, a2, a3), ai ∈ C,

x = (x1, x2, x3)t

Âx = (a1x1, a2x2, a3x3)t . (16.82)

Remark 16.22. Actually, the Clebsh system is called the above system when
the vectors x, p are real and the numbers ai are positive. We prefer to work
with the complex numbers, in order to avoid consideration of the real forms of
the corresponding algebras, but of course one can easily pass to real variables.

For x,y ∈ C
3 denote

[x]+ =

⎛

⎜

⎜

⎝

0 x1 x2 0
−x1 0 x3 0
−x2 −x3 0 0
0 0 0 0

⎞

⎟

⎟

⎠

(16.83)

and

[y]− =

⎛

⎜

⎜

⎝

0 0 0 y3
0 0 0 −y2
0 0 0 y1
−y3 y2 −y1 0

⎞

⎟

⎟

⎠

. (16.84)

Consider now the splitting of the algebra o (4) into two subspaces:

o (4) = h+ ⊕ h−

h+ = {[x]+ : x ∈ C
3}

h− = {[y]− : y ∈ C
3} . (16.85)

As this subspaces are the eigenspaces of the involutive automorphism r : X �→
vXv−1 where v = diag (1, 1, 1,−1) we have

[h+, h+] ⊂ h+, [h+, h−] ⊂ h−, [h−, h−] ⊂ h+ , (16.86)

and the spaces h+, h− are orthogonal with respect to any invariant inner
product (with respect to the usual bracket) on o (4). If A is diagonal matrix
we have vAv−1 = A and we deduce that

[h+, h+]A ⊂ h+, [h+, h−]A ⊂ h−, [h−, h−]A ⊂ h+ . (16.87)

Therefore, if we identify o (4) and o (4)∗ using the Killing form, we have

[ad A
h+ ]∗(h+) ⊂ h+, [ad A

h+ ]∗(h−) ⊂ h−, [ad A
h− ]∗(h−) ⊂ h+ . (16.88)

After some simple calculations we get:
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Proposition 16.23. The Clebsh system is equivalent to the system of matrix
equations:

d

dt
[p]+ = A([x]−)2 − ([x]−)2A

d

dt
[x]− = −A[x]−[p]+ + [p]+[x]−A = −[x]−[p]+ + [p]+[x]−

A = diag(a3, a2, a1, 1) . (16.89)

Remark 16.24. It is easy to see that A[x]−[p]+ = [x]−[p]+ and [p]+[x]−A =
[p]+[x]−.

If we denote μ = [p]+ + i[x]− where i =
√
−1 we arrive at the following

Corollary 16.25. The Clebsh system can be written as a system on the coad-
joint orbit:

d

dt
μ = −

[

ad A
ξ

]∗
μ; ξ = −π−(μ) , (16.90)

for the Lie algebra structure defined by the bracket [X,Y ]A = XAY −Y AX =
ad A

X(Y ) if we identify o (4) and o (4)∗ through the Killing form B(X,Y ) =
2tr (XY ). Here π− is the projection onto h− with respect to the splitting
(16.85).

The above form of the Clebsh system can be obtained from the Lax pair for
the Clebsh system, used in [16] to find the general solution of the Clebsh
system in Riemann θ-functions.

It is easy to see the integrals in involution for (16.89) needed for complete
integrability. First of them is the Hamiltonian:

H1 =
i

2
tr (π−(μ)π−(μ)) =

1
2
(x2

1 + x2
2 + x2

3) . (16.91)

Next, the ring R of the central functions for the Poisson-Lie bracket defined
by [X,Y ]A (A-diagonal and nondegenerate) on o (n) can easily be obtained for
the corresponding ring of central functions for the usual Poisson-Lie bracket
on o (n). The last is generated by

tr
[

μA−1
]2l

; 2l < n (16.92)

when n is odd, and if n is even, we must add to the above family the function
Pf(μA−1) =

√

det(μA−1). So in our case we have the integrals of motion

H2 = −1
2
(detA)tr (μA−1μA−1) =

(

3
∑

i=1

aip
2
i

)

− a1a2x
2
3 − a1a3x

2
2 − a2a3x

2
1

(16.93)
and Pf(μA−1) =

√

det(μA−1), which up to a constant multiplier is equal to
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H3 =
i

8
BT (μ, μ) =

3
∑

j=1

pjxj , (16.94)

(the form BT is another invariant form on o (4) that shall be introduced
later (see (16.132)). The integrals H1,H2,H3 ensure that the Clebsh system
is completely integrable. Of course, the complete integrability of the Clebsh
system is well known, but here we obtained it using some “unusual” bracket,
and this illustrates the possibilities one has working with different Poisson
structures.

As another application, we shall consider one natural generalization of the
so-called Neumann system. The Neumann system is the following system of
ordinary differential equations

ẋi = yi

ẏi = −aixi + (< Âx,x > −||y||2)xi

< x,y > = 0, ||x||2 = 1
i = 1, 2, . . . , n . (16.95)

where Â = diag (a1, a2, . . . , an), by z is denoted a column vector with com-
ponents zi and by < ., . > – the standard inner product in R

n, defining the
norm ||.||. In vector notation, the system will have the form:

ẋ = y

ẏ = −Âx + (< Âx,x > −||y||2)x
< x,y > = 0, ||x||2 = 1 . (16.96)

Let us assume again that x,y are complex and let us write < z,w > for
n
∑

i=1

ziwi and ||z||2 for
n
∑

i=1

z2
i . Of course, now ||z||2 can be a complex number.

As mentioned before, in similar situations the reduction to the real case can
be performed without difficulties.

It is known that the Neumann system can be cast in the form suggested
by K. Uhlenbeck:

Ẋ = [P,X], Ṗ = [X, Â]

< x,y >= 0, ||x||2 = 1 , (16.97)

where
X = xxt, P = yxt − xyt . (16.98)

The above form of the Neumann system permitted T. Ratiu to give an in-
terpretation of it as a system on coadjoint orbit for the semidirect product
of Lie algebras: o (n) × s(n) (the first one is considered the algebra of the
skew-symmetric n×n matrices with respect of the commutator and s(n) is an
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Abelian algebra, which underlying vector space, is the space of the symmetric
n×n matrices, see [17]). T. Ratiu proved that the orbit is (2n−2)-dimensional
and found complete series of integrals in involution using the following Lax
representation of the Neumann system:

L̇ = [L,M ]

L = λ2Â+ Pλ−X, M = −λÂ− P . (16.99)

We shall cast now the Neumann system into another form. To this end, con-
sider the Lie algebra structure defined on the algebra o (n+1) by the bracket
[R,S]A = RAS − SAR, where

A = diag (a1, a2, . . . , an, 1) . (16.100)

In what follows, we shall write the elements of o (n+ 1) in block form:

S =
(

Q z
−zt 0

)

, (16.101)

where Q ∈ o (n) and z ∈ C
n. The matrix A is then written as

A =
(

Â 0
0 1

)

. (16.102)

Similar, to the case of the algebra o (4) we have the orthogonal splitting
o (n + 1) = g+ ⊕ g− (with respect to the Killing form), corresponding to
the eigenspaces of the involutive automorphism S �→ V SV , where V is the
matrix:

V =
(

1n 0
0 −1

)

. (16.103)

It can be checked that

g+ =
{

X : X =
(

Q 0
0 0

)

;Q ∈ o (n)
}

g− =
{

X : X =
(

0 z
−zt 0

)

; z ∈ C
n

}

. (16.104)

Exactly as in the case of the algebra o (4), we have the relations (16.86),
(16.87) and (16.88), with g± instead h±.

Let us denote the projections onto the spaces g± by the upper indices “+”
and “−”. Next, let us put

S+ =
(

P 0
0 0

)

, S− =
(

0 x
−xt 0

)

P = yxt − xyt . (16.105)

Now a simple calculation shows that
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Proposition 16.26. The Neumann system is equivalent to the system of
matrix equations:

d

dt
S+ = A[S−]2 − [S−]2A

d

dt
S− = −AS−S+ + S+S−A

< x,y > = 0, ||x||2 = 1 . (16.106)

Suppose now we identify o (n + 1) and o ∗(n + 1) through the Killing form.
Then remembering the coadjoint action for the bracket [X,Y ]A and putting
μ = iS− + S+ we get:

Proposition 16.27. The Neumann system is equivalent to the system on a
coadjoint orbit of o (n+ 1)∗:

dμ

dt
= −[ad A

ξ ]∗μ, ξ = π−(μ) , (16.107)

restricted by the conditions

tr (π−(μ)π−(μ)) = tr (ξ2) = 1

π+(μ) = π+(μ)[π−(μ)]2 + [π−(μ)]2π+(μ) , (16.108)

where by π± are denoted the projections onto g±.

It is clear that the system (16.107) is a generalization of the Neumann system
and the later is obtained if we take the general system on the level surface
S0 corresponding to H = i

2 , where the Hamiltonian function is H is equal
to i

2 tr (π−(μ)π−(μ)). Further, there is one more restriction on the system,
defined by the second equation in (16.108). It is easy to see that (16.108) is
invariant under the Hamiltonian flow on S0 so this condition is consistent with
the evolution.

The Neumann system is completely integrable. We believe that it would be
interesting to investigate whether the nonrestricted system is also completely
integrable and if so, to obtain the Neumann system from the general case as
Hamiltonian reduction.

16.5.2 The Algebra o (4)

Let us concentrate now on the algebra o (4), which is the Lie algebra of 4× 4
skew-symmetric matrices. We have considered it into above with relation to
the Clebsh system, but now we shall introduce on it a different splitting. The
algebra o (4) and the dynamic systems that can be defined on it attracted
considerable attention, and there exist a large number of interesting and deep
results about the dynamic systems and their integrals of motion on o (4) (see
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for example [18]). A complete up to date bibliography about the integrable
systems on o (4) can be found in [1]. However, as far as we know, the pos-
sibility of introducing on o (4) other symmetric nondegenerate bilinear form,
not proportional to tr (XY ) and having the remarkable property that it is
invariant simultaneously with respect to the algebras of the 10-dimensional
bundle of Lie algebras is unique and was not been revealed until recently,
[2]. Due to the existence of such form the coadjoint action of these algebras
coincides with their adjoint action and using Gel’fand-Fuchs cocycle, we are
able to obtain new family of Poisson tensors. In [8], in order to calculate the
Nijenhuis operator for the hierarchy of O(3) chiral fields system, have been
used the invariant form we are speaking about, but the understanding that
there exist relations with the closed linear bundles of Lie algebras came later,
[2]. So now we are able to present the whole algebraic picture.

In order to perform the calculations in an efficient way, let us make some
preparations. For u ∈ K

3 we write

u→ {u}I =

⎛

⎜

⎜

⎝

0 u1 u2 u3

−u1 0 u3 −u2

−u2 −u3 0 u1

−u3 u2 −u1 0

⎞

⎟

⎟

⎠

, (16.109)

v → {v}II =

⎛

⎜

⎜

⎝

0 v1 v2 −v3
−v1 0 v3 v2
−v2 −v3 0 −v1
v3 −v2 v1 0

⎞

⎟

⎟

⎠

. (16.110)

It is easy to show that every element A ∈ o (4) can be written into the form

A = {u}I + {v}II , (16.111)

and this representation corresponds to the well known splitting of o (4) into
direct sum of two o (3) algebras. In other words, the subalgebras

gI =
{

{u}I : u ∈ K
3
}

⊂ o (4)

gII =
{

{u}II : u ∈ K
3
}

⊂ o (4) (16.112)

are both isomorphic to the algebra o (3) and are ideals in o (4). As a conse-
quence [gI , gII ] = 0 and the subspaces gI , gII are orthogonal with respect to
the Killing form on o (4).

Remark 16.28. The above splitting of o (4) into a sum of two ideals is inspired
from the left and right action of the body of quaternions H (considered an
algebra over C) on itself. If one takes the usual basis {1, i, j, k} in H then the
matrices of the left multiplications by the elements i, j, k generate gI and the
matrices of the right multiplications by i, j, k generate gII .
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We now note that there exists a liner involution T , which defines the splitting
(16.112). Indeed, let us define the linear map T : o (4) → o (4)

(T (X))ij =
1
2
εijksXks; i, j, k, s = 1, 2, 3, 4 , (16.113)

where εijks is the skew-symmetric Levi-Civita symbol and as the rule about
the summation over repeated indices is assumed.

Remark 16.29. It is interesting to note that T coincides with the Hodge-
star operator, if one consider the matrices of o (4) as skew-symmetric ten-
sors, but we cannot say if this is a mere coincidence or there is something
deeper here.

The algebraic properties of T are listed in the following proposition.

Proposition 16.30. Let T be the linear map T : o (4) → o (4) defined in
(16.113). Then

1. T is an involution:
T 2 = ido (4) = E . (16.114)

2. T is symmetric with respect to the Killing form:

B(T (X), Y ) = B(X,T (Y )); X,Y ∈ o (4) . (16.115)

3. [T (X), T (Y )] = [X,Y ]; X,Y ∈ o (4).
4. The two o (3) subalgebras of o (4) are invariant under the action of T :

T ({u}I) = {u}I , T ({u}II) = −{u}II , (16.116)

and, therefore, the orthogonal projectors PI , PII = E − PI on the subal-
gebras gI and gII (with respect to the Killing form) are given by

PI =
1
2
(E + T ), PII =

1
2
(E − T ) , (16.117)

where, as in the above, E is the identity map.
5. The form B([X,Y ], T (Z)) is a 3-cocycle for the trivial representation of

the algebra o (4).

We can consider now the general structure of a linear bundle over o (4)
defined by the bracket

[X,Y ]J = XJY − Y JX = dαJ (X,Y )

αJ(X) =
1
2
(XJ + JX) , (16.118)

where J is symmetric matrix. Let us write the new bracket into the form
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[X,Y ]J = XĴY − Y ĴX +
1
4
tr (J)[X,Y ]

Ĵ = J − 1
4
tr (J)1 , (16.119)

the matrix Ĵ being now traceless. From this formula, it is clear that without
loss of generality one can consider only the structures defined by traceless
matrices. Let

αĴ (X) =
1
2
(XĴ + ĴX) , (16.120)

be the cocycle defined by Ĵ . We now have:

Proposition 16.31. If J is any symmetric, traceless 4× 4 matrix, then

T ◦ αJ = −αJ ◦ T . (16.121)

Proof. It is enough to show that

T (αJ(X)) = −αJ(X); X ∈ gI

T (αJ(X)) = αJ(X); X ∈ gII . (16.122)

Let us prove for example the first identity. For this we write

[T (αJ (X))]ij =
1
4
εijks(JklXls +XklJls),

(here and below summation over repeated indices is assumed), and insert
into it

Xls =
1
2
εlspqXpq, Xkl =

1
2
εklpqXpq.

Then after using the identity,

εijkmεpqrm =

∣

∣

∣

∣

∣

∣

δip δiq δir
δjp δjq δjr

δkp δkq δkr

∣

∣

∣

∣

∣

∣

and taking into account that X is skew-symmetric, J – symmetric and trace-
less, we get exactly −[αJ (X)]ij which completes the proof.

The proposition shows that αJ interchanges the algebras gI and gII , that is

αJ(gI) ⊂ gII , αJ (gII) ⊂ gI . (16.123)

As an example, consider

J = diag (−j1 − j2 + j3,−j1 + j2 − j3, j1 − j2 − j3, j1 + j2 + j3) . (16.124)
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The calculation shows that

αJ ({u}I) = −{Ku}II , αJ ({u}II) = −{Ku}I , (16.125)

where K = diag (j1, j2, j3) and (Ku)s = jsus; s = 1, 2, 3 (summation is
not assumed). As [X,Y ]J = dαJ(X,Y ) the expression for αJ(X) permits to
calculate explicitly the brackets of the Lie-algebra structures in the bundle.
According to what we know about the bundles (o (n), sym (n)) the algebra we
shall obtain depends on the rank of the matrix J . Here one can check this
explicitly. Indeed, let J be as above, and let us introduce a basis of o (4):

{ei}I , {ei}II ; i = 1, 2, 3,

where {ei}31 is the standard basis in C
3. Then the determinant ΔJ of the Gram

matrix for the Killing form associated with the bracket [X,Y ]J in the above
basis is ΔJ = −64(det J)3. This of course is in agreement with the fact that
the algebra o (4)J is isomorphic to o (4) (with usual bracket), if and only if J
is not degenerate. For the case when the rank of J is equal to 3, the general
theory shows that the algebra we obtain is isomorphic to e (3). In order to see
it explicitly, we introduce in o (4) the basis

e+
i = {ei}I + {ei}II , e−i = {ei}I − {ei}II ; i = 1, 2, 3 . (16.126)

If
x+ = xie+

i , y− = yie−i

(summation over repeated indices is assumed) it can be calculated that

[x+,y+]J = 2(j3 + j2 − j1)(x× y)1e+
1

+ 2(j3 + j1 − j2)(x× y)2e+
2 + 2(j1 + j2 − j3)(x× y)3e+

3

[x−,y−]J = −2(j1 + j2 + j3)(x× y)−

[x+,y−]J = −2[(j3 − j2)(x2y3 + x3y2)− j1(x× y)1]e−1

− 2[(j1 − j3)(x3y1 + x1y3)− j2(x× y)2]e−2
− 2[(j2 − j1)(x1y2 + x2y1)− j3(x× y)3]e−3 , (16.127)

where by x × y is denoted the cross product of the vectors x = (x1, x2, x3)
and y = (y1, y2, y3).

We see that if j1 + j2 + j3 = 0 the algebra spanned by {e−i }3i=1 is Abelian.
If the field of numbers is C and if ji 	= 0, one can check that the generators

f1 = − e+
1

4
√
j2j3

, f2 = − e+
2

4
√
j1j3

, f3 = − e+
1

4
√
j2j3

pi =
e−i√
ji

; i = 1, 2, 3 (16.128)
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span over R the algebra e (3) of the group of the rigid body movements of the
3-dimensional Euclidean space:

[fi, fj ]J = −εijkfk, [fi,pk]J = εijkpk, [pi,pj ]J = 0 , (16.129)

where εijk is the 3-dimensional Levi-Civita symbol.
Let us return to the bundle (o (4), sym (4)) and let αJ be the cocycle

defined by J (traceless) and let B(X,Y ) be the Killing form of o (4). It is
known that B(X,Y ) = 2tr (XY ), and so in the calculations below we actually
use tr (XY ). The following proposition holds

Proposition 16.32. Suppose that J is symmetric and traceless. Then

1. The form B(XJY − Y JX, T (Z)) = B(adJ
XY, T (Z)) is a 3-cocycle for the

trivial representation of o (4) in K.
2. The linear map αJ is symmetric with respect to the Killing form

B(αJ(X), Y ) = B(X,αJ (Y )); X,Y ∈ o (4) . (16.130)

Corollary 16.33. The form ΩJ (X,Y ) = B(α(X), T (Y )) is skew-symmetric
and with respect to it both the ideals gI and gII and the “graphs”

ΓI = {A+ α(A); A ∈ gI}
ΓII = {A+ α(A); A ∈ gII} , (16.131)

are isotropic subspaces. In particular, if J is as in (16.153) and if j1j2j3 	= 0
the form ΩJ(X,Y ) is a symplectic form and gI , gII , ΓI , ΓII are Lagrangian
subspaces.

As T is symmetric with respect to the Killing form, we can see from the
above that there is another symmetric bilinear form, except B, that plays
important role, namely, the form

BT (X,Y ) = B(X,T (Y )) . (16.132)

For the subsequent calculations, we note also that for arbitrary a,b ∈ C
3

B({a}I , {b}I) = BT ({a}I , {b}I) = −8〈a,b〉
B({a}II , {b}II) = −BT ({a}II , {b}II) = −8〈a,b〉
B({a}I , {b}II) = BT ({a}I , {b}II) = 0 . (16.133)

where 〈a,b〉 =
3
∑

i=1

aibi.

Of course, if X = XI +XII , Y = YI + YII (the indices correspond to the
projections onto the gI , gII) one calculates

BT (X,Y ) = B(XI , YI)−B(XII , YII) , (16.134)

so for the usual Lie algebra structure there is little difference between B(X,Y )
and BT (X,Y ). However it is not so for the structures defined by [X,Y ]J and
the following property is quite unexpected:
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Proposition 16.34. BT (X,Y ) is nondegenerate bilinear form which is in-
variant for all the brackets [X,Y ]J , J-symmetric.

Proof. If J = c1, all is trivial, so one must consider only the case when J is
traceless. We can calculate the bracket [X,Y ]J using (16.31) and the fact that
the elements from gI and gII commute. For this, we write X = XI + XII ,
Y = YI + YII and remembering that [X,Y ]J = [dαJ ](X,Y ) we get:

([X,Y ]J )I = [XI , αJ (YII)]− [YI , αJ (XII)]− αJ([XII , YII)]

([X,Y ]J )II = [XII , αJ (YI)]− [YII , αJ (XI)]− αJ([XI , YI)] .(16.135)

Then taking into account (16.134) the invariance can be proved by simple
calculation.

Corollary 16.35. For J traceless, the 3-cocycle

γJ(X,Y,Z) = B(ad J
X(Y ), T (Z)) = BT (ad J

X(Y ), Z) (16.136)

(with respect to the trivial representation of o (4) in K) is a coboundary.

Proof. Indeed, from the above it easily follows that αJ is skew-symmetric with
respect to BT and then βJ :

βJ(X,Y ) = BT (αJ (X), Y ) , (16.137)

is a 2-cocycle. The calculation shows that γJ = dβJ , which completes the
proof.

This property is also somewhat surprising, because as it can be shown that
the cocycle B(ad X(Y ), Z), the same is not true.

Taking into account the existence of the invariant bilinear form BT (X,Y ),
we easily arrive to the following application of our constructions:

Proposition 16.36. The linear bundle (o (4), sym (4)) allows to construct the
following 10-parametric family of compatible Kirillov (Poisson-Lie) tensors on
the manifold o (4):

q → P J
q ∈ End (o (4,K)) : Pq(X) = −ad J

Xq (16.138)

X ∈ o (4,K); q ∈ o(4,K)∗ ∼ o(4,K).

As we have seen earlier, we can identify o (4) and o ∗(4) using also the
Killing form (the trace form) and then we obtain the Poisson tensors (16.75).
It is, therefore, natural to ask what is the relation between the tensors we
obtained in different ways. We have the following simple result:

Proposition 16.37. The coadjoint action [ad J
X ]∗(Y ) = JXY − Y XJ ob-

tained identifying o (4) and o ∗(4) through the Killing form is related to the
adjoint action ad J

X(Y ) = XJY −Y JX (also a coadjoint action if we identify
o (4) and o ∗(4) through the form BT ) in the following way:

[ad J
X ]∗ = T ◦ ad J

X ◦ T . (16.139)
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Thus the families (16.138) and (16.75) are equivalent (though not compatible
between themselves) as Poisson tensor fields.

Corollary 16.38. The operator Y �→ [ad J
X ]∗(Y ) is skew-symmetric with re-

spect to the bilinear form BT .

The fact that we have invariant form for the algebras of the bundle related
to o (4) permits to define the Gel’fand-Fuchs cocycle just in the way we have
defined it on the algebras of the type g[x], where the algebra g is semisimple.
For convenience of the reader, we remind here this construction. Suppose g0[x]
is the infinite-dimensional manifold of the smooth functions f(x) defined on
the real line, taking their values in the Lie algebra g and tending fast enough to
some constant f0 ∈ g when |x| → ∞. For obvious reasons, we take the tangent
space Tf (g0[x]) at the point f ∈ g0[x] to be the vector space consisting of all
Schwartz type functions X(x) on the line taking their values in g. We denote
this space by g[x]. If on g there exists a linear bundle of Lie algebra structures,
then clearly such bundles exists on g[x] and on g0[x]. When g is semisimple,
on the algebra g[x] one introduces Poisson structure involving the operator of
differentiation ∂x. The construction uses the Gel’fand-Fuchs cocycle on g[x],
see [12, 13, 14, 15], which is given by the expression:

γ(X,Y ) = c

+∞
∫

−∞

B(∂xX(x)Y (x))dx

X, Y ∈ g[x]; c = const , ∂x =
∂

∂x
, (16.140)

where B(X,Y ) is symmetric, invariant, nondegenerate bilinear form on g.
Allowing some lack of rigor we identify g[x] and g[x]∗ using the symmetric
bilinear form on g[x]:

〈〈X(x), Y (x)〉〉 =

+∞
∫

−∞

B(X(x), Y (x))dx; X,Y ∈ g[x] . (16.141)

Then, see the discussion in the Sect. 15.2.3, and in particular proposition
15.13, as well as the relations (15.87); we get the following family of compatible
Poisson tensors:

P (q0;a,b,c)
q (X) = aad Xq + bad Xq0 + c∂xX (16.142)

q,X ∈ g[x]; a, b, c − numbers.

where a, b, c are numbers and q0 is a fixed element from g (defining a trivial
cocycle). Since for the bundle o (4) we have additional parameters labeling
the different algebras in it, and the form BT is invariant with respect to all
the algebras in the bundle, we can repeat the outlined construction for the
case of g = o (4) putting BT instead B. Invoking proposition 15.13 and the
relations (15.87), we get the following result:
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Theorem 16.39. On the manifold o (4)0[x] there exists a 11-parameter family
of compatible Poisson tensors

P (J;a,b)
q (X) = aad J

Xq + b∂xX (16.143)
X ∈ o (4)[x], q ∈ o(4)0[x],
J − symmetric; a, b − numbers.

We underline again that the possibility to use the extension defined by
Gel’fand-Fuchs cocycle simultaneously for all the Lie algebras of the above
10 – dimensional linear bundle of Lie algebras became possible because of
the existence of the invariant bilinear form BT (if BT is not invariant then
we do not have a cocycle). Note, however, that now we cannot add trivial
cocycle term ad J

Xq0 because BT (q0, [X,Y ]J ) is of course 2-cocycle for dJ , but
generally speaking is not cocycle for dH , where H is another symmetric ma-
trix. Also, in order to avoid misunderstanding, we underline again that for
the family P (J;a,b) one must use not the usual inner product but that defined
by BT , that is:

〈〈X(x), Y (x)〉〉 =

+∞
∫

−∞

BT (X(x), Y (x))dx; X,Y ∈ g[x] . (16.144)

The Poisson brackets are constructed in the following way. First, we identify
any linear form β of the type

β(Y ) = 〈〈Xβ , Y 〉〉 (16.145)

with the function Xβ(x), taking values in o (4). (Of course, Xβ(x) can be also
a distribution). Then if F [A] and G[A] are two functionals, we identify their
differentials dF and dG with two o (4)-valued functions XF (x) and XG(x).
Finally, the Poisson bracket of F and G is given by

{F,G}(J;a,b) = (16.146)
+∞
∫

−∞

BT (a[A(x),XF (x)]J + b ∂xXF (x), XG(x))dx . (16.147)

The tensor fields from this family, namely P (1;− 1
2 ,0) and P (J; 12 ,1), with J

as in (16.124) and 1 – the matrix unity, have been used in [7, 8] to describe
the bi-Hamiltonian structures of the O(3) chiral fields system hierarchy and
the bi-Hamiltonian structures of Landau–Lifshitz equation hierarchy obtained
via polynomial pencil of Lax pairs. We shall reproduce some of these results
in the next section.
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16.6 The Chiral Fields Hierarchy and the Associated
Recursion Operators

We shall now apply the compatible Poisson structures we introduced in the-
orem 16.39 in order to obtain the generating operator (Nijenhuis tensor) on
the manifold of potentials for the so-called chiral fields hierarchy. Our experi-
ence with the Zakharov–Shabat system and its generalizations shows that the
existence of a Lax representation is quite helpful when looking for recursion
(Nijenhuis) operators. So it is natural to start with the set of Lax pairs for
the chiral fields hierarchy. The first equation (which gives the name of the
hierarchy) is the O(3) chiral fields system (CF):

ut + ux + u× Pv = 0
vt − vx + v × Pu = 0 . (16.148)

Here v,u are two vector fields depending on x, t and taking values on the unit
sphere S

2 ⊂ R
3, × is the cross product symbol and if a is a 3-dimensional

vector with components (ai) which we write as a column, then Pa is a vector
with components piai, where pi are fixed real numbers, that is, P is the matrix:

P = diag (p1, p2, p3) . (16.149)

The O(3) chiral fields system describes dynamics in anti-ferromagnets, in liq-
uid crystals, and has connections with another integrable systems. In [5], there
have been introduced new Lax pairs both for this system and for the famous
Landau–Lifshitz equation (LL) [19]; see (16.173) below. The new Lax pairs
are polynomial in the spectral parameter in contrast to the ones that have
been discovered earlier and which depend on the spectral parameter through
elliptic functions [20, 21]. The new pairs will be the starting point for our
considerations. Using the elliptic pairs it was shown that the Landau–Lifshitz
equation and the system of O(3) chiral fields system are completely integrable
Hamiltonian systems, see [21, 22], and the hierarchies of equations related to
the LL and CF systems, as well as their Hamiltonian structures, were investi-
gated, see [23, 24, 25, 26]. There arise a number of interesting questions about
the use of different Lax pairs, but we shall speak of them later.

We start with the chiral fields system. Let us fix the notation as in (16.109),
(16.110), that is {u}I , {u}II will denote the 4 × 4 matrices from (16.109),
(16.110). Each element A ∈ o (4) can be written into the form

A = {u}I + {v}II , (16.150)

and this representation corresponds to the splitting of o (4) into direct sum of
two o (3) algebras.

The pencil of Lax pairs for the CF consists of the following hierarchy:

L =
∂

∂x
− U, Mn =

∂

∂t
− Vn



16.6 The Chiral Fields Hierarchy and the Associated Recursion Operators 579

U(λ) =
1
2
A(λ+ J)

Vn(λ) =
1
2
(λnB0 + λn−1B1 + . . .+Bn)(λ+ J)

n = 0, 1, 2, . . . , (16.151)

where

A = {u}I + {v}II

Bn = {bn}I + {cn}II . (16.152)

As in (16.124), J will be the diagonal matrix

J = diag (−j1 − j2 + j3,−j1 + j2 − j3, j1 − j2 − j3, j1 + j2 + j3) (16.153)

and u(x, t),v(x, t) ∈ R
3 are smooth vector fields taking values on the unit

sphere:
(u)2 = 1, (v)2 = 1 . (16.154)

The vector fields u(x, t),v(x, t) obey the boundary conditions

lim
x→±∞

u = u0 = const

lim
x→±∞

v = v0 = const

lim
x→±∞

(

∂

∂x

)n

u = 0

lim
x→±∞

(

∂

∂x

)n

v = 0

n = 1, 2, . . . . (16.155)

We assume also that u(x),v(x) converge fast enough to their limit values, in
order to be able to say that the tangent vectors to the manifold of potentials
consist of vectors that converge fast enough to zero, which ensures the exis-
tence of the integrals we shall write. More precisely, we shall assume that the
components of u(x) − u0 and v(x) − u0 are Schwartz-type functions on the
line. Let us denote by M the set of the matrices of the type (16.152) with
u(x),v(x) obeying the conditions (16.154, 16.155). M is which is called the
set of potentials.

The nonlinear evolution equations, corresponding to the hierarchy of Lax
pairs introduced in (16.151), have the following matrix form:

At = (Bn)x −
1
2
(AJBn −BnJA) =

1
2
[A,Bn+1] , (16.156)
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and can be written in an equivalent “vector” form

ut = −u× bn+1 ,

vt = −v × cn+1 ,

n = 0, 1, 2, . . . , (16.157)

where the functions bn, cn; n = 0, 1, . . . are the solutions of the infinite
system:

u× b0 = 0, v × c0 = 0

u× bn+1 = −(bn)x −K(v × cn) + u×K(cn)− bn ×K(v)

v × cn+1 = −(cn)x −K(u× bn) +K(u)× cn −K(bn)× v

n = 0, 1, 2, . . . . (16.158)

We call this system the CF chain system. In the above expression, K is the
diagonal matrix K = diag (j1, j2, j3) and (K(a))i = jiai. The next proposition
gives an algorithm for obtaining successively the functions bn, cn :

Proposition 16.40. The CF chain system has the following solution :

b0 = εu, c0 = μv

bu
n+1 = u× (bu

n)x + 〈u,bn〉u× ux + [K(c v
n )]u

− (〈u,bn〉 − 〈v, cn〉)[K(v)]u + u×K(v × cn
v) + 〈u,K(v)〉bu

n

c v
n+1 = v × (cv

n)x + 〈v, cn〉v × vx + [K(bu
n)]v

+ (〈u,bn〉 − 〈v, cn〉)[K(u)]v + v ×K(u× bu
n) + 〈u,K(v)〉c v

n

n = 0, 1, 2, . . . , (16.159)

where ε, μ are arbitrary constants and

〈u,bn〉 =

x
∫

±∞

(〈bu
n,ux〉+ 〈u×K(v),bu

n〉+ 〈v ×K(u), c v
n 〉) dx

〈v, cn〉 =

x
∫

±∞

(〈c u
n ,vx〉+ 〈u×K(v),bu

n〉+ 〈v ×K(u), c v
n 〉) dx.

(16.160)

In the above formulae, we denote by 〈, 〉 the usual R
3 inner product:

〈a,b〉 = a1b1 + a2b2 + a3b3 (16.161)

and by the upper indices “u” and “v” are denoted the projections onto the
plains orthogonal to the vector fields u and v, respectively. (Of course, as u
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and v depend on x these plains depend on x too). The proof of the above
proposition is done by induction. Though laborious, it is not difficult, so we
shall omit it.

Let us remark that the above recursion formulae entail the existence of
the integro-differential operators A±, such that

(

bu
n+1

c v
n+1

)

= A±

(

bu
n

c v
n

)

. (16.162)

These operators have the form:

A±

(

a
b

)

=

⎛

⎜

⎜

⎝

u× (a)x + u× ux

x
∫

±∞
(〈a,ux〉+ 〈u×R(v),a〉+ 〈v ×K(u),b〉) dx

v × (b)x + v × vx

x
∫

±∞
(〈b,vx〉+ 〈u×K(v),a〉+ 〈v ×K(u),b〉) dx

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

[K(b)]u − [K(v)]u
x
∫

±∞
(〈a,ux〉 − 〈b,vx〉) dx

[K(a)]v + [K(u)]v
x
∫

±∞
(〈a,ux〉 − 〈b,vx〉) dx

⎞

⎟

⎟

⎠

+

(

u×K(v × b) + 〈u,K(v)〉a

v ×K(u× a) + 〈u,K(v)〉b

)

, (16.163)

where a,b are two vector fields, such that 〈a(x),u(x)〉 = 〈b(x),v(x)〉 = 0.
We shall see that the operators (16.162) are actually the recursion opera-
tors for the CF hierarchy. Finally, let us write the first two members of the
CF hierarchy (we also show by that the chiral fields system belongs to the
hierarchy):

1. n = 0. First system in the CF hierarchy :

ut = εux + (ε− μ)(u×K(v))

vt = μvx − (ε− μ)(v ×K(u)) . (16.164)

After the following choice of the parameters :
ε = −1, μ = 1, P = 2K and changing u to −u we obtain the O(3)
chiral fields system.

2. n = 1. Second system in the CF hierarchy :

ut = εu× uxx + 2ε(〈u, R(v)〉 − 〈u0, R(v0)〉)ux

− εR(vx) + ε〈u, R(vx)〉u− μu×R(v × vx)

+ (ε− μ)(〈u, R(v)〉 − 〈+u0, R(v0)〉)(u×R(v))− (ε− μ)u×R2(u)
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vt = μv × vxx + 2μ(〈v, R(u)〉 − 〈v0, R(u0)〉)vx

− μR(ux) + μ〈v, R(ux)〉v − εv ×R(u× ux)

− (ε− μ)(〈v, R(u)〉 − 〈v0, R(u0)〉)(v ×R(u)) + (ε− μ)v ×R2(v) .

(16.165)

• An interesting special case of this system is obtained for μ = 0. Then
we have

ut = εu× uxx + 2ε(〈u,K(v)〉 − 〈u0,K(v0)〉)ux

− εK(vx) + ε〈u,K(vx)〉u
+ ε(〈u,K(v)〉 − 〈u0,K(v0)〉)(u×K(v))− εu×K2(u)

vt = − εv ×K(u× ux)− ε(〈v,K(u)〉 − 〈v0,K(u0)〉)(v ×K(u))

+ εv ×K2(v) . (16.166)

• Another reduction of the general system (16.165) is obtained, if we
assume that ε = μ. Then we have

ut = εu× uxx + 2ε(〈u,K(v)〉 − 〈u0,K(v0)〉)ux

− εK(vx) + ε〈u,K(vx)〉u− εu×K(v × vx)

vt = εv × vxx + 2ε(〈v,K(u)〉 − 〈v0,K(u0)〉)vx

− εK(ux) + ε〈v,K(ux)〉v − εv ×K(u× ux) . (16.167)

16.7 Polynomial Lax Representation
of the Landau–Lifshitz Hierarchy

Let us go now to the study of the Landau–Lifshitz equation, (16.173).
The Landau–Lifshitz equation can be obtained within the general scheme,

described when we introduced the CF hierarchy, if we impose instead of the
constraint v2 = 1 the constraint v = 0. Unfortunately, the condition v2 = 1 is
essential the construction of the recursion formulae. Thus one cannot simply
insert v = 0 in the solution for the O(3)– CF chain system, in order to obtain
the solution for the corresponding chain system for LL equation and must
consider it by its own right.

Remark 16.41. One can check that if instead of the constraints v = 0,u2 = 1
we choose the constraints u = 0,v2 = 1 we shall obtain the same hierarchy of
Lax pairs. Thus in all the constructions there exists a symmetry between the
two o (3) subalgebras in o (4).
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In order to obtain the LL equation in the same terms as it is usually written,
we shall change the notation in the Lax pairs we introduced earlier in relation
with the CF system. We put u = S and v = 0, and then we get the following
hierarchy, which is the hierarchy of the Lax pairs for the Landau–Lifshitz
equation hierarchy, (LL hierarchy):

L =
∂

∂x
− U, Mn =

∂

∂t
− Vn (16.168)

U(λ) =
1
2
A(λ+ J)

Vn(λ) =
1
2
(λnB0 + λn−1B1 + . . .+Bn)(λ+ J)

n = 0, 1, 2, . . .

(16.169)

where
A = {S}I , Bn = {bn}I + {cn}II , (16.170)

J is the diagonal matrix introduced earlier in (16.153), which for convenience
of the reader we remind again:

J = diag (−j1 − j2 + j3,−j1 + j2 − j3, j1 − j2 − j3, j1 + j2 + j3) . (16.171)

As to S(x) ∈ R
3, it is a smooth vector field depending on one spatial variable,

taking values on the unit sphere S
2 = {S : S2 = 1} and tending fast enough

to some limit value S0 when x → ±∞. Of course, the derivatives of S(x) go
to zero when x → ±∞. Usually S0 is assumed to be (0, 0, 1), which we shall
also assume. However, we shall require a condition that ensures the above, but
is stronger. We shall assume that S(x) is a function taking its values on the
sphere S

2, such that the components of S(x)−S0 are Schwartz type functions
on the line. On the space MS of the functions S(x), satisfying the above
conditions, exist two famous infinite-dimensional integrable systems which
attracted considerable attention in the past decades:

1. The Heisenberg ferromagnet equation (HF):

St = S× Sxx , (16.172)

which was introduced earlier in this book in connection with the Nonlinear
Schrödinger equation.

2. The Landau–Lifshitz equation (LL):

St = S× Sxx + S× PS . (16.173)

Here P is a diagonal matrix with entries, pi > 0, and (PS)i = piSi,
i = 1, 2, 3.
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The LL equation [19] describes perturbations propagating in a direction
orthogonal to the anisotropy axis in a ferromagnet and the boundary
conditions limx→±∞ S(x) = S0 for it naturally arise from the physical
background. This equation, as the CF system, is closely related to some
integrable systems of Classical Mechanics [27].

Lax pairs both for HF equation and LL equation can be obtained in the
form (16.168), so we look now into it. Let us denote the set of the matrices
of the type A = {S}I , with potential S(x) belonging to MS by MI

S . In other
words, MI

S ⊂ o (4) is the manifold of potentials. It is easily checked that the
set of the nonlinear evolution equations, corresponding to the above Lax pairs,
have the form:

At = (Bn)x −
1
2
(AJBn −BnJA) , (16.174)

where the matrix functions Bn satisfy the following infinite system of equa-
tions, which we shall call the LLp chain system (“p” to denote that it is
obtained through polynomial pencil):

[A,B0] = 0

[A,Bn+1] = 2(Bn)x − (AJBn −BnJA); n = 0, 1, . . . . (16.175)

The equations (16.174) can be written also into the equivalent form

At =
1
2
[A,Bn+1] . (16.176)

The hierarchy (16.174), or (16.176), is the Landau–Lifshitz hierarchy of evo-
lution equations (or simply LL hierarchy). We shall need to distinguish the
hierarchies obtained through different pencils, so we call this hierarchy the
LLp hierarchy.

Of course, the above relations can be written also in terms of the vector
fields S, bn and cn and take the form:

• The LLp hierarchy of evolution equations:

St = (bn)x − S×K(cn); n = 0, 1, 2, . . . , (16.177)

or
St = −S× bn+1; n = 0, 1, 2, . . . . (16.178)

• The LLp chain system

S× b0 = 0

S× bn+1 = −(bn)x + S×K(cn)

(cn)x = −K(S× bn) +K(S)× cn

n = 0, 1, . . . . (16.179)
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In the above expressions, K is the same diagonal matrix we had before, that
is, K = diag (j1, j2, j3), the numbers ji are the same as in the definition of
J and (K(a))i = jiai. Below, when same relations are expressed through
4× 4 matrices in o (4), we shall say that we have matrix representation of the
hierarchies, equations etc., when expressed in terms of vectors, we shall say
that we have vector representation.

It can be shown that the LLp chain system possesses a solution at least
if we begin with b0 = S, c0 = 0. We discuss this solution later; now we just
note that with this choice the second nontrivial equation of the hierarchy is
the Landau–Lifshitz equation

St = (b1)x − S× c1 = S× Sxx − S× P (S) , (16.180)

where P = −K2, that is,

P = diag (p1, p2, p3), pi = −j2i ; i = 1, 2, 3 . (16.181)

This means that, in order to obtain LL equation, the entries of K must be
purely imaginary.

Let us consider now the LLp chain system (16.175). Using the properties of
the cocycle αJ(X) = 1/2(XJ+JX), associated with J , see (16.153), (16.135),
we first cast the hierarchy in the following form:

[A,F0] = 0
1
2
[A,Fn+1] = (Fn)x −

1
2
[A,αJ (Gn)]

(Gn)x −
1
2
[αJ (A), Gn] +

1
2
αJ([A,Fn]) = 0 (16.182)

n = 0, 1, 2, . . .

A = {S}I , Fn = {bn}I , Gn = {cn}II , (16.183)

or, equivalently,

S× b0 = 0

S× bn+1 = −(bn)x + S×K(cn)

(cn)x −K(S)× cn = −K(S× bn)
n = 0, 1, 2, . . . . (16.184)

Here, as in the rest of the text, K = diag (j1, j2, j3). It is known (see [6]) that
the LLp chain system has the following solution (obtained recursively)

b0 = S, c0 = 0
b1 = S× Sx, c1 = K(S)

bn+1 = bS
n+1 + S

x
∫

±∞

〈bS
n+1,Sx〉dx
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bS
n+1 = Λ̃±(bS

n) + (K(cn))S (16.185)

cn =
n
∑

q=1

(−1)q−1K(q)(bn−q) (16.186)

n = 1, 2, . . . .

Let us explain the notation and the meaning of the quantities that appear
in the solution. In the first place, the superscript S means that we take the
projection to the space orthogonal to S, that is:

aS = a− 〈a,S〉S = −S× (S× a) . (16.187)

Next, the sequence of diagonal matrices K(n); n = 1, 2, . . . is constructed
recursively, starting from K(1) = K. More specifically, the matrices K(n) are
obtained from the requirement that for arbitrary a and b they satisfy the
following equations:

K(1)(a)×K(1)(b) = K(2)(a× b) (16.188)

K(1)(a×K(1)K(1)(b)) +K(1)(a)×K(2)(b) = K(3)(a× b)

K(1)(a×K(1)K(2)(b)) +K(2)(a×K(1)K(1)(b))

+K(1)(a)×K(3)(b) = K(4)(a× b)

. . . . . . . . . . . . . . . . . . . . . . . .

n−2
∑

i=1

K(i)(a×K(1)K(n−i−1)(b)) +K(1)(a)×K(n−1)(b) = K(n)(a× b),

where K(1) = K and in the last formula n ≥ 3. The family of diagonal
matrices K(n) is well defined (see [6]), and the entries K(n)

i ; i = 1, 2, 3 of
K(n) are homogeneous polynomials of degree n in the variables j1, j2, j3. For
example, the first members of the family K(n) are:

K
(1)
1 = j1, K

(2)
1 = j2j3, K

(3)
1 = j1(j22 + j23), K(4)

1 = j2j3(2j21 + j22 + j23)

K
(1)
2 = j2, K

(2)
2 = j1j3, K

(3)
2 = j2(j21 + j23), K(4)

2 = j1j3(j21 + 2j22 + j23)

K
(1)
3 = j3, K

(2)
3 = j1j2, K

(3)
3 = j3(j21 + j22), K(4)

3 = j1j2(j21 + j22 + 2j23).

(16.189)
Note that KK(2) = j1j2j31 and that if K = 1, all the matrices K(n) are
proportional to 1. If we have already the matrices K(n), then cn is expressed
as shown in (16.186) through bs; s = 0, 1, . . . , n−1. We shall assume that the
components of bn and cn are polynomials in the components of S,Sx,Sxx, . . ..
Similar facts are typical in the theory of the soliton equations. However, one
proves them later, after more careful examination of the properties of the
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corresponding recursion operators (see for example [28]), for the case of the
Zakharov–Shabat system and its gauge-equivalent, or they follow from some
other considerations, usually related to the auxiliary spectral problems. If we
take such dependence on S(x) and its derivatives as granted, then the matrices
Bn have the same behavior at +∞ and −∞:

lim
x→−∞

Bn(x) = lim
x→+∞

Bn(x) . (16.190)

Finally, the operators Λ̃± are given by the formula

Λ̃±(x(x)) = S× ∂

∂x
x(x) + (S× Sx)

x
∫

±∞

〈x(x),Sx〉dx , (16.191)

and are the recursion operators for Heisenberg Ferromagnet (HF) chain
system. They are familiar from the study of the Heisenberg Ferromagnet
equation, we had earlier in this book, but here they are written in vector
representation. The HF chain system has the form, [29, 30] or [24]:

S× b0 = 0
S× bn+1 = −(bn)x

n = 0, 1, . . . (16.192)

and can be obtained as limit case of the LLp chain system putting K = 0,
cn = 0. In other words, the solution of (16.192) is:

b0 = S, b1 = S× Sx

bS
n+1 = Λ̃±(bS

n)

bn+1 = bS
n+1 + S

x
∫

±∞

〈bS
n+1,Sx〉dx

n = 1, 2, . . . . (16.193)

Coming back to the LLp chain system, the first few members of the
solution are:

c1 = K(S)

b2 = Sxx −K2(S) + hLLS

c2 = K(S× Sx)−K(2)(S)

b3 = −S× Sxxx + S×K2(Sx)

+K2(S× Sx) + hLLS× Sx − 〈K2(S× Sx),S〉S
c3 = K(b2)−K(2)(b1) +K(3)(b0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16.194)
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where

hLL =
1
2
〈Sx,Sx〉 − (

1
2
〈K2(S),S〉 − 1

2
〈K2(S0),S0〉) . (16.195)

The notation hLL is chosen because hLL is the Hamiltonian density for the
LL equation with respect to the so-called first Hamiltonian structure on MS

(see the first equation in (16.234)). This means that the Hamiltonian function
is equal to:

HLL =

+∞
∫

−∞

hLL(S(x),Sx(x))dx . (16.196)

It is interesting to note the HF equation can be embedded in the LLp hier-
archy not only if we set K = 0, but if we set K = 1. Then the HF equation
is the second nontrivial equation in the hierarchy. The corresponding chain
system, to which we refer as HFI chain system, is

S× b0 = 0

S× bn+1 = −(bn)x + S× cn

(cn)x − S× cn = −S× bn

n = 0, 1, . . . , (16.197)

and as far as we know, never has been considered in relation to the HF
equation. One can solve the HFI chain system but, as can be expected,
the solution does not yield new equations. Indeed, if the n-th equation of
HFI is St = Yn(S,Sx, . . .) and the n-th equation of the HF hierarchy is
St = Xn(S,Sx, . . .), then Yn is a linear combination with coefficients that
do not depend on x (but depend on n) of X1,X2, . . . , Xn. This of course can
be seen directly from the pencil of the Lax pairs, however, for reasons that will
become clear later, we do it in terms of the chain system. When K = 1, all
the matrices K(s) = ks1, where ks are positive integers, obtained recursively
as follows:

k1 = k2 = 1

kn+2 = k1kn + k2kn−1 + . . .+ kn−1k2 + knk1 + kn+1

n = 1, 2, . . . . (16.198)

For example, k3 = 2, k4 = 4, k5 = 9, k6 = 21. Then for n = 1, 2, . . . we get

S× bn+1 = −(bn)x + S×
n
∑

s=1

(−1)s−1ksbn−s , (16.199)

and therefore:

bS
n+1 = Λ̃±(bS

n) +
n
∑

s=1

(−1)s−1ksbS
n−s
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bn+1 = bS
n+1 + S

x
∫

±∞

〈bS
n+1,Sx〉dx . (16.200)

Since as before b1 = S × Sx, the elements of the new hierarchy are linear
combinations with constant coefficients of the elements of the hierarchy HF.
We can also try to find a recursion operator here. From the HFI chain system
we get

bS
n+1 = Λ̃±(bS

n) + cS
n (16.201)

Unfortunately, when we want to express cS
n , the formula is more complicated:

bS
n = cS

n + Λ̃±(cS
n) + (−1)n−1knS× Sx . (16.202)

We can write formally:

cS
n = (id + Λ̃±)−1[bS

n + (−1)nknS× Sx] , (16.203)

but the above relation cannot be used to calculate recursion operators, since
it involves the numbers kn, which are found using another recursion process.

Additional difficulties arise also, because, as we have seen in the first part,
the continuous spectrum of Λ̃± fills up the real line, and then the operator
(id + Λ̃±)−1 is not defined.

Fortunately there is another way to approach the problem, that works for
arbitrary K, which we are going to present in the next section.

16.8 Recursion Operators for LLp Hierarchy

Let us compare first the LLp chain system with the chain system obtained
in [24] for the elliptic pencil of Lax pairs which is the most usually cited in
relation to the LL equation. We shall call it the LLe chain system. We are not
introducing the Lax pairs, the details of the computations can be find in [24].
The chain system is given by:

S× a0 = 0

S× bn = (an)x

S× an+1 =
1
4
[(bn)x + C(S)× an]

n = 0, 1, 2, . . . . (16.204)

Here C is the diagonal matrix,

C = diag (p1 − p3, p2 − p3, 0) = P − p31 , (16.205)
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and the hierarchy is calculated starting from a0 = −S. Then b0 = S × Sx,
and the LLe hierarchy of evolution equations is given by

St = (bn)x + C(S)× an

n = 0, 1, 2, . . . . (16.206)

The first equation in the hierarchy is the LL equation. The recursion operator,
obtained in [24], and for long considered in the literature as the only possible
recursion operator for the LL equation, has the form:

ΦLL
± (h) =

1
4
(Λ̃±)2h

−1
4
S×

{

C(S)× h + (Sx)∂−1
x (〈S, C(S)× h〉) + C(S)× S∂−1

x (〈S, (h)x〉)
}

,

(16.207)

where it is assumed that hS = h. According to the explanations of the au-
thors of [24], ∂−1

x is the inverse of the x-derivative operator ∂x and ∂−1
x (0) is

understood as constant. (See the discussion after A− has been introduced in
(16.222)). Then

cn+1 = ΦLL
± (cn); n = 0, 1, 2, . . . , (16.208)

where
cn = −S× [(bn)x + C(S)× an] . (16.209)

In [24] it has been shown by direct calculations that the adjoint operator
(ΦLL

± )∗ is a Nijenhuis tensor field relating to two Poisson structures.
We want to obtain now a recursion operator for the LLp chain system

and to give to it geometric interpretation. We shall see that it is essentially
different from (16.207). Now, though the formulae (16.185) permit to calculate
the hierarchy, they are not what we are looking for, because the recursion
operator must relate bS

n+1 and bS
n as does the operator Λ̃± for the HF chain

system. We start with the observation that in the equations (16.184) appears
the operator A:

A(h) =
dh
dx
−K(S)× h , (16.210)

which relates cn and bn. If it is invertible, one can eliminate cn and arrive at
the desired result, just, as has been done for the HFI system. For this reason,
let us consider A more closely. The natural domain Dn of A consists of the
differentiable functions h : R �→ C

3. However, since we expect to use A in
the LLp chain system, we restrict Dn to the set D of the functions h(x),
such that h(x)− (0, 0, h0

3) is a Schwartz-type function on the line. (Here h0
3 is

some constant.) In order to perform our constructions, we need additional
assumptions on S(x). We shall assume not only that S(x) − (0, 0, 1) is a
Schwartz-type function on the line but that



16.8 Recursion Operators for LLp Hierarchy 591

|S1,2(x)| ≤ H exp(−(|Im (j3)|+ ε)|x|) , (16.211)

where H, ε are some positive constants. (Less restrictive conditions can be
introduced, but since we want only to justify our constructions and not to
develop the spectral theory of A, we shall use these.)

Proposition 16.42. If the potential function S(x) satisfies the above condi-
tions, then for any fixed constant h0

3 there exists unique h(x) ∈ Dn, such
that

Ah = 0, lim
x→−∞

h(x) = (0, 0, h0
3).

Proof. Let h ∈ Dn satisfy

dh
dx
−K(S)× h = 0, lim

x→−∞
h(x) = (0, 0, h0

3).

(16.212)

We reformulate our problem, in order to put it in a more convenient form.
From the algebra C

3 (with respect to the cross-product), we pass to the iso-
morphic algebra sl (2), that is, instead of h(x), S(x), we introduce the matrix
functions h(x), S(x) etc. defined as

h(x) =
3
∑

s=1

hs(x)σs

S(x) =
3
∑

s=1

Ss(x)σs, S0 = σ3

K(S) =
3
∑

s=1

jsSs(x)σs , (16.213)

where σs; s = 1, 2, 3 are the Pauli matrices. The inner product 〈g,h〉 =
∑3

s=1 hsgs of two vectors 〈g,h〉 can be written as 2B(h, g) where B(h, g) is the
Killing form of sl (2). Indeed, as is known, for sl (2) holds B(h, g) = 1

4 tr (hg)
and so B(σs, σl) = 1

2δsl. We denote by the same letter the operator that
corresponds to A under the isomorphism C

3 ∼ sl (2), that is, when A acts on
sl (2)-valued functions, it takes the form:

A(h) =
dh

dx
+
i

2
[K(S), h] . (16.214)

Then the equation (16.212) reads

dh

dx
+
i

2
[K(S), h] = 0 . (16.215)

Next, we consider the following auxiliary linear problem, closely related to
(16.215):
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dψ

dx
+
i

2
K(S)ψ = 0

lim
x→−∞

exp(−ixj3
2
σ3)ψ(x) = 1 . (16.216)

If we put ψ̃(x) = exp(−ix j3
2 σ3)ψ(x), then as easily checked, (16.216) is equiv-

alent to the following integral equation for ψ̃(x):

ψ̃(x) = 1− i

2

x
∫

−∞

e(−iy
j3
2 σ3)(K(S)− j3σ3)e(iy

j3
2 σ3)ψ̃(y)dy , (16.217)

or, written in components:

ψ̃(x) =

1− i

2

x
∫

−∞

(

j3(S3(y)− 1) (j1S1(y)− ij2S2(y))eiyj3

(j1S1(y)− ij2S2(y))e−iyj3 −j3(S3(y)− 1)

)

ψ̃(y)dy.

(16.218)

The assumption (16.211) ensures that the above integral equation is of
Volterra type, since its kernel (with respect to the matrix norm) is bounded
by expression of the type M exp(−ε|x|), M = const . Therefore, (16.211) has
unique solution and this solution is invertible matrix. (For the properties of
such integral equations see [30]; the above linear problem is similar to the aux-
iliary problem for the Heisenberg Ferromagnet equation considered there). As
a consequence, (16.216) has unique solution and which also is invertible ma-
trix. Suppose ψ is a solution of (16.216). Then the following properties are
easily verified:

• If C is a constant 2 × 2 matrix, then ψCψ−1(x) satisfies the equation
(16.215).

• Let B(X,Y ) be the Killing form of the algebra sl (2). Suppose h1(x), h2(x)
are arbitrary functions with values in sl (2) satisfying (16.215). Then the
derivative of r(x) = B(h1(x), h2(x)) vanishes, that is, r(x) = const .

From the above it easily follows that if h(x) is a function with values in sl (2)
satisfying (16.215), it is necessarily of the form:

h(x) =
3
∑

s=1

asψσsψ
−1(x); as = const . (16.219)

Since the asymptotic when x→ −∞ of the right hand side is

(a1 cos(j3x) + a2 sin(j3x))σ1 + (−a1 sin(j3x) + a2 cos(j3x))σ2 + a3σ3,

(16.220)

the function h(x) tends to h0
3σ3 only if as = 0; s = 1, 2 and a3 = h0

3. The
proposition is proved.



16.8 Recursion Operators for LLp Hierarchy 593

Corollary 16.43. If the limit limx→±∞ f(x) is known, the function f(x) ∈ D
can be recovered uniquely from its image g = A(f). In particular, restricted on
the vector space of Schwartz-type functions, the operator A has trivial kernel
and is invertible.

As to the calculation of the inverse operator A−1, it can be done using the
function ψ(x). Indeed, consider (16.215) with a right side, that is:

dh

dx
+
i

2
[K(S), h] = g(x) , (16.221)

where g(x) is Schwartz type function. Then, since B(σs, σl) = − 1
4δsl, one can

check that we have the following solution of our problem (provided that the
integral converges and we can differentiate it):

h(x) = R(−)g(x) (16.222)

= aψσ3ψ
−1(x) +

1
2

3
∑

s=1

ψσsψ
−1(x)

∫ x

−∞
B(g(y), ψσsψ

−1(y))dy.

As it should be, the solution depends on one arbitrary parameter a. If we
know that limx→−∞ h(x) = 0, then a = 0. In this case the solution is unique;
the solution is also unique, if we require for it the asymptotic: h(x) → aσ3,
a 	= 0 when x→ −∞ and a is some fixed constant. In both these cases, one
can write R(−) = A−1. However, we still have some difficulties. Indeed, for the
geometric interpretations of the soliton equations hierarchies, we must ensure
that if A−1g(x) satisfies limx→−∞A−1g(x) = a then limx→+∞A−1g(x) = a
too. We can see that the above, generally speaking, is not true. But if this
happens, it simply means that g is not in the image of A. We also note that
using solutions ϕ(x) of the differential equation in (16.216), but this time
defined by their behavior at +∞ instead at −∞, we get another expression
for the inverse. In order to distinguish these expressions we write A−1

− and
A−1

+ . As a matter of fact, we have

h(x) = A−1
+ g(x) = R(+)g(x) = aϕσ3ϕ

−1(x)

+
1
2

3
∑

s=1

ϕσsϕ
−1(x)

∫ x

+∞
B(g(y), ϕσsϕ

−1(y))dy . (16.223)

Since ϕ and ψ are fundamental solutions of the same system of differential
equations, there exists a nondegenerate constant matrix T such that ψ = ϕT .
The properties of the Killing form allow to obtain that if h(x) has the same
asymptotic at ±∞, then

A−1
+ g = (16.224)

A−1
(−)g(x) +

1
2

3
∑

s=1

ϕσsϕ
−1(x)

∫ +∞

−∞
B(g(y), ϕσsϕ

−1(y))dy.
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There is no contradiction here, because in the case when g(x) = A(h), where h
is such that h(x)−aσ3 is a Schwartz-type function on the line, after integrating
by parts and using the properties of the form B, one can show that the integral
in the right-hand side vanishes and A−1

− g = A−1
+ g. The above again shows

that inverting A one must be sure that one acts on functions that belong to
the image of A.

The difficulties we have encountered in inverting some operators are com-
mon in the geometric approaches to the soliton equations and in the theory
of the recursion operators, though they are simpler in the case when the po-
tentials vanish at infinity. Even in that case, one usually must invert ∂x (as
in the case of the recursion operators for the HF), and of course the inverse
is unique up to an additive constant. Different authors choose for the inverse
one of the operators

∫ x

−∞
,

∫ x

+∞
,

1
2

(∫ x

−∞
+
∫ x

+∞

)

(16.225)

(the last expression is usually chosen when we need to ensure some symmetry
properties) or simply write ∂−1

x . All these expressions of course amount to the
same, since each time one uses recursion operators it is possible to prove that
the integrands are total derivatives of polynomial functions on the potential
and its derivatives (at least it is the case for the Nonlinear Schrödinger equa-
tion hierarchy and the HF hierarchy it is so) or in other words, the integrands
belong to the image of ∂x. What happens in our case is similar. For example,
solving

dc1

dx
−K(S)× c1 = −K(S× b1) = K(Sx(x)) (16.226)

for c1 gives K(S)+h, where h satisfies the corresponding homogeneous equa-
tion. If we assume that the solution tends to K(S0) when x → ±∞ then
c1 = K(S(x)). The formula for the cn’s (see (16.186)) shows that we can find
the limit of cn(x) as x→ ±∞ and then cn can be uniquely determined from
the equation:

(cn)x −K(S)× cn = −K(S× bn) . (16.227)

Therefore, A−1
± (K(S× bn)) is well defined.

Remark 16.44. The formula (16.186) avoids solving the differential equation
for cn, but it gives cn as function of b0,b1, . . . ,bn−1. What we want, however,
is an expression that depends only on bn.

Having in mind the properties of the operator A, discussed in the above, the
LLp chain system (16.184) can be written into the form:

S× b0 = 0

S× bn+1 = −(bn)x − S×KA−1
± K(S× bn)

n = 0, 1, . . . , (16.228)
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where A−1
± is used in the sense we discussed. The difficulties we mentioned

can be overcome only after a thorough study of the spectral theory of the
operator L in the Lax representation; here we limit ourselves to the geometric
interpretation of the hierarchies.

For arbitrary vector q, the fact that S ∈ S
2 entails qS = −S × (S × q),

and we obtain:

Proposition 16.45. The solution of LLp chain system can be put into the
form:

b0 = S

b1 = S× Sx

bS
n+1 = ΛL

±(bS
n)

bn+1 = bS
n+1 + S

x
∫

±∞

〈bS
n+1,Sx〉dx (16.229)

n = 1, 2, . . . , (16.230)

where

ΛL
±h = Λ̃±(h) + S× [S×KA−1

± K(S× h)] = Λ̃±(h) + [KA−1
± K(S× h)]S

(16.231)
(of course, here we assume 〈h(x),S(x)〉 = 0).

The operator ΛL
± is a recursion operator for the LLp chain system. When

K = 0, it reduces to Λ̃± – the recursion operator for the HF chain system, an
advantage over the recursion operator obtained in [24], which reduces to Λ̃2

±.
Its flaw seems to be the presence of A−1

± , which cannot be expressed in terms
of S(x) and its derivatives (in an explicit form). But since we have a nice
recursion formula which gives the values KA−1

± K(S × bn), this flaw is only
apparent; actually one calculates the members of the LLp hierarchy at least
as easily as one calculates them for LLe hierarchy. There is, however, another
thing that makes both operators quite different. The point is that generally
speaking, the LLp chain system is complex, and we cannot simply consider
K real, because the system of interest (the LL equation) is obtained exactly
when the entries of K are purely imaginary. But since the LL equation is
real, it is desirable to have a real hierarchy. The expression for the generating
operator, ΛL

± shows that it is complex too and hence the quantities bn are
complex. The same is deduced easily from the formula for cn, cf. (16.186).
The entries of the matrices K(q) are homogeneous polynomials of degree q in
the entries of K, see [6], and hence for even q they are real and from odd q
they are imaginary. This circumstance, together with

S× bn+1 = −(bn)x + S×K(cn) , (16.232)
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show that, generally speaking, bn have imaginary parts. The imaginary
terms vanish up to n = 3 when we start by b0 = S, c0 = 0, because
KK(2) = −i|j1j2j3|1, and there are no terms proportional to i in the equa-
tion for b3. However, the same relation shows that in the expression for
b4 there is imaginary term, proportional to S × Sx. What happens is that
in the imaginary part of the hierarchy, we have linear combinations of the
same vector fields as in the real part. In the present context, they appear
together and it is not clear how we can separate them. The above also shows
that one cannot expect that the recursion operator for the elliptic pencil will
be the square of the recursion operator we have introduced. There must be
some more subtle connection between them, a connection that will be re-
vealed after the relation between the polynomial and elliptic pencils is better
understood.

Now, following closely [9], we are going to show that for ΛL = ΛL
± (we

consider the two operators as equivalent) we have the usual geometric inter-
pretation of the recursion operators, that is, ΛL relates two Poisson structures
and as a consequence its adjoint is a Nijenhuis tensor.

16.9 LLp Hierarchy – the Poisson-Nijenhuis Structure

Looking at the LLp hierarchy of evolution equations, cf. (16.174), (16.176),
and using the definition of the tensor field P

(J;a,b)
A introduced earlier in

theorem 16.39, one sees that they can be cast into the following equivalent
forms

At = P
(1;− 1

2 ,0)

A Bn+1, At = P
(J; 12 ,1)

A Bn; n = 0, 1, . . . , (16.233)

where the two tensors are compatible. One immediately has the idea to in-
terpret Bn as 1-forms and from (16.233), it is clear that the aforementioned
tensors play an important role. Now, for the sake of brevity, we shall drop the
complicated upper indices and denote the tensors simply by P and Q, that is:

P
(1;− 1

2 ,0)

A = QA =
1
2
ad A, P

(J; 12 ,1)

A = PA = ∂x −
1
2
ad J

A . (16.234)

The tensor Q is familiar, and in vector representation it defines the so-called
first Hamiltonian structure on MS ; the tensor P is more “exotic.”

Now we want to restrict these tensors on the space of potentials

MI
S = {A = {S}I : S(x) ∈MS} ∼ MS . (16.235)

The first tensor (Q) is immediately restricted, and its form remains the same,
so we denote the restriction by the same letter. It remains to restrict the
second tensor (P ), and to this end we use the Restriction Theorem (12.25).
In order to check the conditions of (12.25), we calculate:
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TA(MI
S) = {X : X = [A, Y ], Y ∈ gI [x]}

T⊥
A (MI

S) = {fA+ Y ∗ : f ∈ S(R), Y ∗ ∈ gII [x]} , (16.236)

where S(R) denotes the space of the Schwartz functions on the line. As ex-
plained, we identify the tangent and cotangent vectors using the form 〈〈 , 〉〉,
but we write star as superscript, when we are dealing with covectors, in order
to make the geometric meaning clearer. Next

X ∗
P (MI

S)A = {X∗ + Y ∗ : X∗ ∈ gI [x], Y ∗ ∈ gII [x]} , (16.237)

where X∗ and Y ∗ satisfy:

(X∗)x −
1
2
[A,αJ (Y ∗)] ∈ TA(MI

S)

(Y ∗)x −
1
2
[αJ (A), Y ∗] = −1

2
αJ ([A,X∗]) . (16.238)

The first of this relations implies that

BT (X∗
x(x), A(x)) = 0 . (16.239)

If we put X∗ = {b}I , Y ∗ = {c}II , the second one is equivalent to the vector
equation:

cx −K(S)× c = −K(S× b) . (16.240)

As one can see the operator ∂x− 1
2ad αJ (A) is the matrix form of the operator

A, introduced in (16.210), so we shall denote it by the same letter. Then the
equation from (16.238) reads

A(Y ∗) = −1
2
αJ ([A,X∗]) . (16.241)

The domain D of the operator A is the set of the smooth functions Y ∗(x)
taking values in gII and tending fast enough to some constants {(0, 0, a)}II .
In this case, as we have seen, the operators A−1

± are well defined on the image
of A and are equal on this image. From the fact that A has trivial kernel when
restricted to gII [x] we get

(X ∗
P (MI

S)A) ∩ T⊥
A (MI

S) = {0} . (16.242)

Finally, if X∗ + Y ∗ is a covector from T ∗
A(o (4)0[x]), making use of (16.133)

we obtain

X∗ + Y ∗ = Z∗
1 + Z∗

2 (16.243)

Z∗
1 = X∗ +

1
8
A

x
∫

±∞

BT (A(y),Xy(y))dy − 1
2
A−1

± (αJ ([A,X∗]))



598 16 Linear Bundles of Lie Algebras and Compatible Poisson Structures

Z∗
2 = Y ∗ − 1

8
A

x
∫

±∞

BT (A(y),Xy(y))dy +
1
2
A−1

± (αJ([A,X∗])).

Since Z∗
1 ∈ X ∗

P (MI
S)A, Z∗

2 ∈ T⊥
A (MI

S) the above shows that

(X ∗
P (MI

S)A) + T⊥
A (MI

S) = T ∗
A(o (4)0[x]) . (16.244)

Therefore the requirement of the theorem 12.25 are fulfilled and P allows
restriction. According to this theorem, for X∗ ∈ T ∗

A(MI
S), one must take

first j∗(X∗), where j is the canonical inclusion map j : MI
S �→ MS , then

represent it as a sum Y ∗
1 +Y ∗

2 , where Y ∗
1 ∈ X ∗

P (MI
S)A, Y ∗

2 ∈ T⊥
A (MI

S), and the
restricted tensor will satisfy P̄A(X∗) = PA(Y ∗

1 ). In our case j∗(X∗) = X∗ so
we get:

P̄A(X∗) = ∂x(X∗) +
1
8
Ax

x
∫

±∞

BT (X∗
y (y), A(y))dy

+
1
8
BT (X∗

x , A) A− 1
4
[A, (αJ ◦ A−1

± ◦ αJ )([A,X∗])]

= π(∂x(X∗)) +
1
8
Ax

x
∫

±∞

BT (X∗
y (y), A(y))dy − 1

4
[A,A−1

± (αJ([A,X∗])],

(16.245)

where π denotes the projection in o (4) onto the subspace, orthogonal to A.
Also, since BT (X∗(x), A(x)) = 0, one has

BT (Xx(x), A(x)) = −BT (X(x), Ax(x)) . (16.246)

Finally we obtain:

Proposition 16.46. On the manifold of potentials MI
S there exists a restric-

tion P̄ of the Poisson tensor P , having the form:

P̄A(X∗) = π(∂x(X∗))− 1
8
Ax

x
∫

±∞

BT (X∗(y), Ay(y))dy

− 1
4
[A, (αJ ◦ A−1

± ◦ αJ)([A,X∗])] , (16.247)

where X∗ ∈ T ∗
A(MI

S).

Since on TA(MI
S) the operator QA is invertible, we are able to calculate

ΛL
± = Q−1

A ◦ P̄A:
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ΛL
±(X∗) = −1

2
[A, ∂x(X∗)] +

1
16

[A,Ax]

x
∫

±∞

BT (X∗(y), Ay)dy

− 1
2
(π ◦ αJ ◦ A−1

± ◦ αJ ◦ ad A)(X∗)

= Λ̃±(X∗)− 1
2
(π ◦ αJ ◦ A−1

± ◦ αJ ◦ ad A)(X∗) . (16.248)

(Of course, in the above, we assume that X∗ satisfies BT (X∗(x), A(x)) = 0).
Some explications are needed for the last formula. If we calculate the above
in vector representation we shall get that the term

Ψ±(X∗) = −1
2
[A, ∂x(X∗)] +

1
16

[A,Ax]

x
∫

±∞

BT (X∗(y), Ay)dy , (16.249)

in which X∗ = {b}I is equal to {Λ̃±b}I , and the entire expression in (16.248)
equals

ΛL
±(X∗) = {Λ̃±(b) + [(KA−1

± K)(S× b)]S}I , (16.250)

which explains why we denoted the operator Q−1
A ◦P̄A by ΛL

±, and the operator
Ψ± in (16.249) by Λ̃± – they are just the recursion operators for LLp and HF
in vector representation, cf. (16.231) and (16.191). As we have seen, the action
of A−1

+ and A−1
+ gives the same result, so below we write ΛL instead of ΛL

±.
The general theory of compatible Poisson tensors then yields :

Theorem 16.47. The pair (Q,NL = (ΛL)∗) endows the manifold of poten-
tials MI

S (or MI
S) with a P-N structure.

Let us consider again the equations from the LLp hierarchy, (16.174), (16.176).
We want to reveal their Hamiltonian properties. According to (16.233), we can
write them as

At = QA(Bn+1) = PA(Bn); n = 0, 1, . . . , (16.251)

where Bn = Fn +Gn (Fn ∈ gI , Gn ∈ gII) satisfy the chain system (16.175),
or equivalently, (16.182), which for our convenience we write again:

[A,F0] = 0
1
2
[A,Fn+1] = (Fn)x −

1
2
[A,αJ (Gn)]

(Gn)x −
1
2
[αJ (A), Gn] +

1
2
αJ ([A,Fn]) = 0 . (16.252)

We want to give geometric interpretation to these relations. The third equation
is equivalent to

Gn = −1
2
A±(αJ ([A, π(Fn)]).
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As to the second equation, first, it shows that (Fn)x ∈ TA(MI
S) and therefore

BT (A(x), (Fn(x))x) = 0. Next, since Fn = π(Fn) +BT (A,Fn)A and

BT (A,Fn)(x) =

x
∫

±∞

∂yBT (A(y), Fn(y))dy =

x
∫

±∞

BT (Ay(y), Fn(y))dy,

it is easily seen that it can be written as:

QA(π(Fn+1)) = P̄A(π(Fn)) . (16.253)

But then the hierarchy (16.174), (16.176) can also be cast into the form:

At = QA(π(Fn+1)), At = P̄A(π(Fn)) . (16.254)

We, therefore, can interpret π(Fn) as 1-forms onMI
S and the above equations

as Hamiltonian equations, provided π(Fn) = dHn, where Hn are the Hamil-
tonians for these equations. The theory of the P-N manifolds shows that if
on a P-N manifold the 1-form β is fundamental (corresponds to fundamental
field of the structure) then β is closed and if β, N∗β are closed, then (N∗)kβ,
k ≥ 2 are closed too. In our case, this means that all π(Fn) are closed forms.
Indeed, π(F1) is closed and fundamental (it can be shown exactly as it is done
for the form B1 in the case of O(3) chiral fields system (see below (16.298));
The form π(F2) is even exact, since it corresponds to the LL equation and
it is Hamiltonian. So the equations (16.254), starting from the second one
(the LL equation), are Hamiltonian and even bi-Hamiltonian in a general-
ized sense. As for the proof that there exist well-defined functionals Hn, such
that π(Fn) = dHn (in general one has it starting from some n0), this fact
usually follows from some other considerations. For example, one gets this
result for the HF equation and NLS equation from the spectral theory for the
corresponding auxiliary liner problem and the spectral theory of the recur-
sion operators. It is well known that for NLS equation and HF equation the
Hamiltonians can be obtained through the recursion operators [29], though
their locality is not immediately seen and needs to be proved [28]. We shall
assume that Hn exist for n ≥ 2. If so, the equations (16.254), together with
(16.253), show that the nonlinear evolution equation hierarchy, related to the
polynomial pencil is bi-Hamiltonian and is related to the P-N structure de-
scribed in theorem 16.47. From the general theory of the P-N manifolds we get

Corollary 16.48. The nonlinear equations from the hierarchy (16.176) (from
the hierarchy (16.177)), are Hamiltonian, and their Hamiltonians are in in-
volution.

Finally, we note that the above corollary can be obtained also directly. Indeed,
if we denote by {Hn,Hm}Q, {Hn,Hm}P the Poisson brackets defined by Q
and P̄ respectively, we can write the equalities:
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{Hn,Hm}Q =
1
2
〈〈[A, π(Fn)], π(Fm)〉〉

〈〈P̄ (π(Fn−1))], π(Fm)〉〉 = {Hn−1,Hm}P = (16.255)
1
2
〈〈[A, π(Fn)], π(Fm)〉〉 =

1
2
〈〈[A,Bn], Bm〉〉

1
2

+∞
∫

−∞

BT ([A(x), Bn(x)], Bm(x))dx = (16.256)

{Hn−1,Hm}P = 〈〈P̄ (π(Fn−1))], π(Fm)〉〉
+∞
∫

−∞

BT (∂xBn−1(x)− 1
2
[A(x), Bn−1(x)]J , Bm(x))dx . (16.257)

Now, we implement a technique described in [31] and frequently used in similar
proofs. Let us suppose for definitiveness that n > m. Using that ad J

X is skew-
symmetric with respect to the bilinear form BT , integrating by parts and
taking into account the properties of the matrices Bn (see (16.190)), we get
that

{Hn,Hm}Q = {Hn−1,Hm+1}Q . (16.258)

Applying this identity sufficiently many times, we arrive at the equation of
the type

{Hn,Hm}Q = {Hn−1,Hm+1}Q = . . . = {Hk,Hk}Q (16.259)

if n−m is even, or at the equation of the type

{Hn,Hm}Q = {Hn−1,Hm+1}Q = . . . = {Hm,Hn}Q = −{Hn,Hm}Q

(16.260)
if n −m is odd. In both cases, we conclude that {Hn,Hm}Q = 0. From the
proof it follows also that {Hn,Hm}P = 0. This is exactly what we wanted to
show.

16.10 Chiral Fields Hierarchy : the Poisson-Nijenhuis
Structure

We are going to define now the Hamiltonian structures of the equations from
the CF hierarchy. First of all let us remark that the set of potentials has
natural structure of infinite-dimensional manifold. Indeed, the manifold of
potentials for the CF hierarchy is the set of the smooth functions

A(x) = {u(x)}I + {v(x)}II

(u(x))2 = (v(x))2 = 1

u(x),v(x)− real , (16.261)
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defined on the real line R and tending fast enough to some limit value

A0 = {u0}I + {v0}II ,

as |x| → ∞.
One can easily see that the requirements (16.261) simply mean that A(x)

takes its values in the following orbit of the adjoint representation of the group
SO(4,R) (the group of the orthogonal 4× 4 matrices with unit determinant):

OB0 = {A = Ad(g)B0; g ∈ SO(4,R)} ⊂ o (4) , (16.262)

where

B0 =

⎛

⎜

⎜

⎝

0 2 0 0
−2 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

= {(1, 0, 0)}I + {(1, 0, 0)}II . (16.263)

Therefore, the manifold of potentials is the set OB0 [x] consisting of functions
taking values in OB0 and tending fast enough to some limit value as |x| → ∞.
ClearlyOB0 [x] is infinite dimensional manifold and submanifold of o (4,R)0[x].
This submanifold can be understood better, if one remarks that the orbit OB0

have also the following representation:

OB0 = {A : B(A,A) = −16, BT (A,A) = 0} ⊂ o (4,R) , (16.264)

where B(X,Y ) and BT (X,Y ) are the symmetric forms on o (4,R) we have
introduced earlier. In order to see this, it is enough to calculate B(A,A) and
BT (A,A) using the relations (16.133).

Then one can see that X(x) ∈ TA(OB0 [x]) when

B(A,X) = 0, BT (A,X) = B(A, T (X)) = B(T (A),X) = 0 . (16.265)

Let us make some preparations. We shall denote the points q of the algebra
o (4) by column of two vectors

q = (a,b)t =
(

a
b

)

having in mind of course that this means q = {a}I + {b}II . Therefore the
points A(x) = {u(x)}I + {v(x)}II of the manifold OB0 [x] are represented by
a column A(x) = (u(x),v(x))t or simply by A = (u,v)t. Also, in order to
write down in more convenient way some complicated expressions, we shall
denote by lower indices I and II the following projections

(

a
b

)

I

= a,
(

a
b

)

II

= b. (16.266)



16.10 Chiral Fields Hierarchy : the Poisson-Nijenhuis Structure 603

With the new notations a vector X(x) at the point A(x) ∈ OB0 [x] is repre-
sented by a couple of Schwartz-type functions (a(x),b(x))t, for which:

〈u(x),a(x)〉 = 〈v(x),b(x)〉 = 0 , (16.267)

where 〈 , 〉 is the canonical inner product in R
3. According to our convention

we identify the vectors and covectors using the pairing defined in (16.141),
putting of course BT instead of B. We easily obtain

〈〈(a(x),b(x))t, (c(x),d(x))t〉〉 = −8

+∞
∫

−∞

[〈a(x), c(x)〉 − 〈b(x),d(x)〉]dx .

(16.268)
Thus, the above form is nondegenerate when restricted to the tangent space
TA(OB0 [x]), and through it we can identify the tangent space TA(OB0 [x]) and
the cotangent space T ∗

A(OB0 [x]).
We shall try now to restrict two of the tensors from the 3-parametric family

of Poisson tensors defined in Theorem 16.39 onto the submanifold OB0 [x].
These tensors are the already familiar from (16.234) tensors

QA =
1
2
ad A (16.269)

PA = −1
2
ad J

A + ∂x , (16.270)

or equivalently,

P

(

a
b

)

=
(

ax +R(v × b)− u×R(b) + a×R(v)
bx +R(u× a)− v ×R(a) + b×R(v)

)

(16.271)

Q

(

a
b

)

=
(

−u× a
−v × b

)

. (16.272)

Note that Q−1 = −Q.
The fact that Q allows nondegenerate restriction over OB0 [x], and its form

after the restriction does not change, is in fact the theorem that the Poisson-
Lie tensor restricted to an orbit of the coadjoint representation is nondegen-
erate, so there is no need to prove it.

As to the tensor P , it cannot be restricted directly. In order to perform the
restriction, we shall use again the Restriction Theorem 12.25 applying it this
time to M = o (4,R)0[x] and N = OB0 [x]. Let us find X ∗

P (N )A and T⊥
A (N )

for a point A belonging to N = OB0 [x] (for the definitions of these spaces see
theorem 12.25). Naturally, for the annihilator T⊥

A (N ) we get

T⊥
A (N ) = {(fu, gv)t : f, g ∈ S} , (16.273)

where S is the set of all Schwartz type functions on the line. We can also say
that
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T⊥
A (N ) = {(f̄A+ ḡT (A) : f̄ , ḡ ∈ S} . (16.274)

According to the definition X ∈ X ∗
P (N )A if PA(X) ∈ TA(OB0 [x]) or in other

words if the following equations hold

B(A, ∂xX)− 1
2
B(A, ad J

A(X)) = 0 (16.275)

BT (A, ∂xX) = 0 . (16.276)

After some simple transformations we obtain that these equations are equiv-
alent to

B(A,X) = ∂−1
x [B(Ax,X) +

1
2
B(A, ad J

A(X))] (16.277)

BT (A,X) = B(T (A),X) = ∂−1
x B(Ax, T (X)), (16.278)

where ∂−1
x stands for the inverse of the operator ∂x. The choice of ∂−1

x of
course is not unique, and it is easy to see that we can use as inverse any of
the operators:

∂−1
x = τ

∫ x

−∞
+(1− τ)

∫ x

+∞
, τ ∈ R , (16.279)

but we shall postpone the discussion about the appropriate choice for ∂−1
x , in

order to proceed with our geometric construction.
Let us remark that for A ∈ OB0 [x] we have B(A, T (A)) = BT (A,A) = 0

or in other words A and T (A) are orthogonal with respect to the Killing
form. Then taking into account (16.265), we see that the following orthogonal
decomposition holds:

o (4,R) = [RA(x)⊕ RT (A(x))]⊕ TA(OB0 [x]) . (16.280)

(This decomposition obviously depends on x).
For fixed X, let us denote by XA the orthogonal projection of X onto the

space TA(OB0 [x]) and the orthogonal projection of X over the space spanned
by A and T (A) by XA. One can see that

XA = X +
1
16
B(A,X)A+

1
16
B(T (A),X)T (A)

XA = − 1
16
B(A,X)A− 1

16
B(T (A),X)T (A) . (16.281)

If we return now to (16.277) and (16.278), then due to the fact that

B(A, ad J
A(T (A))) = BT (T (A), ad J

A(T (A))) = 0 , (16.282)

we see that in the right-hand sides we can put instead of X the projection
XA, and these equations actually show that if X ∈ X ∗

P (N )A the component
XA is expressed by the component XA. Taking this into account we write
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X = Y + Z , (16.283)

where

Y = XA − 1
16
A ∂−1

x [B(Ax,X
A) +

1
2
B(A, ad J

A(XA))]

− 1
16
T (A) ∂−1

x B(Ax, T (XA)) (16.284)

Z = XA +
1
16
A ∂−1

x [B(Ax,X
A) +

1
2
B(A, ad J

A(XA))]

1
16
T (A) ∂−1

x B(Ax, T (XA)) . (16.285)

Using (16.282), one can check that Y ∈ X ∗
P (N )A. As to the vector Z, it is

a linear combination of A and T (A) and hence Z ∈ T⊥
A (N ). Moreover, from

(16.283) and (16.277, 16.278) we see that

T⊥
A (N )⊕X ∗

P (N )A = T ∗
A(M)

T⊥
A (N )

⋂

X ∗
P (N )A = {0} ⊂ ker (PA) . (16.286)

(Of course, here M = o (4,R)0[x] and N = OB0 [x].) Then the requirements
of the Restriction Theorem 12.25 are fulfilled, and there exists restriction P̄ of
P defined over N . According to the prescriptions of the Restriction Theorem,
for α ∈ T ∗

A(N ), we must take β = j∗α, then represent β as sum β1+β2 in such
a way that β1 ∈ X ∗

P (N )A and β2 ∈ T⊥
A (N ) and finally put P̄ (α) ≡ P (β1). As

usual, j is the inclusion map j : N →M.
Since in our case TA(M) and T ∗

A(M) are identified, the pull-back of the
inclusion map j is simply the orthogonal projection X → XA. As is readily
seen, the role of the component β1 here is played by the expression (16.284)
where we must put X instead of XA in the integrands. Taking into account all
that, we arrive at the following expression for the restricted Poisson tensor:

P̄A(X) = ∂xX − 1
16
Ax∂

−1
x [B(Ax,X) +

1
2
B(A, ad J

A(X))]

− 1
16
T (Ax)∂−1

x B(Ax, T (X))− 1
16
A[B(Ax,X) +

1
2
B(A, ad J

A(X))]

− 1
16
T (A)B(Ax, T (X))− 1

2
ad J

A(X) , (16.287)

where X ∈ T ∗
A(N ) ∼ TA(N ).

Remark 16.49. The function Ax tends to zero as |x| → ∞, and X(x) is a
function of the Schwartz type, so the integrals in (16.287) exist. The same is
true for the integrals in the expressions for Y and Z, see (16.284), (16.285).
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We must ensure also that P̄ is skew-symmetric, at least in a weak sense, that
is, we must have

〈〈P̄A(X), Y 〉〉 = −〈〈X, P̄A(Y )〉〉 (16.288)

for X,Y ∈ TA(OB0 [x]). A simple integration by parts shows that for this we
must take

∂−1
x =

1
2

(∫ x

−∞
+
∫ x

+∞

)

. (16.289)

The construction of Nijenhuis tensor N is now an easy task. We must
calculate N = P̄Q−1 = −P̄Q or N∗ = Q−1P̄ = −QP̄ . We obtain:

N∗
A(X) = − 1

2
[A, ∂xX] +

1
32

[A,Ax]∂−1
x [B(Ax,X) +

1
2
B(A, ad J

A(X))]

+
1
32

[A, T (Ax)]∂−1
x B(Ax, T (X))

+
1
32

[A, T (A)]B(Ax, T (X)) +
1
4
[A, ad J

A(X)] , (16.290)

where X ∈ T ∗
A(N ) ∼ TA(N ). Now let us formulate our main result:

Theorem 16.50. The tensor fields Q and N = P̄Q−1 endow the manifold of
potentials N = OB0 [x] for the CF hierarchy with Poisson-Nijenhuis structure.

We are going to apply now this result to the CF hierarchy, but first we must
write the operators which we have obtained in terms of u,v. If we put X =
(a,b)t and assume 〈u,a〉 = 〈v,b〉 = 0 we get:
[

P̄A

(

a
b

)]

I

= [∂xa +R(v × b) + u×R(b) + a×R(v)]u

+ u×R(v) ∂−1
x [〈ux,a〉 − 〈vx,b〉]

+ ux ∂−1
x [〈ux,a〉+ 〈u×R(v),a〉 − 〈R(u)× v,b〉] (16.291)

[

P̄A

(

a
b

)]

II

= [∂xb +R(u× a) + v ×R(a) + b×R(u)]v

+ v ×R(u) ∂−1
x [〈vx,b〉 − 〈ux,a〉]

+ vx ∂−1
x [〈vx,b〉+ 〈v ×R(u),b〉 − 〈R(v)× u,a〉] , (16.292)

where as before by upper indices u, v we denote the projections on the planes
orthogonal to the vectors u and v, respectively and R = diag (j1, j2, j3). For
the tensor field N∗ we obtain:
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[

N∗
A

(

a
b

)]

I

= u× ∂xa + u×R(v × b)− [R(b)]u + a〈R(v),u〉

− [R(v)]u ∂−1
x [〈ux,a〉 − 〈vx,b〉]

+(u× ux)∂−1
x [〈ux,a〉+ 〈u×R(v),b〉 − 〈R(u)× v,b〉] (16.293)

[

N∗
A

(

a
b

)]

II

= v × ∂xb + v ×R(u× a)− [R(a)]v + b〈R(u),v〉

− [R(u)]v ∂−1
x [〈vx,b〉 − 〈ux,a〉]

+ (v × vx)∂−1
x [〈vx,b〉+ 〈v ×R(u),b〉 − 〈R(v)× u,a〉] . (16.294)

The comparison shows that the recursion operators (16.163) that appear in
(16.162) are related with N∗ in the following way:

N∗ =
1
2
(A+ + A−) . (16.295)

For the equations from the CF hierarchy, one can equivalently use A+ and
A− (the integrands in this formulae are always total derivatives), and, there-
fore, it is evident that one can use also N∗. Remember now that the equa-
tions from the CF hierarchy have the form (compare with (16.156) and
(16.157)):

At = (Bn)x −
1
2
(AJBn −BnJA) =

1
2
[A,Bn+1] = QA(Bn+1) . (16.296)

and

Bn+1 = N∗(Bn)

Bn = {bn}I + {cn}II ; n ≥ 1 . (16.297)

If we consider Bn as 1-forms, all these equations are Hamiltonian. The only
thing that must be proved, in order to apply the general results about the
P-N manifolds to our case is to show that the forms B1 and B2 are closed.
But, the evolution equation corresponding to B2 is up to some changes of
the parameters the O(3)-chiral fields system. It is well known that it has
Hamiltonian function, see [21] and therefore B2 is closed. As to the form B1

it is proportional to
ε{u× ux}I + μ{v × vx}II , (16.298)

ε, μ being constants. One readily sees that it is enough to show that on the
manifold N of the smooth vector functions v(x) taking values on the unit
sphere S

2 and tending sufficiently fast to some value v0 as |x| → ∞ the
covector field v → γv:

γv(a) =

+∞
∫

−∞

〈v × vx,a[v]〉dx; a[v] ∈ Tv(N ) (16.299)
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is closed. If a and b are two vector fields on N then the calculation shows
that

[dγ]v(a,b) =

+∞
∫

−∞

∂x〈v,a[v]× b[v]〉dx− 3

+∞
∫

−∞

〈vx,a[v]× b[v]〉dx.

For the vector fields, a and b lim|x|→0 a[v](x) = lim|x|→0 b[v](x) = 0 and
the first term in the right-hand side is zero. As to the second term it is
zero simply because vx(x),a[v](x),b[v](x) are orthogonal to v(x) and hence
〈vx,a[v]×b[v]〉 = 0. As a consequence, from the above considerations and from
the properties of the fundamental fields of the Poisson-Nijenhuis manifolds,
we get the following.

Theorem 16.51. The right-hand sides of the equations from the CF hierar-
chy are fundamental fields for the P-N structure generated by the field Q−1B1.
These equations are Hamiltonian with respect to the infinite hierarchy of Pois-
son structures, and the flows corresponding to these fields commute.

The results for CF system and LL described in the above deserve some
discussion. As we have mentioned, an interesting question is whether using
essentially different Lax pairs we obtain the same facts and objects for the
corresponding nonlinear evolution equations. The answer for the case of the
CF hierarchy of equations and more precisely for their Hamiltonian structures
and conservation laws is affirmative. We have obtained the same Poisson ten-
sors P and Q over the manifold of potentials as have been obtained using the
hierarchies of Poisson structures over elliptic algebras, see [26]. Hence we have
the same hierarchy of equations and the same conservation laws for it. The
results we are citing are obtained using different algebraic objects so let us say
a little more about them. First, let us introduce the so-called elliptic algebras.
The elliptic algebra ge, used for describing the CF hierarchy of equations and
their Hamiltonian structures is spanned by the generators

X2l+1
α = ω2lωαXα

X2l+2
α = ω2lω−1

α ω1ω2ω3Xα

l ∈ Z; α = 1, 2, 3 . (16.300)

In the above formulae Xα are the generators of o (3) ∼ su (2) with commuta-
tion relations

[Xα,Xβ ] = εαβγXγ

and εαβγ is the three dimensional Levi-Civita symbol. As a rule, in the lit-
erature the generators Xα are expressed through the Pauli matrices. The
quantities ω, ωα, α = 1, 2, 3, satisfy the quadratic relations

ω2
α − ω2

β = pβ − pα, ω2 − ω2
α = dα = pα −

1
3
(p1 + p2 + p3) , (16.301)
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where pα = −j2α. Usually the following natural parametrization for ω, ωα is
used:

ωα =
√

℘(λ)− dα, ω =
√

℘(λ) , (16.302)

where ℘(λ) is the Weierstrass function: (℘′)2 = 4(℘ − d1)(℘ − d2)(℘ − d3).
We prefer the expressions through the Weierstrass function rather than the
usual expressions with the Jacobi elliptic functions, but of course it is all the
same. One has the following commutation relations of the generators (16.300)
defining the so-called elliptic algebra:

[X2l
α ,X

2m
β ] = εαβγ(X2(l+m)

γ − dγX
2(l+m−1)
γ )

[X2l
α ,X

2m+1
β ] = εαβγ(X2(l+m)+1

γ − dγX
2(l+m)−1
γ )

[X2l+1
α ,X2m+1

β ] = εαβγX
2(l+m+1)
γ . (16.303)

These relations are a consequence both from the commutation relations of
su (2) and the properties of the elliptic functions.

The tensors P and Q we have used in the above arise as restrictions over
some submanifold [26], of the natural Kirillov (Poisson-Lie) tensors for the
elliptic algebra ge and its central extension with the help of Gel’fand-Fuchs
cocycle.

Comparing the two approaches we note that all the results we have ob-
tained here can be formulated in terms of graded algebras too. For example, in
our approach, we in fact use the graded algebra gp generated by the elements

Nn
α = −1

2
λn{eα}I(λ+ J)

Mn
α = −1

2
λn{eα}II(λ+ J)

n ∈ Z, α = 1, 2, 3 , (16.304)

where eα; α = 1, 2, 3 is the canonical basis in R
3, that is (eα)β = δαβ . The

commutation relations between this generators are

[Nn
α , N

m
β ] = εαβγ(Nn+m+1

γ + jγM
n+m
γ )

[Mn
α ,M

m
β ] = εαβγ(Mn+m+1

γ + jγN
n+m
γ )

[Nn
α ,M

m
β ] = −εαβγ(jβNn+m

γ + jαM
n+m
γ ) . (16.305)

Remark 16.52. We must underline that writing the above relations we used
implicitly the new Lie algebra structure we have introduced over the algebra
o (4), and the above relations are not simple consequences from the usual
Lie-algebra structure over o (4).
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Then again the tensors P and Q can be obtained restricting the natural
Kirillov (Poisson-Lie) tensors for gp and its central extension over some sub-
manifold. One easily finds that the resulting Poisson submanifolds used in
both constructions are isomorphic, and then the two approaches – based on
the elliptic algebra ge and on the algebra gp are equivalent. So, at the present
moment we have the “experimental” result that the two algebras ge and gp

generate same Poisson structures over some submanifolds, but it is still an
open question why this occurs.

As already explained, the situation with LL equation and the recursion op-
erators we have obtained is far more complicated than the CF case. The recur-
sion operators here are different from those obtained by Barouch and al. in [24]
via elliptic pencil. It seems that both have equal “right” to be called recursion
operators for the LL equation, but what is their relation is still not known. The
above-mentioned facts make even more interesting than before the question
whether there is equivalence between the two pencils containing L-A pairs for
the Landau–Lifshitz equation – the elliptic pencil and the polynomial pencil.

Finally, we must mention that the spectral of the recursion operators for
LL and CF has not been done yet, and this is of course another area of
research.
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A

Appendix: Generalizations

In this appendix, we briefly discuss possible generalizations of the ideas that
have been developed through the second part of the book. The first one is the
possibility of developing a purely algebraic approach to the dynamical systems
and the second is the possibility of developing a supersymmetric dynamics and
supersymmetric generalizations of the objects we have considered. We hope
that the discussion of the aforementioned topics, which are linked to each
other, will be interesting for the specialists.

A.1 Algebraic Approach to Integrability

In recent years, there have been attempts to create a purely algebraic approach
to differential calculus, which proved to be useful in gauge theories [1, 2,
3, 4, 5] and allows to construct analogs of the Lagrangian and Hamiltonian
formalism [6, 7, 8, 9]. In particular, the algebraic approach proved to be useful
in the treatment of topologically nontrivial solutions of gauge theories and a
symmetry breaking, permitting to pass from the ’t Hooft-Polyakov monopole
to the Dirac monopole, and in general it allows to extend the usual differential
calculus to the case when the variables do not commute [10, 11, 12].

Within the algebraic approach, it is also possible to treat successfully the
problem of integrability. We briefly introduce these ideas here, extending some
preliminary results, presented in [13].

From the beginning, we make a review the of the so-called algebraic dif-
ferential calculus. Then we present an algebraic definition of a dynamical sys-
tem and an algebraic Hamiltonian system. Within this framework, we discuss
a possible generalization of the notion of integrability and give an integra-
bility criterion for Hamiltonian systems. Finally, we present two interesting
examples.
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A.1.1 Algebraic Differentiable Calculus

The main idea behind the algebraic approaches is that a manifold M and the
algebra F = D(M) of smooth functions on the manifold M in some sense
contain the same information. So, we can replace M with F in many situa-
tions, which do not depend strongly on the topology, but on the “calculus” –
for example in the study of integrals of motion of dynamical systems. (We in-
tentionally use now another notation for the algebra of the smooth functions,
because we generalize the traditional concepts and want to distinguish the
new situation.) Indeed, the manifold M and the algebra F can be considered
to be “dual” to each other since the so-called evaluation map

ev : M→ Hom R(F ,R) (A.1)
m �→ evm : evm(f) = f(m),

is a bijection, and, therefore, one can identify M and Hom (F(M),R) (see
e.g. [14] for the details).

As mentioned, the advantage of the above “replacement” is that F is
a R-algebra, and those concepts and constructions which depend only on
the algebraic features of F are not strongly influenced by the topological
characteristics of M or whether it is finite or infinite-dimensional. Also, since
everything turns to be algebraic in nature, one can obtain highly nontrivial
generalizations taking F to be not a commutative algebra (as it is the case
when F is the algebra of the smooth functions over some manifold M) but
simply some associative algebra. Actually this is the idea behind the so-called
Noncommutative Geometry. In the noncommutative case, however, Der (F) is
not anymore a left F-module (see below), it is a module only over the center
of F . In what follows immediately, we restrict ourselves to the commutative
case, that is, to the case F when is a commutative and associative algebra.
The noncommutative generalization will be considered later.

In the new approach, the role of the algebra of the vector fields on M
is played by the Lie algebra X = Der (F) of the derivations of F and its
F-dual, denoted by X ∗ = (Der (F))∗, is the counterpart of the module of
the one-forms. Of course, we assume that each derivation acts trivially on R

considered as imbedded in F .
Out of the previous ingredients, one can construct an algebraic tensor

calculus, which is an analogue of the usual tensor calculus on some manifold
M, [15, 16]. Let us introduce the main objects. First, the collection of all
skew-symmetric F-linear maps

X × . . .×X
︸ ︷︷ ︸

p times

�→ F (A.2)

is denoted by Λp(X ,F) with Λ0(X ,F) = F , Λ1(X ,F) = X ∗. They are in-
terpreted as the modules of the p-of forms. On Λ∗(X ,F) = ⊕pΛ

p(X ,F), the
exterior derivative d, the Lie derivative LX and the inner product iX are
defined in the standard way. They are given by the following expressions:
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• The exterior derivative, d : Λp(X ,F) → Λp+1(X ,F).

(dα)(X1,X2, . . . , Xp+1) = (A.3)
∑

i

(−1)i+1Xi · α(X1,X2, . . . , X̂i, . . . , Xp+1) +

∑

i<j

(−1)i+jα([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1) , (A.4)

where as usual the “hat” means that the corresponding field must be
omitted and α ∈ Λp(X ,F).

• The inner product, i(·) : X × Λp(D,F) → Λp−1(X ,F).

(iXα)(X1, . . . , Xp−1) = α(X,X1, . . . , Xp−1). (A.5)

• The Lie derivative, L(·) : X × Λp(X ,F) → Λp(X ,F).

(LXα)(X1, . . . , Xp) = X · α(X1, . . . , Xp)

+
∑

k

(−1)k+1α([X,Xk],X1, . . . , X̂k, . . . , Xp) . (A.6)

The coboundary property d2 = 0 follows from the fact that X is a Lie algebra;
i.e. from the Jacobi identity. One also has the Cartan identity,

LX = iXd+ diX ,

which as in the classical case, satisfies [LX , d] = 0. In the usual way, consider-
ing the complex (Λ(X ,F), d), one can define closed and exact forms, as well
as the corresponding cohomology spaces Hp(X ,F). For the sake of brevity,
these spaces are sometimes denoted also by Hp(F) or Hp(F , d), if one wants
to show explicitly the coboundary operator defining them. In a similar way,
considering the F-linear maps

X ∗ × . . .×X ∗
︸ ︷︷ ︸

p times

�→ F (A.7)

one defines the contravariant tensor fields and continuing like that, one is able
to define tensors of arbitrary type and the tensor calculus.

Any derivation Γ of F , being an analogue of a vector field, defines an
“algebraic dynamical system” in the following way:

ḟ = LΓ f ; f ∈ F , (A.8)

where the dot denotes the time-derivative. As is known, the solution of the
above equation with initial condition f gives ΦΓ

t (f) – the 1-parametric group
of automorphisms of F , or the flow associated with the derivation Γ . We
expect that the solution is written as a series (formal at the beginning):
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ΦΓ
t (f) = f +

∞
∑

k=1

tk

k!
(LΓ )kf ; t ∈ R, f ∈ F . (A.9)

However, to treat the question of the convergence of the above series, we need
a topology on our algebra F (in fact this is already necessary, if we want to
speak about time derivatives). In order to avoid speaking about topology, we
shall consider some situations, where the above formulae make sense without
any topology.

Let us now give some definitions.

Definition A.1. We say that the set f = {fi}i∈I ⊂ F is a generating set for
F if any element X ∈ X = Der (F) is completely determined by its action
on the set {fi}i∈I or, equivalently, if {dfi}i∈I generate X ∗ = Der ∗(F) with
coefficients in F .

The above means that we are able to determine the action of X ∈ X on F
having only the action of X on {fi}i∈I , even if we are not able to express any
f ∈ F in terms of fi, i ∈ I.

We say that a finite generating set f = {fi}n
1 for F provides a linearization

for Γ if
LΓ fj =

∑

i

Ai
jfi; Ai

j − real constants. (A.10)

In this case, we take the exponent exp tA of A (A is a real valued matrix, so
the exponent exists) and we set for the flow of Γ :

ΦΓ
t (f) = (exp tA)f . (A.11)

Of course, the topological questions are just “hidden” here, since eventually we
reduced everything to a finite-dimensional vector spaces, where the topology
is uniquely defined, whatever the “ambient” space might be.

Another situation in which the flow can be calculated explicitly, because
it is reduced to the finite-dimensional flow, is provided by generating sets on
which Γ is nilpotent, that is, if we have

(LΓ )kfj = 0; j ∈ I , (A.12)

for some integer k that does not depend on the index j ∈ I. In this case, it is
not necessary to have a finite generating set. Our formal series (A.9) becomes
a polynomial and is well defined in the algebra F . In particular,

Definition A.2. We say that the subset FΓ ⊂ F is an integrating set for the
derivation Γ if it generates F and if LΓLΓ f = 0 for all f ∈ FΓ . In this case,
the 1-parametric group of automorphisms on FΓ is given by

ΦΓ
t (f) = f + tLΓ f ; t ∈ R, f ∈ FΓ . (A.13)



A.1 Algebraic Approach to Integrability 617

We have seen that in each of the above cases, we can explicitly calculate the
flow

ΦΓ
t : R×F → F . (A.14)

However, it is clear that such situations are exceptional, that is, we should not
expect to be able to find “adapted” generating set for an arbitrary derivation.

Also, the previous constructions cannot be implemented, if X ∗ = Der ∗(F)
cannot be generated by a set {dfi}i∈I , for example, if the first cohomology
group H1(F , d) 	= 0.

A.1.2 Poisson Rings, Bi-Hamiltonian Systems and Nijenhuis
Tensors

Now we introduce what in this context is a Hamiltonian system and how to
understand complete integrability. We need of course the notion of Poisson
brackets on the ring F .

Definition A.3. Let the ring F be endowed with a Lie algebra structure over
R. We say that F is a Poisson ring if the Lie algebra structure and the ring
structure are compatible, which means that the Lie bracket

{ , } : F × F �→ F (A.15)

is a derivation when we fix one of the arguments, that is, if

{f1f2, g} = f1{f2, g}+ {f1, g}f2, (A.16)

for arbitrary f1, f2, g ∈ F .

Then, as easily seen, the map f �→ Xf , where

Xf (g) = {f, g} , (A.17)

defines a Lie algebra homomorphism F �→ Der (F) = X . As we are working
with Lie algebras, in the sequel, we use the Lie algebra notation

ad f = Xf ∈ Der (F) = X . (A.18)

Similar to the classical case, a Poisson structure on F can be defined by an
element B ∈ Λ2(X ∗,F), (Poisson tensor), provided B satisfies some require-
ments. In this case we set

{f, g} = iB(df)dg = −iB(dg)df ; f, g ∈ F . (A.19)

Here we are using the same letter for the element B ∈ Λ2(X ∗,F) and the
associated F-linear map

B : X ∗ �→ Der (F) . (A.20)
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Then, like the classical situation, see (12.151), the Jacobi identity for the
bracket is equivalent to the vanishing of the Schouten bracket of B; see
(12.151):

[B,B]S = 0. (A.21)

Below we give some necessary definitions, which are similar to the correspond-
ing ones in the classical case.
The centralizer CA of A ⊂ F is defined as

CA = {g ∈ F : {g, f} = 0, f ∈ A} ⊂ F . (A.22)

It is a Poisson subring of F . In particular, when A consists of one element, say
f , we shall write Cf . The interpretation of Cf is clear – it is the set of constants
of motion for the derivation Xf . Another example of the above definition is
the centralizer of F , denoted by C(F). As can be seen, it is actually the center
of F (considered as Lie algebra):

C(F) = {g ∈ F , {g, f} = 0; f ∈ F} . (A.23)

In case we have a Poisson algebra, C(F) is also called the Casimir subalgebra
of F associated with the Poisson structure. Its elements are called Casimir
elements. Naturally, the Casimir elements are integrals of motion for each
derivation Xf , f ∈ F .

Given a Poisson subring A, we denote its centralizer C(A) also by A′, so

A′ = {f ∈ F : {f, g} = 0; f ∈ A} . (A.24)

A′ is also called the polar or reciprocal set of A. Until now everything is as
in the case of an arbitrary Lie algebra. Now, we give more specific definitions,
keeping in mind the analogy with the classical case [17].

Definition A.4. Suppose A is a Poisson subring and A′ is its centralizer.
We say that A is regular if the following two subalgebras of derivations

XA′ = {Xf : f ∈ A′} (A.25)
NA = {Y ∈ Der (F) : Y (g) = 0; g ∈ A} (A.26)

coincide as F-modules (in general one has only that XA′ ⊆ NA).

In the classical situation, when the Poisson structure is defined by a sym-
plectic form, a regular subring is such that on it the Poisson structure is
nondegenerate, i.e. the Casimir subalgebra coincides with R.

Definition A.5. We say that

(a) A is isotropic if A ⊂ A′.
(b) A is coisotropic if A′ ⊂ A.
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(c) A Poisson subring which is isotropic and coisotropic is called a Lagrangian
subring.

(Note that a Lagrangian subring is also a maximal Abelian subalgebra in A.)
Now we are ready for a generalization of the complete integrability.

Definition A.6. We say that an element f ∈ F defines a completely inte-
grable system Γf if its set of constants of motion Cf , contains isotropic and
coisotropic regular Poisson subring Af .

Remark A.7. For a generic completely integrable system Γf , the subring Cf

need not be isotropic and coisotropic.

Definition A.8. On a Poisson ring F we define a Darboux set as a generating
set for F , denoted by F1 ⊕F2, having the properties

1. F1 is regular, isotropic and coisotropic
2. F2 is regular, isotropic and coisotropic
3. for any f ∈ F1 there exists gf ∈ F2, such that {f, gf} ∈ R.

Remark A.9. Of course, there is no guarantee that a Poisson ring possesses a
Darboux generating set.

Definition A.10. A Darboux set for F defines action-angles variables for the
derivation Γf if it is an integrating set for Γf (see, Definition A.2).

It can happen that the ring F has two different structures of Poisson ring,
defined for example by two Poisson tensors B1 and B2. We say that B1, B2

are compatible (or that the brackets defined by them are compatible) if

λ{ , }B1 + μ{ , }B2 : F × F �→ F (A.27)

defines a Poisson ring structure on F for any λ, μ ∈ R (see [18]).
A derivation X is said to allow (or have) bi-Hamiltonian formulation if

there exist two elements of F , f1 and f2 such that

X(g) = {f1, g}B1 = {f2, g}B2 . (A.28)

for all g ∈ F .
If on F there exist compatible brackets, we can define

C1
X = {f ∈ F : {f, f1}B1 = 0}
C2

X = {f ∈ F : {f, f2}B2 = 0} . (A.29)

In general C1
X (C2

X) is not a Poisson subring with respect to B2 (B1) so that
we can “construct” new constants of motion for X using C1

X and C2
X and both

the brackets.
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Let us have a pair (B1, B2) of Poisson tensors and one of them, say B1, is
invertible. Then we can define an endomorphism N = B2 ◦ B−1

1 that makes
the diagram below commutative

X ∗ = X ∗

B2 ↓ ↑ B−1
1

X N−→ X
(A.30)

We can extend N to an operator iN on Λ(X ,F) by

(iNω)(X1, . . . , Xp) =
∑

j

ω(X1, . . . , NXj , . . . , Xp) , (A.31)

for ω ∈ Λp(X ,F) and Xi ∈ X . Using the operator d of the complex
(Λ(X ,F), d), we can also define the operator

dN : Λp(X ,F) �→ Λp+1(X ,F)

by the identity
dN = iNd− diN , (A.32)

(compare with the classical definitions (13.13),(13.19)).
From the compatibility of the two Poisson structures B1 and B2, it follows

that the Nijenhuis torsion of RN

RN (X,Y ) = N2[X,Y ]−N [NX,Y ]−N [X,NY ] + [NX,NY ] , (A.33)

is identically zero. (Of course, here X,Y ∈ X .) As noted in [19], this is equiv-
alent to the fact that (dN )2 = 0 – compare also with the second equation in
(13.22). As a consequence, N can be used as a recursion operator. We put
N∗ = B−1

1 ◦B2 (formal adjoint) and with this notation have

Proposition A.11. Let α ∈ X ∗ be such that dα = 0 and dN∗α = 0. Then
d((N∗)kα) = 0, k = 1, 2, . . ..

The proof follows exactly the lines of the classical one; see Proposition 13.24.
Let us assume that H1(F , d) = 0. Then from Proposition A.11 it follows

Proposition A.12. If f0, f1 ∈ F are such that

N∗df0 = df1 , (A.34)

then there exist fk ∈ F such that

(N∗)kdf0 = dfk; k = 1, 2, . . . (A.35)

Proposition A.13. The set {f0, . . . , fk, . . .} defines an isotropic Poisson ring
with respect to any Poisson tensor the type λB1 + μB2; λ, μ = const , that is

{fj , fk}λB1+μB2 = 0; j, k = 0, 1, . . . (A.36)
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Proof. The equations (A.36) follows from the relations

{fj , fk}B1 = {fj−1, fk}B2

{fj , fk}B2 = {fj , fk+1}B1 ; j > k,

which can be checked immediately. Assuming as before that B−1
1 exists, we

can define a 2-form ωB1 on X , by

ωB1(X,Y ) = iX(B−1
1 (Y )), (A.37)

for X,Y ∈ X . In particular,

ωB1(B1df1, B1df2) = {f1, f2}B1 . (A.38)

One can check that if X0 ∈ X and k > l we have

dωB1 = 0, ωB1((N)kX0, (N)k−1X0) = 0
ωB1((N)kX0, (N)lX0) = ωB1((N)k−1X0, (N)l+1X0) . (A.39)

Finally, one can prove the following proposition

Proposition A.14. Let B be a Poisson tensor, N be a (1, 1) tensor field such
that (dN )2 = 0. Suppose that we have the derivation Γf = {f, ·}B. Then the
following properties hold:

1. The condition LΓf
N = 0 entails that AΓf

=
{

Γf , NΓf , ..., N
kΓf , ...

}

is an
Abelian Lie algebra.

2. If B, NB are compatible Poisson tensors then NB gives alternative Hamil-
tonian formulation of Γf .

As a final comment, we must add that when a Poisson tensor B is invertible,
AΓf

is associated with the B-Poisson subring. Assuming that H1(F , d) = 0,
we deduce that it is isotropic. However, in order to prove that Γf is completely
integrable one needs to prove that AΓf

is regular and coisotropic. Checking
this condition can be a highly nontrivial task.

Summarizing our discussion, in the algebraic approach, we can recover all
the principal properties of Nijenhuis tensor and its application in obtaining
integrals of motion in involution.

Remark A.15. If one has a symplectic structure, one can define a symplec-
tic ring that happens to be a special kind of Poisson ring. In this case, one
can define isotropic Lie and Lagrangian subalgebras in X = Der (F) just as
in the classical situation. Then the subalgebra and the polar subalgebra (or
reciprocal subalgebra) generate the whole algebra of derivations.

Naturally, when F is realized as the ring of functions on a Poisson manifold
M, all our definitions and propositions reduce to the classical ones.

As an illustration of how the above scheme is implemented, we discuss two
examples.
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A Periodic Lattice of Particles Interacting with Harmonic Forces

This is an example of a derivation which can be put in a nilpotent form.
The ring F is defined by the following properties:

1. F is generated by 2n elements {hi, fi}n
i=1, but in order to make the for-

mulae more compact we shall understand the indices modulo n. We also
assume that

dh1 ∧ . . . ∧ dhn ∧ df1 ∧ . . . ∧ dfn 	= 0 . (A.40)

2. The set of the derivations Der (F) = X is generated over F by the elements
{Xi, Yi}n

i=1, defined by

LXi
fj = δij , LXi

hj = 0, LYi
fj = 0, LYi

hj = δij , (A.41)

where i, j = 1, 2, . . . , n.

The “dynamics” is described by the derivation

Γ =
n
∑

i=1

hiXi −
n
∑

i=1

(fi − fi+1)(Yi+1 − Yi) (A.42)

and the corresponding “equations of motion”

ḣi = fi−1 − 2fi + fi−1

ḟi = hi; i = 1, 2, . . . , n , (A.43)

are linear. The flow of Γ can be constructed explicitly, through the exponent
of suitable constant matrix. Indeed, “introducing new variables”

Pi = hi; i = 1, 2, . . . , n

Qi =
1

√

i(i+ 1)
(f1 + . . .+ fi − ifi+1); i = 1, 2, . . . , n− 1

Qn =
1√
n

(f1 + . . .+ fn) , (A.44)

we see that the derivation (A.42) can be written as

Γ = Pn∂Qn
+

n−1
∑

i=1

(Pi∂Qi
−Qi∂Pi

) . (A.45)

Here ∂Qi
and ∂Pi

are the derivations dual to the 1-forms {dQi, dPi}, that is,
they are defined by: dQi(∂Qj

) = dPi(∂Pj
) = δij , dQi(∂Pj

) = dPi(∂Qj
) = 0.

Let us introduce now another set of variables: Ik, αk; k = 1, 2, . . . , n.

Ik = P 2
k +Q2

k, dαk = I−1
k (PkdQk −QkdPk) (A.46)

for k = 1, 2, . . . , n − 1 and In = Pn, αn = Qn. It is almost immediate to see
that on this set the derivation Γ is nilpotent. Indeed, for 1 ≤ k ≤ n, we have

LΓ Ik = 0, LΓαk = 1 . (A.47)
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The Periodic Toda Lattice (As Before Indices Are Understood
Modulo n)

This is an example of bi-Hamiltonian dynamical derivation admitting a re-
cursion operator. Here we give only the basic ingredients and refer to [13] for
the details.

The ring F is defined by the following properties:

1. F is generated by 2n elements {hi, fi}; i = 1, 2, . . . , n, where

dh1 ∧ . . . ∧ dhn ∧ df1 ∧ . . . ∧ dfn 	= 0.

Each element fi possesses an inverse denoted by f−1
i .

2. The set of derivations Der (F) = X is generated over F by the 2n elements
{Xi, Yi}n

i=1, defined by

LXi
fj = δijfi, LXi

hj = 0, LYi
fj = 0, LYi

hj = δij . (A.48)

The “dynamics” of the Toda Lattice is defined by the derivation

Γ =
∑

i

hiXi +
∑

i

λifif
−1
i+1(Yi+1 − Yi) , (A.49)

where the λi; i = 1, 2, . . . , n are constant parameters.
The derivation Γ is bi-Hamiltonian with respect to the two symplectic

structures on X :

ω1 =
∑

i

f−1
i dfi ∧ dhi

ω2 =
∑

i

(−λidfi ∧ df−1
i+1 + hifidf

−1
i ∧ dhi)−

∑

i<j

dhi ∧ dhj , (A.50)

with Hamiltonian functions

H1 =
∑

i

1
2
h2

i +
∑

i

λifif
−1
i+1

H2 =
∑

i

1
3
(hi)3 +

∑

i

λi(hi + hi+1)fif
−1
i+1 . (A.51)

The two symplectic structures are compatible and the dual of the correspond-
ing recursion operator N∗ : X ∗ → X ∗ is given by

N∗(dfi) = hidfi − fi

∑

j

εijdhj

N∗(dhi) = λifidf
−1
i+1 − λi−1f

−1
i dfi−1 + hidhi (A.52)

i = 1, 2, . . . , n.

The symbol εij is skew-symmetric for any pair of indices i, j and εij = +1 if
i > j. The Nijenhuis operator N : X → X is then given by:
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N(Xi) = λifif
−1
i+1Yi+1 − λi−1fi−1f

−1
i Yi−1 + hiXi

N(Yi) = hiYi +
n
∑

j=1

εijXj (A.53)

i = 1, 2, . . . , n.

A.2 Integrability of Dynamics with Fermionic Variables

Most of mathematical objects have super-counterparts, where both com-
mutative and anticommutative variables appear. We have super-Lie alge-
bras, differential supermanifolds, super-Lie groups, etc., of which the “even
part” are classical Lie algebras, differential manifolds and Lie groups, respec-
tively. The “odd parts” physically describe fermions and for that reason the
super-objects become very interesting, see [10, 20]. There have been several
attempts to analyze integrability of fermionic dynamical systems (see for ex-
ample [21, 22, 23, 24]) and to extend to such systems [25], at least at algorith-
mic level, the results and techniques used for bosonic dynamics, based on the
role of recursion operators. In particular, one would like to define a graded
Nijenhuis torsion.

In what follows, we shall address this issue. We show that a mixed (1, 1)
graded tensor field N can act as a recursion operator if and only if N is an
even map.

There are dynamical systems, like supersymmetric Witten’s dynamics [26],
which allow a bi-Hamiltonian formulation with an even and odd Hamiltonian
functions and in terms of an even and an odd Poisson structure respectively
(so that the dynamical vector field is always even) [27, 28, 29]. This allows to
construct an odd tensor field, which seems a good candidate for a recursion
operator. We explicitly show that in fact such a tensor field cannot be a
recursion operator.

As everywhere in this book, we are working only with smooth, i.e. C∞

objects, in this subsection the notation follows as close as possible those we
have already used. In particular, if M is a (finite dimensional) “ordinary”
manifold, we denote by D(M) the ring of real valued functions on M, by
T (M) the Lie algebra of vector fields, by T (M)∗ its dual, the module of
1-forms, and by T 1

1 (M) the mixed (1, 1) tensor fields.
The main property of the mixed tensor field N (the Nijenhuis tensor),

which proved up to now to be so important for the complete integrability,
is the vanishing of its Nijenhuis torsion RN (X,Y ) = 0. One expects that a
suitable generalization of such a condition could play an important role in
analyzing the integrability of dynamical systems with fermionic degrees of
freedom too. Moreover, it seems natural to think that such a generalization
could come from a graded generalization of some of the following relations
which are true in the bosonic case:
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• If RN = 0 then the image of N is a Lie subalgebra of T (M), see
Proposition 13.21.

• If RN = 0, α is a closed 1-form, and N∗α is closed, then (N∗)kα for k ≥ 2
are closed too.

• If RN = 0 then dN ◦ dN = 0, see (13.19) and (13.22).
• If P1 and P2 are two Poisson tensors, N = P−1

1 ◦ P2 and RN = 0, then
P1 + P2 is also a Poisson tensor; see Theorem 14.7.

• Let A(X,Y ) = [NX,Y ] + [X,NY ]−N [X,Y ], then RN = 0 is equivalent
to NA(X,Y ) = [NX,NY ], and for any value of the real parameter λ, the
expression

[X,Y ]λ = [X,Y ] + λA(X,Y ) (A.54)

satisfies the Jacobi identity.

One could expect of course that some of the above relations will not be true
in the graded situation.

A.2.1 Graded Differential Calculus

Now, before the analysis of the graded zero Nijenhuis bracket condition, we
shall give a brief review of the graded differential calculus on supermanifolds,
followed by the study of some simple examples. Some fundamentals of super-
manifold theory can be found in [30, 31] and for a mathematically coherent
definition we refer the reader to [32, 33]. In the following, by graded we always
mean Z2-graded.

The basic algebraic object for the graded calculus is some real exterior
algebra BL = (BL)0 ⊕ (BL)1 with L generators; here (BL)0 is the set of
the even elements and (BL)1 the set of the odd ones. Then, by definition, a
(m,n) dimensional supermanifold is a topological manifold S modeled over
the “vector superspace”

Bm,n
L = (BL)m

0 × (BL)n
1 (A.55)

through atlases, whose transition maps satisfy suitable “supersmoothness”
conditions. A supersmooth function f : U ⊂ Bm,n

L → BL has the usual
superfield expansion

f(x1 . . . xm, θ1 . . . θn) = f0(x)+
n
∑

α=1

fα(x) θα + · · ·+f1...n(x) θ1 . . . θn, (A.56)

where the xs are the even coordinates, and the θs are the odd ones. The
dependence of the coefficient functions f...(x) on the even variables is fixed by
their values for real arguments.

We denote by G(S) and G(U) the graded ring of supersmooth BL-valued
functions on S and U ⊂ S, respectively.

The class of the supermanifolds which up to now has found applications in
theoretical physics is given by the so-called De Witt supermanifolds. The basis
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of topology on them is given by the preimages of open sets in R
m through the

“body map” σm,n : Bm,n
L �→ R

m, that is, it is the roughest topology in which
σm,n are continuous. An (m,n)-supermanifold is De Witt supermanifold, if
it has an atlas in which the images of the coordinate maps are open in the
De Witt topology. A De Witt (m,n)-supermanifold is a locally trivial vector
bundle over a classical m-manifold S0 (called the body of S) [31]. Then it is
not surprising that, modulo some technicalities, a De Witt supermanifold can
be identified with a Berezin–Kostant supermanifold [34, 35].

The graded tangent space T (S) is constructed in the following manner.
For each x ∈ S, let G(x) be the set of the germs of the functions at x and
denote by Tx(S) the space of graded BL-linear maps X : G(x) → BL, which
satisfy the Leibnitz rule. Then, Tx(S) is a free-graded BL-module of dimen-
sion (m,n), and the disjoint union

∐

x∈(S) Tx(S) can be given the structure
of a rank (m,n) super vector bundle over S, denoted by T (S). The set of
the sections X (S) of T (S) is a graded G(S)-module and is identified with
the graded Lie algebra DerG(S) of the derivations of G(S). Derivations (or
vector fields) are said to be even (or odd), if they are even (or odd) as maps
G(S) → G(S), (satisfying in addition a graded Leibnitz rule). A local basis is
given by

∂

∂x1
, . . . ,

∂

∂xm
,
∂

∂θ1
, . . . ,

∂

∂θn
. (A.57)

Remark A.16. Unless explicitly stated, by using a partial derivative, we always
mean a left derivative, namely, a derivative acting from the left. In general,
if zi = (xj , θk), when acting on any homogeneous function f ∈ G(S), left and
right derivative are related by

→
∂

∂zi
f = (−1)p(zi)[p(f)+1]f

←
∂

∂zi
; i = 1, 2, . . . ,m+ n. (A.58)

In a similar way, one defines the cotangent space and the cotangent bundle.
Let T ∗

x (S) be the space of graded BL-linear maps Tx(S) → BL and T ∗(S) =
∐

x∈S T
∗
x (S). Since T ∗

x (S) is a free-graded BL-module of dimension (m,n)
then T ∗(S) is a type (m,n) super vector bundle over S. The set of the sections
X (S)∗ of T ∗(S) have a structure of a graded G(S)-module and is identified
with the set of the graded G(S)-linear maps DerG(S) → G(S). These sections
are the 1-forms on S. Forms are said to be even (odd) if they are even (odd)
as maps X (M) → G(S).

In general, a type (p, q) (p covariant and q contravariant) graded tensor is
any graded G(S)-(multi-linear) map

α : X (S)× . . .×X (S)×X (S)∗ × . . .×X (S)∗ �→ G(S)

(p factors X (S) and q factors X (S)∗). The collection of all type (p, q) tensor
fields is a graded G(S)-module. A graded p-form is a skew-symmetric covariant
graded tensors of type (0, p). We denote by Ωp(S) the collection of all p-forms.



A.2 Integrability of Dynamics with Fermionic Variables 627

Then the exterior derivative on S is defined by setting df(X) = X�df = X(f),
for f ∈ G(S), X ∈ X (S) and is extended in the usual way to a map
Ωp(S) → Ωp+1(S), p ≥ 0 which satisfies d2 = 0. If Xi ∈ X (S) are homo-
geneous elements, then we have

(X1, . . . , Xp+1)�dϕ =
p+1
∑

i=1

(−1)a(i)Xi((X1, . . . , X̂i, . . . , Xp+1)�ϕ) +

∑

1≤i<j≤p

(−1)b(i,j)([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)�ϕ, (A.59)

where

a(i) = 1 + i+ p(Xi)
i−1
∑

h=1

p(Xh) ,

b(i, j) = i+ j + p(Xi)
i−1
∑

h=1

p(Xh) + p(Xj)
j−1
∑

h=1; h
=i

p(Xh). (A.60)

Also, (X1, . . . , Xq)�ψ stands for ψ(X1, . . . , Xq) and the “hat” as usual means
that the corresponding element is omitted.

From the definition, one obtains that p(d) = 0.
Next, the Lie derivative L(·) over the space of the forms is defined by

L(·) : X (S)×Ωp(S) → Ωp(S)
LX = X� ◦ d+ d ◦X�; X ∈ X (S) . (A.61)

Clearly, p(LX) = p(X).
Finally the Lie derivative of any tensor product of two fields can be defined

in the usual manner by requiring the Leibnitz rule to hold and extend by
linearity.

Suppose now that we have a tensor N ∈ T 1
1 (M) (that is a (1, 1) type

tensor) that is homogeneous of degree p(N). Again, we can define two graded
endomorphisms of X (S) and X (S)∗ by the usual expressions (in the following
two formulae X,Y are homogeneous elements in X (S) while α is any element
in X (S)∗):

̂N : X (S) �→ X (S), Ň : X (S)∗ �→ X (S)∗

N(X,α) = ̂NX�α = (−1)p(X)p(N)X�Ňα . (A.62)

One is tempted to define a graded Nijenhuis torsion of N by a relation anal-
ogous to the one we have in the bosonic case
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GRN (X,Y ;α) = GRN (X,Y )�α
GRN (X,Y ) = N2[X,Y ] + (−1)p(N)p(X)[NX,NY ]−
N [NX,Y ]− (−1)p(N)p(X)N [X,NY ]. (A.63)

Proposition A.17. The map GRN : X (S)×X (S) → X (S) defined in (A.63)
is G(S)-linear and graded skew-symmetric if and only if p(N) = 0.

The proof is obtained by simple computation.

Remark A.18. When p(N) = 1, the expression in the right-hand side of (A.63)
is not Skewsymmetric and even it is not linear when restricted to the even vec-
tor fields. Therefore, (A.63) defines a graded tensor (which will be in addition
graded skew-symmetric) if and only if p(N) = 0.

A.2.2 Poisson Supermanifolds and Super Nijenhuis Tensors

We briefly describe how one can introduce super Poisson structures on a
(m,n) – dimensional supermanifold S [34, 36]. For a more profound discus-
sion, see [37]. As before, we shall denote by zi = (xj , θk); i = 1, 2, . . . ,m+ n
the local coordinates on S. The following proposition was obtained in [34] and
can be proved by direct calculation.

Proposition A.19. Let (ωij) be a (m + n) × (m + n) matrix (depending on
the point z ∈ S), such that ωij are homogeneous with parity p(ωij) = p(zi) +
p(zj)+ p(ω) and let p(ω) not depend on the indices i and j. Suppose also that
the following properties hold:

ωji = −(−1)[p(zi)+p(ω)][p(zj)+p(ω)]ωij (A.64)

(−1)[p(zi)+p(ω)][p(zl)+p(ω)]ωis

→
∂

∂zs
ωjl +

(−1)[p(zl)+p(ω)][p(zj)+p(ω)]ωls

→
∂

∂zs
ωij +

(−1)[p(zj)+p(ω)][p(zi)+p(ω)]ωjs

→
∂

∂zs
ωli = 0 . (A.65)

Then the bracket defined by:

{F,G} = F

←
∂

∂zi
ωij

→
∂

∂zj
G (A.66)

endows G(S) with a Lie superalgebra structure (Poisson superstructure).
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We have two different kind of structures according to whether p(ω) = 0 (even
Poisson structure) or p(ω) = 1 (odd Poisson structure). Indeed, one can check
that the bracket (A.66) has the properties

{F,G} = −(−1)[p(F )+p(ω)][p(G)+p(ω)]{G,F} (A.67)

and also

(−1)[p(F )+p(ω)][p(H)+p(ω)]{{F,G},H}+
(−1)[p(G)+p(ω)][p(F )+p(ω)]{{G,H}, F}+
(−1)[p(H)+p(ω)][p(G)+p(ω)]{{H,F}, G} = 0 . (A.68)

From (A.67) and (A.68) it follows that if we consider the elements G(S) as
elements of Poisson superalgebra, the homogeneous elements of G(S) preserve
their parity if p(ω) = 0, while they change it if p(ω) = 1.

If the matrix (ωij) is regular, then its inverse (ωij), ωijω
jk = δk

i , gives
the components of a symplectic form ω = 1

2dz
i ∧ dzjωji. In other words ω is

closed, nondegenerate and such that

p(ωij) = p(zi) + p(zj) + p(ω)
ωji = −(−1)p(zi)p(zj)ωij .

The form ω is homogeneous with parity exactly equal to p(ω).
A result that is an analogue of the Darboux theorem can also be obtained,

see [36].

Proposition A.20. Let (S, ω) be a (m,n)-dimensional symplectic manifold
with ω homogeneous. Then

1. If p(ω) = 0, then dim (S) = (2r, n) and there exist local coordinates such
that written in them ω has the form

ω = dqi ∧ dpi + dξj ∧ dξj , (ωij) =

⎛

⎜

⎝

0 Ir 0
−Ir 0 0
0 0 In

⎞

⎟

⎠
. (A.69)

2. If p(ω) = 1, then dim (S) = (m,m) and there exist local coordinates such
that

ω = dui ∧ dξi, (ωij) =
(

0 Im

−Im 0

)

. (A.70)

With a Poisson structure, we can construct Hamiltonian equations. If the
bracket is defined as in (A.66), the Hamiltonian equations corresponding to
the Hamiltonian H have the form

żi = ωij

→
∂

∂zj
H . (A.71)

Suppose we want construct the flow of (A.71). Since the evolution is defined by
even vector field, we deduce that the Poisson structure and the Hamiltonian
function must have the same parity, in particular, if the Poisson structure is
odd, we need an odd Hamiltonian function. We are ready now to introduce the
graded Nijenhuis condition, but we would like to study first some examples.
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Mixed Bosonic-Fermionic Harmonic Oscillator

The mixed bosonic-fermionic harmonic oscillator in (2, 2) dimensions in coor-
dinates (q, p, η, ξ) has the following equations of motion

q̇ = p, ṗ = −q, η̇ = ξ, ξ̇ = −η. (A.72)

The equations (A.72) can be cast in Hamiltonian form in two ways with the
following Hamiltonian functions: the usual even one

H =
1
2
(p2 + q2) + iξη, (A.73)

and an odd one
K = pξ + qη. (A.74)

The two Poisson structures that make this possible are

ΛH = ω−1
H =

⎛

⎜

⎜

⎝

0
−1
0
0

1
0
0
0

0
0
i
0

0
0
0
i

⎞

⎟

⎟

⎠

, ωH =

⎛

⎜

⎜

⎝

0
1
0
0

−1
0
0
0

0
0
−i
0

0
0
0
−i

⎞

⎟

⎟

⎠

, (A.75)

and

ΛK = ω−1
K =

⎛

⎜

⎜

⎝

0
0
0
−1

0
0
1
0

0
−1
0
0

1
0
0
0

⎞

⎟

⎟

⎠

, ωK =

⎛

⎜

⎜

⎝

0
0
0
1

0
0
−1
0

0
1
0
0

−1
0
0
0

⎞

⎟

⎟

⎠

. (A.76)

respectively.
We can now construct a mixed invariant tensor field N setting

N = ωH ◦ ΛK =

⎛

⎜

⎜

⎝

0
0
0
i

0
0
−i
0

1
0
0
0

0
1
0
0

⎞

⎟

⎟

⎠

. (A.77)

However, this odd tensor field (p(N) = 1) is not a recursion operator. Indeed,
one can easily find that

NdK = dH
NdH = −i(dq)ξ + i(dp)η − i(dη)p+ i(dξ)q; d(NdH) 	= 0.

If we calculate now the Poisson brackets of the coordinate variables with the
two symplectic structure (A.75) and (A.76), we find that

{q, p}H = 1, {p, q}H = −1, {η, η}H = i, {ξ, ξ}H = i (A.78)
{q, ξ}K = 1, {ξ, q}K = −1, {p, η}K = −1, {η, p}K = 1. (A.79)
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(the brackets that are not written are identically equal to zero). We see that
the sum {·, ·}+ of the two structures is itself a Poisson structure with the
property

{F,G}+ = −(−1)p(F )p(G){G,F}+ (A.80)

but it does not have definite parity. Moreover, {·, ·}+ is degenerate.

The Witten Dynamics

There are some other interesting examples that come from supersymmetric
dynamics. In [27, 28] it has been shown that the dynamics of Witten’s Hamil-
tonian systems [26] can be given a bi-Hamiltonian formulation with an even
Poisson bracket and Grassmann even Hamiltonian or with an odd bracket
and Grassmann odd Hamiltonian. As an example of this situation we study
a supersymmetric Toda chain with coordinates (q, p, η, ξ). Then, the even
Hamiltonian is given by

H =
1
2
(p2 + eq) +

1
2
iξηe

q
2 . (A.81)

With the even Poisson structure

ΛH = ω−1
H =

⎛

⎜

⎜

⎝

0
−1
0
0

1
0
0
0

0
0
i
0

0
0
0
i

⎞

⎟

⎟

⎠

, ωH =

⎛

⎜

⎜

⎝

0
1
0
0

−1
0
0
0

0
0
−i
0

0
0
0
−i

⎞

⎟

⎟

⎠

, (A.82)

the equations of motion read

q̇ = p, ṗ = −1
2
eq − 1

4
iξηe

q
2

η̇ =
1
2
ξe

q
2 , ξ̇ = −1

2
ηe

q
2 . (A.83)

As easily checked, the following functions are constants of motion

K = pξ + e
q
2 η, L = pη − e

q
2 ξ, F = iξη , (A.84)

so we can use K in (A.84) (or L) as Hamiltonian functions. The symplectic
structure, corresponding to K, can be written as

ωK = dq ∧ dξ + dp ∧ dq(e−
q
2 η) + dp ∧ dη(−2e−

q
2 ) + df ∧ dH =

d{dq(−ξ) + dp(2e−
q
2 η) + fdH} , (A.85)

where f(q, p, η, ξ) is a function, given by

f = Aξ +Bη

A(q, p) =
1

p2 + eq

(

2p
√

p2 + eq
ln(

e
q
2

p+
√

p2 + eq
) +

2e
q
2

√

p2 + eq
− 2

)
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B(q, p) =
1

p2 + eq

(

2e
q
2

√

p2 + eq
ln(

e
q
2

p+
√

p2 + eq
)− 2p

√

p2 + eq
− 2pe−

q
2

)

.

(A.86)

If Γ is the dynamical vector field of the Toda system given by (A.83), then
the function f satisfies iΓ df = e−

q
2 η, and this ensures that iΓωK = dK. A

somewhat tedious calculation shows that the (1, 1) tensor field

T = ωK ◦ ΛH , (A.87)

has the property
TdH = dK, d(T 2dH) 	= 0 . (A.88)

The above shows that the operator T , defined in (A.87), is not a recursion
operator (conjugate of a Nijenhuis operator).

As we have seen, one of the most attractive properties of a (not graded)
(1, 1) tensor field N with vanishing Nijenhuis torsion is the possibility of gen-
erating sequences of exact 1-forms. Let T = N∗, then from d(TdF ) = 0 follows
that d(T kdF ) = 0. Let us analyze now the graded situation. Suppose T is a
graded (1, 1) tensor field which is homogeneous of parity p(T ). Then, if α is
any 1-form, by using the definition (A.59), after some (graded) algebra, one
gets

(X ∧ Y )�d(T 2α) =
{(−1)p(N)p(Y )X ∧NY + (−1)p(N)[p(X)+p(Y )]NX ∧ Y }�d(Nα)
−(−1)p(N)[p(X)+p(N)](NX ∧NY )�dα
−(−1)p(N) GRN (X,Y )�α
+(−1)p(N)p(X)[1− (−1)p(N)]LNX(NY �α) ,

where GRN is defined in (A.63). Then it is clear that for an (1, 1) odd tensor,
the (2, 1) tensor corresponding to its torsion (super-Nijenhuis torsion), can be
defined only when p(N) = 0. The same result is obtained with the use of the
general approach (using the identity dN ◦ dN = 0).

Summarizing, we have shown that there are examples of dynamical sys-
tems, whose dynamical vector field Γ admits two Hamiltonian formulations,
odd and even, respectively, and that the tensor field N , constructed out of
the corresponding Poisson structures, is not a recursion operator, since it can-
not generate new integrals of motion after the first two. We have also shown
that the above fact is general and that for a generic graded (1, 1) tensor field
N a graded Nijenhuis torsion cannot be defined unless N is even. From the
very proof it seems quite probable that similar property should be true also
in the infinite-dimensional case. We must remark, however, that the “no go”
result we have proved only shows that the things cannot be generalized so
directly. The possibilities for generalizations are by no means exhausted, but
the things become very complicated, and even in the simplest cases, we see
that a considerable effort must be done to generalize for the graded case the
geometric structures, which are natural in the nongraded situation.
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Abbreviations

For the convenience of the reader, we give here a list of the most common
abbreviations we have used.

AKNS – Ablowitz, Kaup, Newell, Segur (method/approach)
BT – Bäcklund transformation
CF – chiral fields system
cmKdV – complexified modified Korteweg-de Vries (equation)
CTC – complex Toda chain
DEE – difference evolution equations
FAS – Fundamental analytic solutions
GFT – generalized Fourier transform
GLM – Gel’fand-Levitan-Marchenko (equation)
GmKdV – generalized modified Korteweg-de Vries (equation)
GMB – generalized Maxwell-Bloch (equation)
GNLS – generalized Nonlinear Schrödinger (equation)
GZS – generalized Zakharov-Shabat (system)
HF – Heisenberg ferromagnet (equation)
HFI, HFII – First and second Heisenberg Ferromagnet equation chain

systems
ISM – Inverse Scattering Method
KdV – Korteweg-de Vries (equation)
LL – Landau-Lifshitz (equation)
LLe – Landau-Lifshitz elliptic chain system
LLp – Landau-Lifshitz polynomial chain system
mKdV – modified Korteweg-de Vries (equation)
NLS – Nonlinear Schrödinger equation
NLEEs – nonlinear evolution equations
P-N manifold – Poisson-Nijenhuis manifold
TC – Toda chain
RHP – Riemann-Hilbert problem
RTC – real Toda chain
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RTC1, RCT2 – Real forms of the complexified Toda chain system (for odd
and even dimension of the configuration space)

s-G – sine-Gordon (equation)
ZS – Zakharov-Shabat (system)
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Abelian subalgebra, 331
action

adjoint of a Lie algebra, 526
adjoint of a Lie group, 522
coadjoint of a Lie algebra, 526
coadjoint of a Lie group, 523
left of a group on itself, 521
of a Lie algebra, 526
of a Lie group, 16, 521
of linear operation, 550, 551
right of a group on itself, 521
transitive, 446
trivial, 527

algebra
exterior, 382
of differential forms, 382
Poisson, 618

basis
canonical, 220, 222
Cartan-Weyl, 338, 340, 366
holonomic, 486
orthonormal, 344
symplectic, 14, 21, 143–159, 175–178,

220–226, 272–298, 554
bi-Hamiltonian formulation, 450
bi-Hamiltonian structure

of Euler equations, 563
bi-Hamiltonian system, 450
bundle

cotangent, 379, 626
fiber, 38
space, 289

tangent, 379
tensor, 379
tensor bundles, 378
vector, 379

Cartan subalgebra, 54, 59, 255, 338, 359
Casimir function, 442
Casimir subalgebra, 618
center

of masses, 15
coboundary, 527
cochain, 526
cocycle, 527

Gel’fand-Fuchs, 532
trivial, 524

cohomology
de Rham, 385
of a Lie algebra, 527

Cole-Hopf transformation, 478
completeness relations

of “products” of solutions, 16, 21, 164
of “squared” solutions, 139, 142, 278
of Jost solutions, 89, 91, 92, 100, 264
of symplectic basis, 144, 145, 221,

222, 278, 279, 292, 294
conservation law, 4, 231, 255, 257, 287,

305, 388
constant of motion, 388
contour integration method, 112
coordinates

canonical, 410
local, 374

derivation
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anti-derivation, 463

of degree r, 459

of graded ring, 463

of the smooth functions ring, 384

of type “d”, 463

of type “i”, 463

derivative

Cartan derivative, 384, 614

exterior, 384

Fréchet derivative, 375

Gateau derivative, 275

left derivative, 626

Lie derivative, 383, 385, 627

right derivative, 626

variational derivative, 197, 198, 216,
218, 286, 289, 318, 323, 375

differential form(s)

g
∗-valued, 523

canonical symplectic, 409

closed, 385

exact, 385

in involution, 414

invariant, 383

left-invariant, 524

scalar, 380

symplectic, 409

vector valued, 460

Dirac δ-function, 216

Dirac brackets, 419

discrete eigenvalue, 10, 78, 79, 110, 117,
264, 301

doubly degenerate, 153

pair of, 188, 235

purely imaginary, 307

quadruplet of, 187, 235, 307

simple, 153

dispersion law, 8, 9, 49

regular, 180

singular, 180, 181, 183, 192

distribution, 391

differentiable, 392

integrable, 393

integrable in Frobenius sense, 393

of constant dimension, 392

regular, 392

dressing factor, 108, 116, 118, 120

dressing method, 19, 78, 97, 109–120

dressing procedure, 109, 118, 119

equation(s)
Burgers, 478
chiral field, 60, 61
chiral fields, 581
cmKdV, 304
Hamilton-Jacobi, 492
Heisenberg ferromagnet, 583
KdV, 3–15, 23, 40, 46, 237, 247
Landau-Lifshitz, 60, 61, 583
mKdV, 15, 23, 40
NLS, 46, 214, 215, 258, 304
NLS-mKdV, 185, 230, 284
s-G, 46, 187, 212–215, 232, 258, 306

extension
analytic, 185

extension(s)
central, of Lie algebra, 530
equivalence of, 530
of Lie algebra, 530
with Abelian kernel, 529

field(s)
covector field, 380
invariant vector field, 383
tensor field, 380
vector field, 379

first integral(s), 86, 157, 195, 388
flow of vector field, 387
foliation

coisotropic, 484
isotropic, 484
projectable, 393

form
1-form, 213
2-form, 294
2-form, canonical, 308
symplectic form, 13, 213–236, 295–299
symplectic form, canonical, 305

Fourier integral, 89
frame

coordinate, 374
Darboux frame, 410
holonomic, 394
moving, 256

functions in involution, 414

gauge covariance, 23, 247
gauge covariant

“squared” solutions, 136, 161
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formulation of NLEE, 218
gauge covariant formulation, 248
gauge degrees of freedom, 248, 250, 343

elimination, 253
gauge equivalence, 264, 326, 338

of soliton equations, 16
between HF and NLS hierarchy, 16
Lax operators, 259
NLS and HF, 248
of Hamiltonian hierarchies, 299
of Lax operators, 301, 343, 363, 364
of NLEEs, 364
of recursion operators, 17

gauge equivalence of NLEE, 303, 304,
342

NLS and HF, 284
gauge equivalent

classes of NLEE, 6
NLEE, 23, 218, 247

gauge equivalent NLEE, 306
GmKdV and GNLS, 257
GNLS, 257
KdV and mKdV, 23, 247
mixed GNLS and mixed GNLS-

mKdV, 258
gauge fixing, 248–252, 339, 343

canonical gauge, 254, 367
of the Lax operator, 16, 53
pole gauge, 248, 253, 254, 367

gauge function, 305
gauge transformation, 16, 53, 250–271,

277–299, 303, 309, 325, 339
gauge transformations

of Lax equation, 248
gauge variables, 251, 252

elimination, 253
generalized first integral(s), 388
Green function, 20, 73, 74, 139–142,

157–164, 277
group

general linear, 365
orbits of, 521

Hamilton-Jacobi equation, 493
Hamiltonian

complex-valued, 218
Hamiltonian field, 410
Hamiltonian field (generalized), 410
Hamiltonian formulation, 218

Hamiltonian hierarchies, 13, 17, 138,
143, 175, 228, 229, 237, 297, 299,
302, 303

Hamiltonian properties, 12
Hamiltonian structures, 215, 231, 249,

273, 288, 305, 324, 326, 331, 332,
340, 345

complexified, 216
degenerate, 232

Hamiltonian system(s), 221
completely integrable, 7, 12–14, 237,

506
complex, 219, 222
complexified, 290, 292, 423
infinite dimensional, 7, 22, 211, 217
integrability criterion, 444
Liouville integrable, 425

Hamiltonian vector field, 213, 214, 218,
224, 227, 228, 290, 295, 297

integral
Lebesque-Stieltjes, 88
principle value, 83, 191
representation, 87

integral (sub)manifold, 393
integral curve, 387
integral equation, 72, 73, 233
integral equations, 75, 79, 112

for the Jost solutions, 88
for the RHP, 265
of Volterra type, 73, 99, 102
singular, 108, 113

integral leaf, 393
integral operator, 18, 78

bounded, 102, 263
Hilbert transform, 345
of Volterra type, 345
the resolvent, 77, 263
unbounded, 263, 264

integral operators
of Volterra type, 97

integral representation, 98
of Jost solutions, 88

integral(s) of motion, 4, 175, 215, 219,
229, 231, 292

densities of, 151
generating functional of, 191, 196,

285
gradients of, 13
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higher, 204
in involution, 219, 221, 224, 295, 323
infinite set of, 12, 13, 121
nonlocal, 191

involution, 40, 50–52, 78, 106, 183–187,
214, 215, 218, 228, 230, 234, 236,
300, 301, 303–309

q+(x, t) = ±(q−(x, t)), 186
q+(x, t) = ±(q−(x, t))∗, 183, 228, 231
q−(x, t) = ±(q+(x, t)), 228

Jacobi identity, 225, 227, 296, 298, 299,
327, 328, 330, 345, 346

for closed forms, 413
for derivations, 460
for functions, 407
for Lie algebras, 440

Kac-Moody algebra, 237, 347
Killing form, 360

Lax representation, 37
Lie algebra, 54, 59, 80

sl(2), 60, 140, 253, 255
sl(n), 47, 60, 347
generators of, 344
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semisimple, 290, 332, 338, 343
simple, 59, 237, 249, 251
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sl (n), 360
e (3), 574
AS , 561
o (n), 551
o (n)J , 553
sp (2n), 558
sym (n)I , 553
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bundle of, 549
Cartan-Weyl basis, 366
classical, 558
closed bundle of, 551
coadjoint representation, 526
coalgebra, 440
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graded, 460
irreducible bundle of, 551

loop, 560
of first integrals, 482
of fundamental fields, 515
of Poisson brackets, 413
rank of, 482
regular bundle of, 551
representation of, 526
semisimple, 440
simple, 435
structure constants, 439
trivial representation, 526

Lie bialgebra, 345
Lie brackets

of vector fields, 384
Lie group, 376
Lie-Poisson brackets, 529
linear integral equations, 8, 112

manifold
boundary of, 403
coisotropic, 417
embedded submanifold, 391
finite dimensional, 374
immersed submanifold, 391
infinite-dimensional, 374
integral (sub)manifold, 393
isotropic, 417
Lagrangian, 417
P-N, 500
Poisson, 436
presymplectic, 417
symplectic, 409, 629
transversal, 393
transversal to foliation, 393

map
canonical, 415
conjugation, 428
equivariant, 521
graded BL-linear, 626
inversion, 377
involution, 429, 431
left translation, 377
momentum, 523
pull-back, 383
right translation, 377
symplectic, 414
symplectomorphism, 414
tangent, 383
transition, 375
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Maurer-Cartan identities, 525

Nijenhuis bracket, 454, 465, 467
Nijenhuis operator, 468
Nijenhuis torsion, 467

graded, 632

operator
M , 334
M -operator, 5, 38, 51, 188–190, 309
Λ-operator, 152
ad J , 54
ad S ·, 257
ad −1

J , 56
ad σ , 47
ad σ3 , 41
generalized recursion operator, 166
Lax operator, 5, 52, 249, 253, 264,

332
projection operator, 89
recursion operator, 9, 10, 15, 21, 42,

49, 56, 149–151, 157, 158, 196, 256
transformation operator, 97, 101

Poisson brackets, 13, 212, 214, 215, 219,
316–318, 325, 343

of functions, 414
between functionals, 215, 223, 295
canonical, 214, 218, 220, 227, 292,

297, 321, 326
classical, 407
essentially different, 439
hierarchy of, 224, 296–298
of 1-forms, 413
on MC, 221, 227
on MR, 217
ultralocal, 328, 346

Poisson tensors
essentially different, 438

problem
Cauchy problem, 7, 8, 259
direct scattering problem, 7, 57, 71,

259
eigenvalue problem, 78, 184, 230, 303
inverse scattering problem, 8, 19, 44,

57, 97, 109, 139, 259, 340
Riemann-Hilbert problem, 19, 97,

103, 111, 112, 119, 265
Zakharov-Shabat problem, 317

product
cross product, 5, 418
exterior product, 218, 381
inner product, 19, 418
interior product, 381
invariant inner, 565
skew-symmetric scalar product, 24,

134, 135, 143, 153–157, 218, 271
tensor product, 144, 158, 279, 317,

318, 328, 332, 342, 377
vector product, 248
wedge product, 381

real Hamiltonian form(s), 215, 289, 433
reflection coefficients, 15, 19, 81–85,

113, 135, 136, 180, 184, 236, 271,
308

reflectionless potentials, 19, 97, 113,
114, 119, 268

relation(s)
“conjugation-type” relations, 276
bi-quadratic relations, 154, 223, 295
dispersion relations, 84–86, 106, 149,

190
generalized Wronskian relations, 15
Lenard relations, 13, 198, 224, 227,

286, 296, 297
recurrent relations, 39, 41, 47, 53,

149, 192, 256
Wronskian relations, 134, 136–138,

197, 270, 272–274, 280, 281, 284
ring

Lagrangian subring, 619
of linear operators, 345
of smooth functions, 380
of supersmooth functions, 625
of the central functions, 566
Poisson ring, 619, 620
Poisson subring, 618
regular subring, 618
symplectic ring, 621

scattering data, 8, 114, 117, 118, 134,
135, 154, 178, 191, 195, 220, 223,
270, 284, 291, 294, 326, 362

effects of involution(s), 183, 184, 235,
300, 301, 305, 307

evolution of, 46, 176, 178, 200, 269,
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minimal sets of, 84, 87, 99, 135, 139,
149, 184–186, 219, 271, 291

on continuous spectrum, 8, 230
on discrete spectrum, 8, 120, 185,

187, 325
variations of scattering data, 137,

272, 291
scattering matrix, 7, 9, 44, 52, 72, 258,

259
N -soliton, 114
‘unitarity’ condition, 45, 184
effects of involution, 184
evolution of, 14, 45, 46, 52, 57, 58

Schouten bracket, 509
section

of cotangent bundle, 380
of foliation, 393
of vector bundle, 379

singular integral equations
for the Jost solutions, 88

solution
N -soliton, 114, 267
“squared” solutions, 136, 139, 285
fundamental, 44, 51, 134, 150, 160,

258, 270, 300, 317, 363
fundamental at λ = 0, 180
Jost solution, 58
Jost solutions, 16, 75, 80, 88, 89, 97,

254, 275, 363
of Clebsh system, 566
of GLM eq., 100, 340
of Hamilton-Jacobi eq., 493
of inverse scattering problem, 19, 97,

100
of NLEE, 12, 14
of nonlinear Cauchy problem, 7
of recurrent relations, 42, 56, 120, 256
of Riemann-Hilbert problem,

104–107, 110, 261
of Riemann-Hilbert problem, regular,

116
of Riemann-Hilbert problem, singular,

108–110
of Yang-Baxter eq., 330
of Zakharov-Shabat system, 140
one soliton, 269
soliton, 14, 121, 187, 340
uniqueness of, 4

space, 19, 44

coisotropic, 417
isotropic, 417
Lagrangian, 417
symplectic, 417

structure
Berezin structure, 440
bi-Hamiltonian, 450
Hamiltonian, 408
implectic structure, 438
Kirillov structure, 440
Nijenhuis structure, 468
Poisson structure, 436
Poisson-Lie structures, 440
Poisson-Nijenhuis structure, 499
presymplectic structure, 417
super Poisson structure, 628
symplectic structure, 134, 214, 219,

322, 340, 409
superalgebra

Poisson, 628
symplectic forms

essentially different, 439
system

N -wave system, 6
U -V system, 60, 61
n × n system, 6, 52
chiral fields, 578
Clebsh system, 564
critical points of, 387
dynamical system, 215, 387
generalized Zakharov-Shabat, 52, 59,

359
integrable Pfaffian system, 393
local coordinate system, 374
Neumann system, 567
of “squared solutions”, 155
Pfaffian system, 392
root system, 359, 361, 366
Toda molecule system, 6
Zakharov-Shabat, 5, 9, 38–44, 71, 97,

253, 264, 360

tensor
completely asymmetric tensor, 248
tensor cube, 327, 328, 332

tensor field(s)
(1, 1) graded tensor field, 624
(1, 1) tensor field, 385
(p, q) graded tensor, 626
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Kirillov tensor, 440
mixed tensor field, 385
Nijenhuis tensor, 467
odd tensor field, 624
Poisson tensor, 436
Poisson-Lie tensor, 440
related tensor fields, 395
smooth tensor field, 380

theorem
Cauchy theorem, 4, 8, 81, 86
Darboux theorem, 410
Dirac theorem, 419
existence and uniqueness theorem, 8
Frobenius theorem, 393, 394
Haantjes theorem, 470
Liouville theorem, 14, 104, 262, 415
Liouville-Arnold theorem, 444
Liouville-Cartan theorem, 504
Magri theorem, 500, 503
Nijenhuis theorem, 471
Poincaré lemma, 385

residue theorem, 277
Restriction Theorem, 442
spectral theorem, 88, 89
Stokes theorem (formula), 405
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transfer matrix, 317, 320, 323, 324
transformation(s)

Bäcklund transformation, 3, 14, 15,
78, 198–203

Darboux transformation, 3
Miura transformation, 23, 247
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302, 303, 483, 494
action-angle variables, 7, 14, 220–222,
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